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Abstract

We show that under a 3+� moment condition (where �¿ 0) there exists a ‘Hartman–Winter’
Law of the iterated logarithm for random walks conditioned to stay non-negative. We also
show that under a second moment assumption the conditioned random walk eventually grows
faster than n1=2(log n)−(1+�) for any �¿ 0 and yet slower than n1=2(log n)−1. The results are
proved using three key facts about conditioned random walks. The 8rst is the relation of its step
distribution to that of the original random walk given by Bertoin and Doney (Ann. Probab. 22
(1994) 2152). The second is the pathwise construction in terms of excursions in Tanaka (Tokyo
J. Math. 12 (1989) 159) and the third is a new Skorohod-type embedding of the conditioned
process in a Bessel-3 process.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Suppose that under the law P, the process S = {Sn : n¿ 0} is a random walk in R
such that S0 = 0 and the step distribution S1 satis8es E(S1) = 0 and E(S21 ) = �2 ¡∞.
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Suppose that H−
k is the kth strict ascending ladder height of the reGected random walk

−S (with H−
0 = 0) and de8ne the renewal function

v(x) =
∑
k¿0

P(H−
k 6 x)

with the understanding that v(x) = 0 for x¡ 0. It is a non-decreasing right-continuous
function. Also de8ne �− = inf{n¿ 1 : Sn ∈ (−∞; 0)} the 8rst time that S enters the
negative portion of the real line and let Fk be the natural �-algebra generated by the
8rst k steps of S. Bertoin and Doney (1994) show that for each A∈Fk the limiting
probabilities

lim
n↑∞

P(A | �− ¿n) (1)

are well de8ned and that they induce a new measure P↑ on the paths of S, the law of
the random walk conditioned to stay non-negative. Further, if Px is the translation of
the measure P for which S0 = x¿ 0 and Ex is the associated expectation operator then

P↑
x (A) =

1
v(x)

Ex(1A∩{�−¿k}v(Sk)) (2)

is the law of the random walk conditioned to stay non-negative but with initial value
x¿ 0. In the sequel, P↑

0 will sometimes be used for P↑.
The results of Bertoin and Doney provide an analogue for random walks of the

relationship between standard Brownian motion and Bessel-3 processes. It was shown
by McKean (1963) that, in a similar sense to (1) and (2), a standard Brownian motion
conditioned to stay non-negative has the same law as a Bessel-3 process with state
space [0;∞) started from the origin.
Our aim is to investigate the asymptotics of the random walk conditioned to stay

non-negative. Analogously to results for Bessel-3 processes obtained by Motoo (1959)
we shall prove a ‘Hartman–Winter’ law of the iterated logarithm (LIL) as well as
formulate integral tests that determine lower space–time envelopes. We use the ter-
minology ‘space–time envelope’ to mean a function of time which eventually, with
probability one, captures the path of the conditioned random walk completely above or
below it. A lower space–time envelope thus contains the process from below. Although
it is possible to provide some results concerning upper envelopes, as we are not able
to obtain a precise integral test, we will not discuss them here.
Previous work on the conditioned random walk showed in a weak sense that the

random walk conditioned to stay positive prefers paths that follow space–time trajecto-
ries ‘in the neighbourhood’ of n1=2. For example, Iglehart (1974) showed that, under a
third moment condition, rescaling the random walk S[nt] by �n1=2 where t ∈ [0; 1] and
then considering the law of this process in t conditioned to stay positive as n tends
to in8nity, one recovers essentially a rescaled Brownian meander. In Ritter (1981)
it was shown that, under a second moment condition, the process S conditioned to
stay positive grows no slower than n1=2−� for any �¿ 0 in a weak sense. (Note in
the last two references the conditioning was on positivity rather than non-negativity.)
In parallel with the writing of this paper, Biggins (2003) has also established results
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concerning the occupation of conditioned random walks below speci8ed levels under
second moment conditions. We now state our main theorem.

Theorem 1. Let x¿ 0.
(LIL) Suppose that for some �¿ 0, E|S1|3+� ¡∞, then

lim sup
n↑∞

Sn√
2n�2 log log n

= 1; P↑
x -a:s:

(Lower space–time envelope) Suppose that E(S21 )¡∞,  (t) ↓ 0 and
√
t (t)↑∞,

then

lim inf
n↑∞

Sn√
2n�2 (n)

=∞ or 0

accordingly as

∞∫
 (t)
t

dt ¡∞ or =∞:

From the second part of this theorem it is also possible to deduce 8ne statements
about a lower space–time envelope though there is no corresponding LIL. Our theorem
shows that, under only a second moment, the functions

 k+1(t) =

[
k+1∏
i=0

log(i) t

]−1

;  �
k+1(t) =

[(
k∏

i=0

log(i) t

)
(log(k+1) t)

1+�

]−1

;

where log(i) t is the ith iterate of log t (log(0) t = 1) and n¿ 1, serve to produce

lim inf
n↑∞

Sn√
2n�2 k+1(n)

= 0 and lim inf
n↑∞

Sn√
2n�2  �

k+1(n)
=∞:

The proof of Theorem 1 is essentially a consequence of being able to reconstruct
(S;P↑) in two diMerent ways. The 8rst comes from Tanaka (1989) and gives a pathwise
construction of (S;P↑) by systematically extracting excursions from the supremum of
(S;P), time reversing them and replacing them between the same end points. From
Tanaka’s construction, the lower space–time boundary results can easily be read oM
from existing theory for the Guctuation of random walks. The second reconstruction
of (S;P↑) is new and relies on piecing together appropriately stopped passages of
the Bessel-3 process in the spirit of the Skorohod embedding problem. For this latter
construction, knowing the distribution of S1 under P↑

x , as given by (2), will prove to
be important in the calculations.
The paper is structured as follows. We begin with some preliminary results drawn

from the literature on Bessel processes and random walks. Section 3 is devoted to
Tanaka’s decomposition and the lower space–time envelope results that follow.
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In Section 4, we discuss a new Skorohod-type embedding which is the key tool for
the upper envelope. Finally Section 5 deals with the proof of Theorem 1 (LIL).
On a 8nal note, as we shall remark later, the need for a 3 + � moment condition

in the 8rst part of Theorem 1 seems rather unnatural given that the behaviour of
the conditioned process at large distances from the origin should be quite similar to
the random walk itself, which in turn only requires second moments to satisfy the
usual LIL. The stronger moment condition appears as a consequence of controlling the
moments of the stopping times involved in our version of the Skorohod embedding;
second moments suNce for the proofs of all the other results.

2. Space–time envelopes for Bessel-3 processes and random walks

Parts of the two theorems given in this section will be used to prove our main result
given in the introduction.
A description of upper and lower space–time envelopes for Bessel-3 processes as

follows is originally due to Motoo (1959).

Theorem 2. Let (X;Px) be a Bessel-3 process on [0;∞) started from x¿ 0.

(i) Suppose that � ↑ ∞. Then

Px(Xt ¿
√
t�(t) i:o: as t ↑ ∞) = 0 or 1

according to the integral test

∞∫
�(t)3

t
e−1=2�(t)2 dt ¡∞ or =∞: (3)

(ii) Further suppose that  ↓ 0, then

Px(Xt ¡
√
t (t) i:o: as t ↑ ∞) = 0 or 1

according to the integral test

∞∫
 (t)
t

dt ¡∞ or =∞: (4)

Note that the original version of this theorem was stated for x=0. Since a Bessel-3
process started from the origin will hit any x¿ 0 with probability one it is easy to see
how to recover the results above via a simple space–time translation.
Despite the apparent gap in the literature for conditioned random walks, there are

several theorems for random walks which oMer integral tests similar to those of Motoo.
In particular, we refer to the collective results of Khintchine (1924), Kolmogorov
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(1929), Feller (1946), Hirsch (1965) and CsOaki (1978) which we have summarized in
the theorem below.

Theorem 3. Consider the random walk (S;P).
(i) Suppose that the step distribution is such that

lim sup
x↑∞

log log x
∫
|y|¿x

y2P(S1 ∈ dy)¡∞: (5)

(It would su@ce then for example that E(S21 |log log|S1‖)¡∞:) Choose x∈R. Let
� ↑ ∞, then

Px(Sn ¿
√
n�2�(n) i:o: as n ↑ ∞) = 0 or 1

accordingly as

∞∫
�(t)
t

e−�(t)2=2 dt ¡∞ or =∞:

(ii) Now suppose that  ↓ 0 and that E(S21 )¡∞. Then

Px

(
max
k6n

Sk ¡
√
n�2 (n) i:o: as n ↑ ∞

)
= 0 or 1

accordingly as

∞∫
 (t)
t

dt ¡∞ or =∞: (6)

Note that the moment condition in part (i) of the above theorem is heavier than
necessary for the classical LIL where we take �(t)=

√
(2± �)log log t for small �¿ 0.

For such cases it is a well established fact that under only second moments

Px

(
Sn ¿

√
(2 + �)n�2 log log n i:o: as n ↑ ∞

)
= 0 and

Px

(
Sn ¿

√
(2− �)n�2 log log n i:o: as n ↑ ∞

)
= 1:

3. Tanaka’s decomposition and lower space–time envelopes

In exactly the same manner as Tanaka (1989), Afanasyev et al. (2003) give the fol-
lowing pathwise construction of a Markov chain from excursions of (S;P) whose law is
equal to that of (S;P) conditioned to stay non-negative. Let {(H+

k ; �+k )}k¿0 be the se-
quence of weakly increasing ladder heights and times, respectively, of (S;P) with H+

0 =
�+0 = 0. De8ne e1; e2; : : :, the sequence of excursions of (S;P) from its supremum that
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have been time reversed;

en = (0; S�+n − S�+n −1; S�+n − S�+n −2; : : : ; S�+n − S�+n−1+1
; S�+n − S�+n−1

)

for n¿ 1. Write for convenience en=(en(0); en(1); : : : ; en(�+n −�+n−1)) as an alternative
for the steps of each en. The process S↑ = {S↑

n : n¿ 0}, constructed by gluing these
time-reversed excursions end to end in the following way:

S↑
n =




e1(n) for 06 n6 �+1 ;

H+
1 + e2(n− �+1 ) for �+1 ¡n6 �+2 ;

...
...

H+
k−1 + ek(n− �+k−1) for �+k−1 ¡n6 �+k

...
...

forms a Markov chain whose 8nite-dimensional distributions under P are the same as
those of the process S under law P↑. In this sense we say that (S;P↑) and (S↑;P) are
the same process in law.

Remark 4. The Bessel-3 process has the special property that it is equal in law to the
absolute value of a standard Brownian motion plus its local time at zero. Informally
speaking we can think of the paths of Bessel-3 processes as the result of gluing end
to end Brownian excursions away from the origin with a small ‘nudge’ upwards given
by the increment in local time at the end of each excursion. To some extent, this
construction is analogous to Tanaka’s construction of the conditioned random walk. It is
also analogous to another decomposition of conditioned random walks found in Bertoin
(1993). That is the juxtaposition of successive excursions of S from (−∞; 0]; where
an excursion is considered to include the step out of (−∞; 0] but not the returning
step to (−∞; 0].

Let {(M+
k ; �+k )}k¿0 be the space–time points of increase of the ‘future minimum’ of

(S↑;P). That is, M+
0 = �+0 = 0,

�+k = inf
{
n¿�+k−1 : minr¿n

S↑
r = S↑

n

}
and M+

k = S↑
�+k

for k¿ 1. From this construction, we can deduce that path for path, the sequence
{(M+

k ; �+k )}k¿0 corresponds precisely to {(H+
k ; �+k )}k¿0. (This can be best seen in a

simple sketch where one can go from (S;P) to (S↑;P) and vice versa by systematically
extracting the excursions, rotating them by 180◦ and then replacing them between the
same end points.)
Let L= {Ln}n¿0 be the local time at the maximum in (S;P), that is

Ln = |{k6 n : max
i6k

Si = Sk}|:
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Equivalently, L is the local time at the future minimum of (S↑;P). The hierarchy

Sn6H+
Ln
=M+

Ln
6 S↑

n (7)

is now easy to see from the pathwise construction of (S↑;P).

Proof of Theorem 1 (Lower space time envelope): Suppose that  ↓ 0 satis8es the
divergent integral test in part (ii) of Theorem 3. Since H+

Ln
=maxi6n Si, it follows

P
(
H+

Ln
¡

√
�2n (n) i:o: as n ↑ ∞

)
= 1;

which shows there exists a sequence of (random) times such that the last future min-
imum of (S↑;P) is below the space–time curve

√
n�2 (n) in8nitely often. Let the

increasing sequence of random times at which this occurs be denoted by {ni}i¿1. That
is, with probability one, H+

Lni
¡
√

ni�2 (ni) for each i. De8ne �H+
k =H+

k −H+
k−1 and

n′i the next time index after ni at which the process H+
Ln
increases (that is n′i = �+Lni+1

;
the inverse local time of Lni + 1). Note that

S↑
n′i
= H+

Lni
+�H+

Lni+1

¡
√

n′i�2 (n
′
i) +�H+

Lni+1
; (8)

where we have used the assumption that
√
n (n) is an increasing function. Consider

the sequence of positive iid random variables {�H+
k }k¿1. Since �H+

k has the same
distribution as S�+1

under P, it follows from Feller (1971) that E(�H+
k ) = �e−�+ =

√
2,

where

�+ =
∑
n¿1

1
n

[
P(Sn ¿ 0)− 1

2

]

and is 8nite. We thus have that lim supk↑∞�H+
k =H+

k =0. We now have for suNciently
large i and, say, any �∈ (0; 1) that

�H+
Lni+1

¡�(H+
Lni
+�H+

Lni+1
) a:s:

leading to

�H+
Lni+1

¡
�

1− �

√
n′i�2 (n

′
i) a:s:

for �∈ (0; 1). Continuing from (8) we have in conclusion that there exist an increasing
sequence of times such that with probability one,

S↑
n′i
¡

1
1− �

√
n′i�2 (n

′
i)

for all suNciently large i. Since the integral test which  satis8es is unaMected by
multiplicative constants in front of  , we have shown that

P↑(Sn ¡c
√
�2n (n) i:o: as n ↑ ∞) = 1
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for any c¿ 0, and hence

lim inf
n↑∞

Sn√
�2n (n)

= 0;

P↑-almost surely.
Consider now, under the same moment condition, the case that  ↓ 0 satis8es the

convergent integral test in part (ii) of Theorem 3. Using (7) we have

1 =P
(
max
i6n

Si¿
√
�2n (n) ev: as n ↑ ∞

)

=P
(
S↑
n ¿

√
�2n (n) ev: as n ↑ ∞

)

=P↑
(
Sn¿

√
�2n (n) ev: as n ↑ ∞

)
;

where ‘ev.’ means eventually. Again using the fact that we may replace  by c for
any c¿ 0, and that the integral in part (ii) of Theorem 3 still converges, it follows
easily that

lim inf
n↑∞

Sn√
�2n (n)

=∞;

P↑-almost surely.
On a 8nal note, we remark that we have reached our conclusions under the measure

P↑. However, Theorem 3 in Biggins (2003) states that, when the conditioned random
walk is started from x¿ 0, Tanaka’s description applies to the development of the
process from its all time minimum. Since the all time minimum occurs after an almost
surely 8nite number of steps the results as stated in the second part of Theorem 1
follow.

4. Skorohod embedding

In this section, we construct a Skorohod-type embedding for the conditioned random
walk. We allow S0 to have an arbitrary distribution ! with support in [0;∞), the
corresponding measure is denoted by P↑

!. Similarly P" denotes the law of the Bessel-3
process X on (0;∞) such that X0 has distribution ", and E" denotes the associated
expectation operator. We assume now that the 8ltration {Gt}t¿0 to which X is adapted,
is rich enough to make the following construction possible.

Theorem 5. Let !(dx)=P↑(S0 ∈ dx) and "(dx)=P↑
!(v(S0)∈ dx). Then there exists a

stopping time T ¡∞ a.s., such that XT under P" has the same distribution as v(S1)
under P↑

!.
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Proof. First we embed the random variable E↑(1=v(S1)|S0) into the Bessel-3 process.
Let

$(x) = E↑x
(

1
v(S1)

)
=
Px(S1¿ 0)

v(x)
; (9)

then

E↑(1=v(S1)|S0) = $(S0) a:s:

The pair (v(S0); $(S0)) have a joint distribution determined by !, with the 8rst coor-
dinate having the marginal distribution ". If G0 is suNciently rich, we may assume
that X0 has distribution " and that there is a G0-measurable random variable % such
that (v(S0); $(S0)) and (X0; %) have the same joint distribution. From the inequality
$(x)6 1=v(x) it follows that v(S0)6 1=$(S0) and thus X06 1=% a.s. Therefore, since
the Bessel-3 process drifts to ∞ with probability 1,

& := inf{t¿ 0 :Xt = 1=%}
is an a.s. 8nite stopping time and X& = 1=%. In conclusion, E↑(1=v(S1)|S0) and 1=X&

coincide in distribution.
Next we show how to embed v(S1) into the Bessel-3 process X ′

t := Xt+&, t¿ 0. Note
that X ′

0 = 1=%. Thus, assuming that X ′
0 = 1=$ for some real number $¿ 0 is equivalent

to considering the conditional random walk, given the event E↑(1=v(S1)|S0)= $, which
we do in the sequel. Let '$(dx) denote the corresponding conditional distribution of
v(S1). Then∫ 1=$

1
(x−1 − $) '$(dx) =

∫ ∞

1=$
($− x−1) '$(dx) = (($) (say):

Note that v(S1) takes values only in [1;∞) and (($) is strictly positive.
Now we follow a standard proof of the Skorohod embedding theorem for Brownian

motion (see Kallenberg, 1997) with some adaptations. We de8ne F+
$ (db) = '$(db)

for 1=$6 b¡∞ and F−
$ (da) = '$(da) for 16 a¡ 1=$. If G0 is suNciently rich,

there exists a bivariate G0-measurable random variable (+; ,) with values in [1; 1=$)×
[1=$;∞), independent of the Bessel-3 process and with distribution

Pr((+; ,)∈ da× db) =
1

(($)
(a−1 − b−1)F−

$ (da)F
+
$ (db):

Then, setting

&′ := inf{t¿ 0:X ′
t �∈ (+; ,)};

X ′
&′ has distribution '$. To show this, we use the fact (Revuz and Yor, 1994) that the
Bessel-3 process has scale function s(x) =−1=x, so that -t = 1=X ′

t is in natural scale.
Furthermore -0 = $, thus

P1=$(X ′
&′ = , | +; ,) =P1=$(-t hits ,−1 before +−1 | +; ,) = +−1 − $

+−1 − ,−1
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and consequently for 1=$6 b¡∞,

P1=$(X ′
&′ ∈ db) =

∫ 1=$

1

a−1 − $
a−1 − b−1

1
(($)

(a−1 − b−1)F−
$ (da)F

+
$ (db) = '$(db):

An identical calculation holds for P1=$(X ′
&′ ∈ da) with 16 a¡ 1=$. In conclusion X ′

&′

has distribution '$.
Now by de8ning the stopping time

T := &+ &′;

XT = X ′
&′ has the same distribution as v(S1).

Iterating this construction the whole process v(S0); v(S1); : : :, can be embedded into
the Bessel-3 process X in much the same way provided some obvious changes are
taken care of ($(Sn) should be embedded, given the values of v(S0); : : : ; v(Sn)).

Corollary 6 (Skorohod embedding). There is a sequence of stopping times 0=T06T1
6T26 · · · such that the distribution of the process XT0 ; XT1 ; : : :, under P" is equal to
the distribution of the process v(S0); v(S1); : : :, under P↑

!.

In order to use the Skorohod embedding, we shall need to control the moments of
the stopping times Tn. In particular we will need the following strong law of large
numbers.
Let

�− =
∑
n¿1

1
n

[
P(Sn ¡ 0)− 1

2

]

and note �− is 8nite by Feller (1971). Also recall that !(dx) = P↑(S0 ∈ dx) and
"(dx) = P↑

!(v(S0)∈ dx).

Theorem 7 (Strong Law of Large Numbers). Let {Tn}n¿0 be as in Corollary 6 but
with != �x for x¿ 0. When E|S1|3+� for some �¿ 0, the sequence {Tn}n¿0 obeys a
Strong Law of Large Numbers,

lim
n↑∞

Tn

n
= 2e2�

−
; Pv(x)-almost surely:

The intuition behind this is that both the conditioned random walk and the Bessel-3
process behave more and more like the random walk and Brownian motion, respec-
tively, as they drift out to in8nity. The Skorohod embedding described above should
therefore resemble more and more the classical Skorohod embedding problem; that is
that the increments �Tn should show similar behaviour to iid random variables in that
they should obey a strong law of large numbers. Note that the Skorohod embedding
above concerns the sequence {v(Sn)}n¿0 rather than {Sn}n¿0 and hence the limiting
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constant in our Strong Law of Large Numbers is not proportional to �2 as one might
expect at 8rst glance.
In order to prove Theorem 7 we require two propositions giving estimates for the

expectation and higher moments of T .

Proposition 8. Let T be as in Theorem 5 but with ! = �x for x¿ 0. If E|S1|3¡∞,
then T has Bnite expectation, and

Ev(x)(T ) → 2e2�
−

as x → ∞.

Proof. Straightforward Itô calculus con8rms that Ut = X 2
t − 3t is a local martingale.

As T is the sum of hitting times of (albeit randomized) barriers, it can be shown in
the usual way that Ev(x)(UT ) =Ev(x)(U0), thus taking advantage of Theorem 5 and the
fact that v(x) = 0 for x¡ 0, we have

3Ev(x)(T ) =Ev(x)(X 2
T )− v(x)2

= E↑x (v(S1)2)− v(x)2

= v(x)−1(Ex(v(S1)3)− v(x)3)

= v(x)−1(E0((v(S1 + x)− v(x))3) + 3v(x)E0((v(S1 + x)− v(x))2)

+ 3v(x)2Ex(v(S1)− v(x))):

As Ex(v(S1)) = v(x), the last term vanishes.
Recall from Feller (1971) and Spitzer (1964) that the expectation E(H−

1 ) = �e−�− =√
2, where �− was de8ned earlier in Theorem 7. The renewal theorem tells us that

v(x) → ∞ and

v(S1 + x)− v(x) → S1

√
2

�
e�

−

as x → ∞. Also v(s + x) − v(x)6 v(s), since ṽ(s) = v(s + x) − v(x), s¿ 0, can be
viewed as the renewal function of a delayed renewal process. It follows that |v(S1 +
x)−v(x)|6 v(|S1|)6 c(1+|S1|) for some c¿ 0. Therefore, by dominated convergence,
it follows that the 8rst term goes to 0 and the second term converges, hence

Ev(x)(T ) → E(S21 )
2
�2

e2�
−
;

which is the assertion.

Proposition 9. Let T be as in the proof of Theorem 5 but with ! = �x for x¿ 0.
If E|S1|3+� ¡∞ for some �¿ 0, then Ev(x)(Tp) = O(1) for some p¿ 1, as x → ∞.

Proof. As Ev(x)(Tp)6 2p−1(Ev(x)(&p) + Ev(x)((&′)p)), for p¿ 1, we deal with the
stopping times & and &′ separately. For & we use the fact that X 2

t − 3t and X 4
t −

10tX 2
t + 15t2 are local martingales. (The second case is again easily deduced using
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Itô’s formula.) By standard arguments we get

Ev(x)X 2
& − 3Ev(x)&= v(x)2; Ev(x)X 4

& − 10Ev(x)(&X 2
& ) + 15Ev(x)&2 = v(x)4:

Using X& = 1=$(x) and v(x)6 1=$(x) it follows that

3Ev(x)&= $(x)−2 − v(x)26 2(1− v(x)$(x))=$(x)2;

15Ev(x)&2 = v(x)4 − $(x)−4 +
10($(x)−2 − v(x)2)

3$(x)2
6

20(1− v(x)$(x))
3$(x)4

and by means of Cauchy–Schwartz

Ev(x)&3=26 (Ev(x)&Ev(x)&2)1=26 (1− v(x)$(x))=$(x)3:

Now 1 − v(x)$(x) = Px(S1 ¡ 0)6 x−3Ex|S1 − x|3 = O(x−3) by assumption, and
$(x)−1 ∼ v(x) ∼ x in view of the renewal theorem. Therefore,

Ev(x)&3=2 = O(1)

as x → ∞.
In order to study &′ we write $ for $(x) and use the following formula for Bessel-3

processes (see Borodin and Salminen (1996), Eqs. 1.3.0.6a,b and 5.3.0.6a,b, p. 172
and 348)

P1=$(&′ ∈ dt|+= a; , = b)

= a$ Pr(�∈ dt; B� = a) + b$ Pr(�∈ dt; B� = b);

where {Bt}t¿0 is a standard Brownian motion starting at B0 = 1=$, and the exit time
� = �a;b := inf{t¿ 0 :Bt �∈ (a; b)}. [Note that this equality follows simply from the
fact that the law of a Bessel-3 process can be recovered from that of a Brownian
motion killed on entering (−∞; 0] by applying a Doob h-transform with the function
h(x) = x.] Thus,

E1=$((&′)p|+= a; , = b)6 (a+ b)$E�p:

Moreover, for p¿ 1 (cf. Hall and Heyde, 1980, p. 271)

E�p6 c(b− a)2p−2(b− $ −1)($ −1 − a)

for a suitable c¿ 0 (depending on p). Therefore, we arrive at the estimate

E1=$(&′)p

6
c$
(($)

∫ ∫
(a+ b)(a−1−b−1)(b−a)2p−2(b−$ −1)($ −1−a)F−

$ (da)F
+
$ (db)

=
c$
(($)

∫ ∫
(a−1 + b−1)(b− a)2p−1(b− $ −1)($ −1 − a)F−

$ (da)F
+
$ (db):
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Using the inequality

(b− a)2p−16 22p−1((b− $ −1)2p−1 + ($ −1 − a)2p−1)

and the de8nition of the measures F−
$ ; F+

$ , we obtain by means of Fubini’s theorem

E1=$(&′)p6
22pc$
(($)

(
E↑x
( |$ −1 − v(S1)|

v(S1)

)
E↑x |v(S1)− $ −1|2p

+ E↑x |$ −1 − v(S1)|E↑x
( |v(S1)− $ −1|2p

v(S1)

))
: (10)

Now $(x)−1 − v(x) = O(1), thus if r6 3 + �

Ex|v(S1)− $ −1|r 6 Ex(v(|S1 − x|) + |v(x)− $ −1|)r

6 cEx(|S1 − x|+O(1))r

= O(1)

by assumption. Therefore,

E↑x
( |v(S1)− $ −1|r

v(S1)

)
=

1
v(x)

Ex|v(S1)− $ −1|r =O(v(x)−1)

and if r6 2 + �

E↑x |v(S1)− $ −1|r = 1
v(x)

Ex(v(S1)|v(S1)− $ −1|r)

6
1

v(x)
Ex|v(S1)− $ −1|r+1 + 1

v(x)$
Ex|v(S1)− $ −1|r

= O(1):

Returning to (10) it thus follows that

E1=$(&′)p =O($v(x)−1(($)−1)

as x → ∞, for p¿ 1 suNciently close to 1. It remains to estimate (($):

(($) =
1
2

∫ ∞

1
|$− y−1|'$(dy) =

1
2
E↑x |$− v(S1)−1|

=
$

2v(x)
Ex|v(S1)− $ −1| ∼ c$v(x)−1

for some c¿ 0. Therefore E1=$(&′)p =O(1), as claimed.

We are now ready to prove our Strong Law of Large Numbers.
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Proof of Theorem 7. Let {Tn}n¿0 be the sequence of stopping times given in
Corollary 6 but with ! = �x for some x¿ 0. For n¿ 1 let �n = Tn − Tn−1 and
Hn−1 = �(Tk ; XTk ; k6 n− 1). Now note that

n∑
k=1

�k − Ev(x)(�k |Hk−1)
k

=
n∑

k=1

�k − EXTk−1
(�1)

k

is a zero mean martingale. Theorem 2.18 of Hall and Heyde (1980) tells us that this
martingale converges on the set

{ ∞∑
k=1

Ev(x)([�k − Ev(x)(�k |Hk−1)]p|Hk−1)
kp ¡∞

}
:

We would like to show that this event occurs with probability 1. From the Skorohod
embedding together with the lower space–time envelopes proved in the previous section,
we know that XTk tends to in8nity almost surely. Using this together with Proposition
8 we note that to achieve convergence of the above sum almost surely, it suNces to
establish the almost sure convergence of

∞∑
k=1

Ev(x)(�
p
k |Hk−1)
kp or equivalently

∞∑
k=1

Ev(Sk−1)(�
p
k )

kp ;

but this follows automatically from Proposition 9 and the fact that S tends to in8nity
P↑

x -almost surely (which itself follows from the lower space–time envelope).
Martingale convergence together with Kronecker’s Lemma now implies that

lim
n↑∞

∑n
k=1 �k − EXTk−1

(�1)

n
= 0

Pv(x)-almost surely. From this we have

lim
n↑∞

Tn

n
= lim

n↑∞

∑n
k=1 EXTk−1

(�1)

n
= 2e2�

−
;Pv(x)-a:s:;

where the last equality is again a result of Proposition 8 and the fact that {XTk}k¿0

drifts to in8nity. The law of large numbers is thus established.

Remark 10. The moment conditions that we have assumed in order to produce the
asymptotics are essentially responsible for the moment condition in the 8rst part of
Theorem 1. It is diNcult to see how this can be avoided using the current method;
however, one might conjecture that an improvement is possible in view of the discus-
sion following Theorem 7.
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5. Proof of Theorem 1 (LIL)

We shall divide the proof into two parts by establishing 8rst that

lim sup
n↑∞

Sn√
�2n log log n

6 1 and then lim sup
n↑∞

Sn√
�2n log log n

¿ 1;

P↑
x -almost surely for each x¿ 0.
For the upper bound, choose any �¿ 0 and 8x �(t) =

√
(2 + �)log log t. It is easy

to check that this choice of � produces a 8nite integral in (3) of Motoo’s Theorem 2
and hence

Pv(x)
(
Xt ¿

√
t�(t) i:o: as t ↑ ∞)= 0:

An immediate consequence of this is that

Pv(x)

(
XTn ¿

√
Tn�(Tn) i:o: as n ↑ ∞

)
= 0

and hence

Pv(x)

(
XTn ¡

√
n�(n)

√
Tn

n
�(nTn=n)

�(n)
ev: as n ↑ ∞

)
= 1:

From the Strong Law of Large Numbers given in Theorem 7 and the uniform slow
variation of � on compacts it follows that

Pv(x)

(
XTn ¡

√
n�(n)

√
2e�

−
ev: as n ↑ ∞

)
= 1:

The Skorohod embedding result in Corollary 6 now tells us that

P↑
x

(
v(Sn)¡

√
n�(n)

√
2e�

−
ev: as n ↑ ∞

)
= 1:

Note that when ! = �x, "= �v(x). Finally recalling that limx↑∞v(x)=x = �−1
√
2e�

−
we

have for any �¿ 0 that v(Sn)¿ (1−�)�−1
√
2e�

−
Sn eventually with P↑

x -probability one.
Since � can be made arbitrarily small, it follows that

lim sup
n↑∞

Sn√
�2n log log n

6 1;

P↑
x -almost surely for any x¿ 0.
Now for the lower bound. We have from the classical LIL for zero mean random

walks with 8nite variance that

P
(
Sn ¿

√
(2− �)�2n log log n i:o: as n ↑ ∞

)
= 1:
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Now recall from the pathwise construction of the random walk conditioned to stay
non-negative that Sn6 S↑

n . From this it follows immediately that

P
(
S↑
n ¿

√
(2− �)�2n log log n i:o: as n ↑ ∞

)
= 1

and hence

P↑
(
Sn ¿

√
(2− �)�2n log log n i:o: as n ↑ ∞

)
= 1:

Recalling Theorem 3 in Biggins (2002) we can again strengthen this statement to

P↑
x

(
Sn ¿

√
�2n�(n) i:o: as n ↑ ∞

)
= 1

for all x¿ 0. Since �¿ 0 is arbitrarily small we have that

lim sup
n↑∞

Sn√
�2 n log log n

¿ 1;

P↑
x -almost surely. This concludes the proof of Theorem 1 (LIL) and the paper.
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