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Abstract

We consider the Russian option introduced by Shepp and Shiryayev (Ann. Appl. Probab. 3
(1993) 631, Theory Probab. Appl. 39 (1995) 103) but with finite expiry and show that its space-
time value function characterizes the unique solution to a free boundary problem. Further,
using a method of randomization (or Canadization) due to Carr (Rev. Financ. Stud. 11 (1998)
597) we produce a numerical algorithm for solving the aforementioned free boundary
problem.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction: the Russian option

Consider the Black—Scholes market. That is, a market with a risky asset S and a
riskless bond, B. The bond evolves according to the dynamic
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where >0 and r>0. The risky asset is written as the process S = {S; : >0} where
S: = sexploW, + ut},

where s>0 is the initial value of S and W = {W,: >0} is a Brownian motion
defined on the filtered probability space (Q, F,F={F ,},ZO,P) satisfying the usual
conditions. Suppose now that P, is the risk-neutral measure for S under the
assumption that Sy = s. Recall that standard Black—Scholes theory dictates that this
measure exists and is uniquely defined via a Girsanov change of measure such that

(™S, 1 =0} (D

is a martingale. We shall denote [E expectation under P;.
The Russian option with expiry 7' < oo is an American-type option with payout of
the form

e | max{ m, sup S,
uef0,1]

for 0>0,m>0and ¢ € [0, T]. Introduced by Shepp and Shiryayev [21,22] as being an
option where one has ‘reduced regret’ because a minimum payout of m is
guaranteed, this option can be considered to be something like an American-type
lookback option.
Classical optimal stopping arguments for American-type options tell us that the
value of this option is given by the process
F z>, 2

where 7, r is the set of F-stopping times valued in [¢, 7). Following the lead of Shepp
and Shiryayev [22], we use the fact that under Py, (1) is an exponential martingale
and thus can be used to make a change of measure via

dP;|  e™'S,
dP,

V= ess-sup,. -, Es e " De™* max{ m, sup S,
‘ uelf0,1]

S

7,
Note that the process S solves

ds

——=aW¥f + (r+d%)ds,

S
where WP = {W?F : 1>0}, defined on (Q, #, F), is a standard Brownian motion under
P. Suppose that —T is some arbitrary moment in the past before the contract was
initiated (79 >0). Define S; = sup,¢_z, 4 S« and assume that Sy is #( measurable.
With a slight abuse of notation, we can adapt the definition of the measure Py(-) to
P,s() = P(-|So = m, Sy = s). In that case the value process of the option can be
written more conveniently as

e Sw(¥,, T —1):te[0,T]}, 3)
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where ¥ = (¥, =S,/S;: t € [0, T1}, P,s(¥o = m/s) = 1 and for each y = m/s>1,
v, u) = sup E (e ¥). )

€T 0u

By writing stopping times in (2) in the form t = ¢+ 7’ for some 7’ € o r_, we see
where the factor e™* in (3) comes from. It is also important to note in this case the
well established fact from optimal stopping theory that stopping times in 7, r which
cannot be written in this way may be ignored as they do not offer an optimal
strategy.

Effectively the change of measure has reduced an optimal stopping problem for
two stochastic processes to that of one stochastic process, namely ¥. For future
reference, we shall also note that v may be represented in the following forms

S, -
o(y,u) = sup E<e” VY g = 1,5, = 1) (5)
€T ou Sr
= sup Ey(e™"""(S: v y)). (6)
‘563707,,

Remark 1. At this point it is worth mentioning that, to some extent, one may
consider the parameter o as superficial for the finite expiry option. Its original
purpose for the perpetual case was essentially to justify the existence of a solution to
the optimal stopping problem associated with the option; cf. Shepp and Shiryayev
[21,22]. For finite expiry, the existence of a solution to the optimal stopping problem
(4) is guaranteed even when o = 0.

Clearly v(y, u)=y for all u=0. Standard theory of optimal stopping tells us that
the optimal stopping time in (2) is given by

nf=inf{s=1: 0¥, T — )<V} A (T — 0).

(Here and throughout we work with the definition inf ¥ = co0.)
Again from the classical theory of optimal stopping (cf. [19]) we know that for
tel0,T]

{fe ™ oW, T —s):s€[t, T]} (7)
is a P-supermartingale and that
(e N W e, T — (s AN s € [1.T]) ®)

is a P-martingale.
Let us finish this section by making note of some analytical facts concerning the
functions v and b.

Lemma 2. We have the following properties of v and b.

(1) The function v is convex in .
(i1) The optimal stopping time in (5) may be identified in the form

b =inf{r=0: (S, v Y)/S,=>b(u— 1)} Au, )
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where b : (0,00] — [1,00) is defined by
b(u) = inf{yy =1 v(h, u) = ¥}

Jor u>0.
(ii1) The function v is jointly continuous in u and \y and monotone non-decreasing in u.
(iv) The boundary b is monotone non-decreasing and continuous from the left. Further

G(b)={(h,u) : 1 <y <b(u),u € (0, T)}

is open.
(v) The function v is strictly increasing in .

Proof. (i) Since the object in the expectation in (6) is convex for each 1 € 9, and
convexity is preserved by integration and taking the supremum, convexity of v in
follows. Since v=y the form of the stopping time follows.

(i1) As a partial step, let us prove that for each u >0 the function v(y/, u) — V is non-
increasing in . To this end, consider 1<y, <y, <oo. Write

T, = inf{r>0: (S, V) /Su—D<(S, V) /St Au

for the optimal stopping time associated with the right-hand side of (5) and note by
optimality that

oW =B Sy V).
It now follows that
oW, ) = oy, ) <Ere "R (Se V) = (S V)

<E(e (g, — )
<Y, — Yy

from which the claimed monotonicity follows. We may now deduce from this
monotonicity together with the fact that v(y, u) =y that once the function v(y, 1)
touches the diagonal ¢ then it remains equal to y. Together with convexity this latter
conclusion implies the statement in part (ii) of the lemma.

(iii) From the definition (4), the function v is clearly monotone non-decreasing in
u. The proof of joint continuity is a straightforward argument using dominated
convergence. We leave the details to the reader and otherwise we refer to [18].

(iv) The fact that b is non-decreasing follows from the monotonicity in u of v. The
continuity of v implies that the function b is half-continuous from below (that is to
say lim inf,_,, b(v)>=b(u)). Further, a monotone non-decreasing function is half-
continuous from below if and only if it is left continuous. Next note that the region
%(b) is open if and only if the function b is half-continuous from below, which is
the case.

(v) Note that for 1<x<y, on the event {S, <y} we have

S, VvXx - y _Sivy

S S, S
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and on the event {S,;>y} we have

S S S
It follows from the continuity of the paths of S that the stopping time 7 is
stochastically monotone in  and further, for any y; >y,>1, P(rl/, <7:¢, |So =1,
So = 1)>0. Noting from (5) that

o 0) = B (S v §)/Se; 150 = 1,50 = 1),

S;vx S, Sivy

the claim follows by taking account of the aforementioned stochastic monotonicity,
part (ii) and the fact that b(u — -) is non-increasing. [

2. Main results

In this paper, we have two clear and simple goals. The first is to show that v may
be characterized as the unique solution to a free boundary problem where the
boundary turns out to be monotone and continuous and the second is to give a
numerical algorithm for solving this free boundary problem. We summarize our
results as follows.

Theorem 3. The pair
v:[l,00) x[0,T] > [1,00) and b:[0,T]— [1,00)

form the um'que solution to the free boundary problem

g;f %_ _@(w uy=0 on (),

f(l//,u)= Y on{[l,00) x (0, INC(9), [(W,u)>y on E(e),
JW,0) =y fory €[l,00),

ai (p(u)",u) = i((p(u)+ uy=1 forue(0,T) (smooth pasting),
of
o0 —(L,u)=0 for u e (0, T] (reflection), (10)

where 6(p) = {(Y,u) : 1<y <o(u), ue(0,T)} for some monotone non-decreasing,
bounded continuous function ¢ : (0, T) — (1, 00).

(Note, the solution to the above free boundary problem is the pair (f, ¢).) The
proof of this theorem will be the result of the combined conclusions found in the next
section.

Next we turn to a numerical algorithm which serves as a good approximation to
the solution to the above free boundary problem.
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Algorithm 4. For each n>=1, the solution to the free boundary problem may be
approximated by

o) = V50) and b =y, i ue ((k—n%,kﬂ

for k =1,...,n where the functions v%" : [1, 00) — [1,00) and thresholds J(,()n) relate
to one another as follows. Let

on
r+o+ A,

and let By <f, be the two solutions too the quadratic equation

n
Ip = T and 0, =

2 2
o g T \p_ =
Ay <r+2)ﬁ (4 ) =0
Then v () = and J(Oﬂ) =1landfork=1,...,n

W) =y
l'fl,DZJ(k’n) and otherwise, when \y € [J(i_l’n), l,Nb(i’n)] andi=1,... .k,

k—i
o) =yl (c(l, k) + ) alm.i.k) 10g(1//)’”>
m=1

k=i

+ylh (e(z, i.k)+ Y b(m,i. k) 1og(w)'"> + 8,y
m=1

All the constants in the latter are defined recursively and on account of the complexity

of the recursion are given in Appendix A.

The algorithm will be dealt with in Section 4.

The formulation in Algorithm 4, although somewhat complicated, allows for one
to construct quite precise numerical approximations to the free boundary problem in
a package such as Mathematica for example. Indeed in the final section of this paper
we give an exposition of the value functions as surfaces and optimal exercise
boundaries produced by this algorithm with some indication of the efficiency of the
programme.

Let us conclude this section by making some final remarks on our main results. To
some extent our conclusions are not surprising on account of analogous results being
available and well studied in the literature for American put options as well as
the known results for perpetual Russian options. The reader is referred to
[1-3,9—-13,20-22]. Nonetheless, until very recently, there was no literature concerning
finite expiry Russian options. In parallel to the writing of this paper however, the
authors learnt of the work of [15]. This paper, which also handles the case of finite
expiry Russian options, has some overlaps with the work presented here, but none
the less deals with slightly different issues to the ones we address here. In particular,
the main objective of Peskir’s paper is to show how the function v may be expressed
in terms of the optimal stopping boundary b which itself is the unique solution to a
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non-linear integral equation. Peskir [14] also deals with a similar representation for
the American option.

3. Free boundary problem: proof of Theorem 3

We break the proof into a series of Lemmas which themselves are shared between
two subsections dealing with existence and uniqueness respectively.

3.1. At most one solution to the free boundary problem

Lemma 5. If a solution to (10) exists then it is equal to the pair (v,b). That is to say,
(10) has at most one solution.

Proof. Let (f, @) be any solution to (10). Note that the corresponding region €(¢) is
open for reasons given in the proof of Lemma 2. Define for each ¢ € [0, T']

99 —infls>1: W, =T —t — )} AT — 1)
and

2 2
0 0 0
=2 lpz -y ——a——.
oy oy ou
Since in (@), fis C>' (that is twice differentiable with continuous derivatives in the
first parameter and once differentiable with continuous derivative in the second
parameter) and Zf = 0, It6’s formula together with boundedness of ¢ easily yields
that for each ¢ € [0, T,
e, T — (s ATED)) s e [1,T])

SAT,

is a uniformly integrable Py-martingale for  <¢o(T — ¢).

Making use of a new generalized version of It6’s formula for continuous
semimartingales given in Theorem 3.1 of Peskir [16] (see also [4,7] for developments
prior to Peskir’s formula and [5,17] for developments proceeding Peskir’s
formula) together with the fact that d¥, = —¥,(c Wf + rdt) +dS,/S; (cf. [22]) we
may write

edle™f (V0. T — 1)]

=21V, T —t)dt — ¥, %(W,, —ndw? + ;, gfw(w,, —ndS,
+ = {ai(av -1 - % - t)}1(%_m(r_,)) drLeT=n, (11)

where L?T=) is a version of the local time of ¥ at the curve ¢(7 — -). Note that
Theorem 3.1 of Peskir [16] has three conditions which need checking. It can
easily be confirmed that these conditions are automatically satisfied on account of
the following facts: Zf =0 on %(¢), Lf = —(r+a)y on int{€(p)}, there is
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monotonicity of ¢ and the function fis assumed to have smooth pasting. We leave it
as an exercise to confirm that the conditions of Peskir’s theorem are fulfilled. The
precise definition of L7~ is not of importance here since by the smooth pasting
assumption we have that the coefficient of dL(f’ (=1 is zero. The reader is otherwise
referred to [16,17] for further details of local time on a space-time curve (or local
time-space).

We may now deduce from (11) that e *f (¥, T —¢) is the sum of a local
martingale and a process of bounded variation which decreases (since Zf =
—(r+a)f <0 on the complement of the continuation region). Since 9f /oy is
bounded, the local martingale is in fact a martingale and we are left with the
conclusion that, for each ¢ € [0, T,

{e™f (W, T —s):5€[t,T]} (12)

is a P-supermartingale.

The martingale and supermartingale properties, (8) and (7) respectively, together
with the facts that />y on %(¢) and that f(¥. “o, T = /(40)_ g (o) Are NOW
sufficient using classical methods to establish that f = Indeed for each ¢ e€[0,7)
using the supermartingale property,

W, T =02 sup By (W, T = (14 1)

’CE?/Q()VT,,

>e™ sup Ey(eY.)

€7 0,71

and further
W, T = 1) = B S (W g, T =/ )| ¥, = )

()
= E(e™ ™ ? Byriﬁ(w) RIER))
<e™ sup Ey(e™Y,)

€7 0,11

proving that f(y, T — 1) = sup.c 7, Ey(e™ V). 0
3.2. At least one solution to the free boundary problem

It is clear now that we have one of the two directions in the proof of Theorem 3.
The other direction requires more analysis which we now proceed with in the shape
of further Lemmas. For clarity, recall that €(b) = {(Y,u) : 1 <y <b(u), u € (0, T)}
which defines an open region; the so called continuation region.

Lemma 6. In %(b) the function v is C*' and satisfies Lv = 0 with

@ qy=2 0% =0

a o
Proof. The proof is based on an analogous result for American put options treated
n [10]; see Theorem 2.7.7. It requires one to construct a local parabolic Dirichlet
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problem in any small open rectangular space-time region embedded in the
continuation domain with boundary value v and reflection condition on ¥ =1
should this be included in the domain. Then a classic result giving unique stochastic
representation identifies v as the solution to the Dirichlet problem and hence gives
the smoothness properties of v [8]. The details are left as an exercise for the
reader. [

Lemma 7. The boundary b(u) is bounded for each u>0.

Proof. The proofis trivial for the case when o> 0 as the finite horizon value function
is upper bounded by the infinite horizon problem which has a finite boundary. For
o = 0 there is no solution to the infinite horizon problem and hence we proceed with
our proof for this case.

Since S7 is integrable (this follows from standard distributional properties of
Brownian motion), dominated convergence together with (6) gives us that

0<o(h,u) =y <E[(Sz; — ) v 0] - 0 (13)
as Y tends to infinity, where T,, Was given in Lemma 2. Using Lemma 6 together with
the properties of v given in Lemma 2 we have that on €(b)

2(lﬁ u)/ p U (>0, (14)

o lﬁ

Integration of the last inequality in ¥ yields
2> 2/ A

in 4(b).

Suppose now that h(u) = oo for some u € (0, T]. For this u, the last inequality is
valid for all iy > 1. Also for this u, we know from (13) and convexity that dv(y, u)/oy
tends to one as Y tends to infinity. However, these last two observations are
incompatible because together they also imply that dv(y, u)/0y tends to infinity as y
tends to infinity. The contradiction lies in the assumed unboundedness of b(u) so the
proof is complete. [

Lemma 8. The value function v satisfies the boundary conditions.

1) v(y,u)=y for u € (0, T] and v(y,0) = .
(i1) For all u € (0, T we have that v(1,u)> 1. In particular, from Lemma 6 it follows
that for all u € (0, T,

ov
—(L,u)=0.
B kb( u)
Proof. (i) The first two conditions have been discussed in the introduction.

(i1) Suppose there exists a #' >0 such that v(1,4’) = 1. By the monotonicity in u
established in Lemma 2, it follows that v(1,u) = 1 for all u<u'. This means that
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v(y,u) = for any such u and the optimal stopping time in (6) is to stop
immediately. According to the supermartingale property given in (7) it now follows
together with the representation of the value of the Russian option given in (3) that
e U91S, is a P(-|Sy = Sy = s)-supermartingale for 0<¢<u'. Note now that the latter
process has no martingale component and therefore must be a process which is
monotone decreasing from an initial value s. In particular, it follows that

_ —(r 2
sup e (r+az)tSI = sup sxe (i+ot)leaW,+(r o /2)1<S,

o<t<su o<r<u

where W is a P Brownian motion. However this leads to a contradiction since by the
Law of the Iterated Logarithm for Brownian motion as ¢ | 0, it follows that, given
any c¢>0, there exists a decreasing sequence of times ¢,(w) | 0 such that
W, >./t,>ct, and hence the supremum above is strictly greater than s. The
consequence of this contradiction is that v(1,2')>1. O

Lemma 9. The function v exhibits the smooth pasting condition

(b( ), )— 3 (b(u) 2w =1 forue(0,T].

5!# v

Proof. Since v(y,u) = for Y =b(u) and v(y,u)>y for 1<y <b(u) and v(-,u) is
convex for each u € (0, 7, it is trivial that

Tp(b(u)+ u)= Tp(b(u) u). 15)
It remains to prove then that
ov _
@(b(”) suy=1 (16)

for all u € (0, T
To this end, note from (6) that optimality implies that for u € (0, T')

o(b(u), u) = Ey (e ho-(Sy v b(w))),

1()r

where ¢>0 is small and 7}, , is given in Lemma 2. It now follows that

L 0bw.1) ~ o6 — 2, )

>1 [E (C (r+7)1/7'u) [(
&

o V@) — (S, V(D) — D).
It is easy to check that [(S Vv b(u) — (S« s V (b(u) — ¢))]/¢ is valued in [0, 1] and
hence regularity of Brownian paths together with dominated convergence implies

that (16) holds. [
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Lemma 10. The boundary function b is continuous on (0, T] and b(0") = 1.

Proof. Left continuity has already been dealt with in Lemma 2. For right continuity,
fix some u € [0, T) and work with the convention that h(0) := 1. We shall prove that
limy, |, b(u) = b(up) and hence in the case that uy = 0 this means that b(0+) = 1.

Since v(b(ug), uy) = b(uy) and v(b(u),u) = b(u) we have the following integral
formula

b(u) ov
o(bluto)s ) — blu) = /b N (1 _ @(é,u)) ac a7

for each u € (up, T'). Note that b(u) = b(ug). For any b(uy) <E<b(u), we have

ov(&, u) blw) 52 v(n, u)
1— —
/i

PE o dn,

because Ov(é,u)/0¢ — 1 as &1 b(u). We now use the second-order differential
equation £v = 0, in combination with v(n,u)>n>0 and dv(n,u)/dn =0, in order to
obtain the estimate, for each <n<b(u),

&o(g,u) _ 2r ov(nu) _ 2r Ou(E,u)
= —— = —— )
on? a’n  on a’n o
where we have used the convexity of y — v(¥, 1) in the second inequality. This leads,
with the notation

2r
w(é,u) = p log(b(uw) /&),
to the estimates

ov(&, u) ov(&, u)

- FE Zw(&,u) FEE

hence
ov(E, u)
o¢
and therefore
B ov(&, u)
o¢

which in turn implies that

<1/(1+ w(&,u)

1

>w(&, u)/(1 4+ w(é,u)),

b(u)
v(b(ug), u) — v(b(ug), o) = / Mdg.

bug) 1+ w(&,u)

Suppose now that b(ug) > b(up). Because the left-hand side converges to zero, this
would imply that

/ PO (€, up)
0 = 5 . -~ o9
by 1+ (&, uo)
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in which case
2r + +
W(E o) = = log(b(ug)/€)>0  when 0<&<b(up).
g

This contradiction proves the right continuity and hence continuity of the
function b. O

4. Canadization

Carr [3] proposes a novel and yet simple method of approximating the price of the
finite expiry American put at time 7 via a method of randomization or Canadization
as he calls it. The idea is quite simple. As a first approximation, one may consider
randomizing the expiry date, 7, of the option by an independent exponential
distribution having mean 7 and forcing the American put claim should the option
expire at the end of this exponential time. The logic behind this randomization is that
the free boundary problem is converted from a time variant one to a time invariant
one as a consequence of the lack of memory property; if the holder has not yet
exercised, then there is still an exponential time remaining. It is reasonably intuitive
to see that the effect of this randomization is to convert the parabolic free boundary
problem associated with the American put to an elliptic free boundary problem. The
latter being explicitly solvable.

A natural generalization of this idea which Carr further pursues is to replace the
exponential distribution by a sum of n independent exponential distributions, each
having mean 7'/n so that the expectation of the sum is 7 and again forcing the
American put claim should the option expire at this random time. We shall refer to
this as an nth-order randomization. Suppose we denote each of these exponentials by
e;, then by the Law of Large Numbers it follows that

n n T n
; ein = ; . [T e,,n} - T
almost surely. This shows that if one can solve the optimal stopping problem with a
randomized expiry according to the independent distribution Y e;, then to some
extent for large n one has a good approximation to the finite expiry case; and hence
by the previous section a good approximation to the associated free boundary value
problem. Carr [3] makes good of this approximation and provides an explicit
expression for the case of the nth-order randomization of the American put option.
This expression is the consequence of a sequence of iterated elliptic free boundary
problems.

In this section, we formulate the problem of the nth-order randomization for
the Russian option and show that like Carr’s results for the American put the
resulting approximation is represented by the solution to an iterated system of
elliptic free boundary problems which we solve explicitly. This solution leads to
Algorithm 4.
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4.1. nth-order randomization

The nth-order randomization which approximates the function v(y,T) is the
solution to the optimal stopping problem

o) = sup & @ Ey(e MO g 1,

1670.00

where under the measure 2 (having expectation operator &), @,,, is the sum of n
independent exponential random variables {e;, : i = 1,...,n} with parameter

)\.n = n/T

and 7 is the set of F-stopping times valued in [0, 00). The choice of notation
v () and ©,, will become apparent in a moment.

Lemma 11. The function v""'"(\)) is the final step in the recursion

O =y and

T
U(k’n)(lﬁ)= sup En// (e_(“"')'”)”llf—i—)»n/ e—(sc+/1n)sv(k—l,n)(lpS)ds>
0

‘565-()700

fork=1,...,n

Proof. Suppose that under measure 2 we now define

n

@k,n = § €in.

i=k
We have
") = sup € @E (e OV o (1n<o,,) + la>61,)

’EE,‘?Q‘OC

= Sup (g) ® E‘//(efa(f Tfl(’fg@l,n)
€7 0,00
+ 1(T>@17)1)670(@]’"eix((riel‘n)/\@"_]’")qj@l‘y,-ﬁ-((r—@1,n)A@n—l,n))

= sup £Q® Ex//(e_m'flrl(r<@l,n)
‘L'E.T(],oo

_ Fo1nr —ol(t—
+1es0,6 70 E QE, e TOINOIY L 0,900, 10]

where in the third equality F¢,, = o(F#,: t<01,). The Strong Markov Property
together with the dynamic programming principle and lack of memory property now
gives us

U(n’n)(l//) = Sup E® E'//(e—ocr lPrl(r<91,n)
‘L'Ef(],oo

+ 1(T>@|,n)eia6]"" sup E® EW@L” [eii(rA@nil’”) lPTA@an])'

€7 0,00
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Now writing

U(nfl,n)(l//) = sup EQ Elp[eia(w\@”_]’”)Tr/\@,,q,n]

‘EE.’//-()_OO
it follows that
o) = sup E@Ey(e Vile<o,,) + leso,,)e 0" (Po,,)

‘L'E.TQ.;,C

= sup E, (e_(““”)“l’I + Ay / e~ A =1 (g ds).
0

Te"?(J,oo
Iterating this argument and noting that
T
) = sup E, (e_(““")r Y.+ A, / e (s ds)
1€ 0,00 0
the proof is complete. [

Remark 12. Using similar reasoning it is easy to deduce that we may also identify

) = sup 8 @ Eyle W0, ]

TE.TO.OO
for each 1 <k<n.

Remark 13. Roughly speaking, by considering the case k = 1, one may establish that
vM() is a convex function associated to which is the value vy, ,,>1 =: ¥, such
that the optimal stopping time in the definition of v(")(y)) is given by

7 — inf{r>0: ‘Pz>‘;(1,n)}'

Indeed, similar conclusions were drawn for the first-order randomization in [11] for
the case that « = 0 and » = 1. Proceeding to the cases n>=>k>2, using an iteration
which takes advantage of the convexity of v*=1" (i) it is possible to show that, the
optimal stopping time in the definition of v*”(}) takes the form

T = inf{r>0: ¥,> J(k,n)}

for some lp(k,l’l) > ‘/j(/(—l,n)‘
4.2. Discrete Stefan system

The goal of this subsection is to show that the discrete Stefan system, defined
below, has exactly one solution which can be described explicitly. Further, we will
show that any solution must correspond to the nth-order randomization {v*" : k =
0,...,n} and hence the justification of Algorithm 4 will follow.

Definition 14 (Discrete Stefan system). We say the pair {f’ &m -k =0,...,n} and
{@*" |k =0,...,n} where

FED 2 [1,00) = [1,00) and @®P>1
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solves the discrete Stefan system if /®” () = y and p®? = 1 and fork = 1,...,n we
have

2 2 p(k,n) (k,n)
-, d7f df (k,n) (k—1,n)
~ - - )Ln ’ = ’
5 W e W) —ry a W) = (e + )W) = —Anf ()
forl<y<e® and f* W)=y for y=e*". (18)
Furthermore, for k=1,...,n,
(k,n) (k,n) ) &
lim =0, lim =1 and Ilim o = ",
lim =) Jim =) Jim £ = ¢

The following theorem is proved at the end of this subsection.

Theorem 15. A unique solution exists to the discrete Stefan system. In addition, this
unique solution satisfies """ > ... > =1 and for all k =1,...,n

df(k’")
dy
when 1 <y < @®". Further the unique solution may be identified by f ey — k) for all

k=0,...,n and hence the thresholds {{ ,, : k =1,...,n} referred to in Remark 13
are precisely {%" : k =0,...,n}.

W<l and f*@)>y,

Remark 16. Eq. (18) can be rewritten

(k,n) _ plk=1,n)
1470 =141 ) )

n

2 " /
S W) =g ) — ) =

For partial differential equations, such as the Stefan problem with solution v from
the previous section, one has the so-called method of lines as a method of
approximation. In this case, it could consist of putting a uniform grid on some fixed
interval [0, T'] with distance 7' /n and approximate the derivative in the 7-direction by
its difference quotient

o(. k) — o(Y (k= 1))

SN

such that the pde is broken up in a set of differential equations. Note that if we
associate /&7 () with v(y, k%) this method precisely results in the set of differential
equations of the form (19).

One important difference between the discrete Stefan system we deduced and this
method of lines, is that it’s not a priori clear how to deal with the fact that the
boundary of the definition area of the pde is a curve rather than fixed.

Next we identify the promised explicit solution to the discrete Stefan system.
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Lemma 17. The pair (%" 1k =0,...,n} and {lz(kﬁ) :k=0,...,n} are given by
Yom =1
Vo for =
P (1, i, k) + X alm, i, k) log(h)™)
Y (2,1, ) + o blm, i, k) log()™) + 81y
for € [x//,»_l,lﬁ(im] and i=1,...,k,

where B, <f, are the two solutions too the quadratic equation

ot(p) = 20)

0'2 o) 0'2 _
7/3 - (V‘F?)ﬁ—(a‘i‘/ln)—(),

0 = Jn/(r + o+ Ay) and, on_account of their complexity, the constants a(., .,.), b(., ., .),
(., .,.) and the thresholds \y ,, are given in Appendix A. This pair solves, for k =
1,...,n,

d2ykm plem)

2

w o W) —rp —— v
Sor 1<y < lz(k,n)

KDWY =y for Yy,

W) — (@ + 2o W) = 2,057V )

and furthermore
(k,n) (k,n) ~
im =0, tim L E)=1 md im0 =,
vil lﬁ YA ey lﬁ YA ey

Proof. Given that we have identified the pair {v*" : k =0,...,n} and {J(k’n) k=
0,...,n} as the unique solution, it suffices to check that the right-hand side of (20)
solves the discrete Stefan system. Sadly there is no elegant proof of this and a manual
computation is the quickest way of establishing this result. In the computation, one
should use the result of Theorem 15 to ensure that the defining equation for v,
(Eq. (25) in the Appendix A) indeed has a unique solution that is strictly bigger than
W k-1, Otherwise there is nothing special involved in the calculation other than the
need for endurance. We leave the proof to the reader. [

Returning to the proof of Theorem 15, we first need the following result which, as
we shall see, easily resolves the issue of existence together with some of the
conditions stipulated in Theorem 15. These latter conditions turn out to be crucial in
order to prove that the unique solution is precisely {v%" : k =0, ...,n}.

Theorem 18. Fix 1>0. Suppose that the function f :[1,00) — [1,00) satisfies the
following:

(1) there exists a b=1 such that f(y) = for all y=b and
(i) if b>1 then f'(Y)<1 for all 1<y <b.
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Then the system

IW”W%—WMW%—W+XWW%=ﬂVW)fW1<¢<C 21
and Ll(l//) = for y=c, with the boundary conditions
lim ') =0, lim = d lmdu ) =1,
w¢1ll(¢) lim u(y) =c an WTclt(W)
has at least one pair (u,c) with ¢>1 as its solution. Every possible solution (u,c)

possesses the property ' (W) <1 for all 1<y <c and either we have c¢=b or for all
c<Y<b

r+o+ 2

fon<"2

v.

Proof. From general theory of differential equations it follows that every solution of
(21) can be written in the form

u(y) = ap’ + dy’ + up(h) (22)

N A A ANV
)= 5 ) ((Z) (%) ) g

B <3, solutions to the quadratic equation

with

O.2
SBB=D=rf—(@+7)=0

and the a and d free constants.

Now pick any x>1. We can choose the constants « = a, and d = d, now such
that two out of three boundary conditions are satisfied: u(x) = x and v'(x) = 1. A
straightforward calculation shows that the appropriate choices are

g, J(©) ﬁ1 -8,
/é dé+ﬁ ﬁ1

0'2([32 B1)

and

- " 7ﬂlf(é) pr—1 1-8,
d*“oz(ﬁz—ﬁl)/lé Ry R

The solution u we are looking for thus must be a member of the family of functions
uc() = axyP + dP + ug(f). We define the following operator:

Fr:xmu (1)
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and note that we are looking for a root of this operator, meaning a ¢>1 such that
Fr(c) = 0. Once again straightforward calculation shows

) e By B (&) /31 —B,
Fi) = ﬂ)/(ﬁzf g d§+ﬁzﬁ 5
+ B, [i__ﬁll x!=h (23)

Now, cis a root of F if and only if the pair (i, c) is a solution as meant in Theorem
18. It is easy to check that Fr(1) = 1 and using f(&) = ¢ for all £=b

lim Fr(x)= lim Cx'™"
X—> 00 X—> 00

with

o 2B+

(1 = (B, — pl)o?

so that we can be sure that there exists at least one root of F on (1, 0o) and therefore
a solution (u, ¢).

To prove that /()< 1 for all 1 <y <c¢, note that the representation of u, given by
(22), indicates that in fact u is a C*°-function on the interval (1, ¢). With this in mind
we do the following. Define £(if) = /() and suppose that ¢ attains a maximum in
some ,, where 1 <y, <c. As a consequence we have that &'(y,) = 0 and &’ () <0.

By differentiating the differential equation in (21) once, we see that this boils
down to

<0 and f,<0,

2
% VRS W) — (r+ 2+ DEW) = =4 (o),

which leads to

2
(2 D2 = T U3E W) + 2 W) <

and

<o) = m <

So the only possibility for «' to be bigger than or equal to 1 somewhere on the
interval [1,¢), with #/(¢) = 1 in mind and avoiding reaching a maximum, is when
there exists a ¥, such that for all y, <y <c we have «//(y) = 1. For such a y we would
have &'(y) = &’() = 0 and the above reasoning would still be valid, again leading to
E) =u'(Y)<1. Thus v/(Y) <1 for all 1<y <c is proven.

For the last part, suppose that ¢c<b. From /() <1 for all 1<y <cand v/(c) = 1 it
follows that u”(c—)>0. Using this with #/(¢) = 1 and u(c) = ¢ in taking the limit
Y 1 cin (21) leads to

r+a+i

flox ===~
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Combining this with /"< 1 we arrive at

ran<"TAEEy

for all c<y<b. O

Proof of Theorem 15. Note that the matter of existence is covered by inductively
applying the result from Theorem 18, starting from f*" () = . Now the proof
breaks up in two parts. First we use the properties that a solution to the discrete
Stefan system has according to Theorem 18 to prove that every possible solution
may be identified by f° k) — km  obviously implying uniqueness together with the
other properties mentioned in Theorem 15, except for the fact that the thresholds
@O ., " are strictly increasing, which will be dealt with in the second part of
this proof.

For the first part, note that it is clear that f®? () = v®? () and properties (i) and
(i1) in Theorem 18 are satisfied. Next suppose that we have established that
FE=I ) = yk=19()) and such that properties (i) and (ii) of Theorem 18 hold. Then
Theorem 18 tells us that a solution f ‘k°”)(xp), % exists and has the stated properties.
To finish this part, we must henceforth show that f&? () = v*n(y).

To this end we make an application of 1t6’s formula to the process

e &) 10}

Noting that f k) s sufficiently smooth to use the standard version of Itd’s formula,
that is to say it is smooth everywhere except at ) where it is C' (cf. [10, p. 215] for
example), we have

dle" M pkm g )| 4 ) e~ @Hmip=ln g ) 4y

dz f(k 1) df(k’")
—(a+4, 2 ) (k,n k—1,n
(“)’[2!# e -y @ — (o4 A 4 L ()
(k,n)
_ ef(achin)t df (qlt) d WP

Noting that the first derivative of f* is bounded, and that from the conclusions of
Theorem 18 we have

Oj l//2 d2f(k,n) B rl/j df(k,n)
2 dy? dys

_ (OC + ;{n)f‘(k,n) + )vnf(/(—l,n)‘| (l//)<0
both if @* > *=1m and @*m < p*=11 we deduce that

t
{e_(“"r/wx)[f‘(k;”)(glt)_k/"bn/ e—(ot-f-/ln)Sf(k—l,n)(g/S) ds : lg‘c(k’")}
0
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is a martingale where %" = inf{r>0: ¥,> ¢*"} and

t
{e_(““”)tf(k’")('l’,)—i—in/ e—(ocHn)sf(k—l,n)(gzs) ds: [20}
0

is a supermartingale.

Once again we appeal to classical arguments from the theory of optimal stopping
to finish the proof. That is, using the supermartingale property together with the
lower bound on f *1 e have with the help of Doob’s Optional Stopping Theorem

1EP0)= sup K, (e<a+*n>ff<’“”)<svf)+zn / SR AR D ds)
0

’L'Eg—o,oo

T
> sup E, (e_(“”l”)f Y.+, / et pl=Lm) (g y ds).
0

‘EE.”/’O’OQ

On the other hand, by the martingale property, we also have that

(k)

f(k,n)(lp) — Elﬁ <e_(“+;m)T(k’”)f(k’”)('Pr(k,n)) + ln / e—(ot+/ln)~\'f(/€—l,n)(lps) dS)
0

)
_ Ew <e(0€+/tn)f(/"”’ tPT(k,n) + ;Ln / ef(och).,,)Af(kfl,n)(q/x) dS)
0

showing that /®”()) = v®" () and that ¢* is the optimal threshold.

Now for a proof that " > ... > @ again by induction. It is straightforward
that 9" > " = 1. Suppose that =1 < 9*" From Theorem 18 we have for all
P 1 <o < ® that FE () >y = &), Furthermore we have from the part
above and by definition of v (see Remark 12) that for all ¥ >1

SEW) = @) =0 ) =),

Combining these two inequalities shows that for all x> %"

X ~(ke,n) X “(k—1,n)
[@er—pen="Saes [per—pem—a

1 q 1 ¢
Now, recall the operator F; defined in Eq. (23). With this notation and using the
uniqueness of solutions we proved in the part above, we have that the unique root of
Fy,_ . determines ¢*" and the unique root of Fy, determines ¢**+!'". By
construction we have F fk_]((p(k’”)) =0 and the above inequality shows that for all
x=@*" it follows Fy,(x)>Fy,_ (x). Recalling that F(1)=1 we have as a
consequence that the unique root of Fy,, which equals **1 is strictly bigger
than o®?. 0O

Justification for Algorithm 4. The function v characterizes the value of the nth-
order randomization of the optimal stopping problem at hand during the kth
exponential period. The expression given in Algorithm 4 is the function which is
equal to v&" over the time interval ((k — 1)T/n, kT /n] rather than over the kth
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exponential period. Lemma 19 below shows that there is pointwise convergence of
(%, p*my to (v, b) along an appropriate sequence of (k, n).

Lemma 19. Let k(n) be a sequence in n such that k(n)T /n — u as n tends to infinity.
Then (V5D ), 5% D (1)) converges pointwise to (v(y, u), b(w)).

Proof. We give the proof for the case « = 0. The proof for o> 0 follows with minor
adjustments. Note in addition, for >0 one may re-consider the proof of
Proposition 5.1 of Kyprianou and Pistorius [11] and note that with minor changes
it also delivers the required convergence.

From the properties mentioned in Theorems 3 and 15 its easily deduced that
kMY — o, u) for all y=1 implies 5% () — b(u), so we focus on proving
the former convergence.

First a preliminary estimation. Note that we can write for all n>2 and > 1

U(l//,l’l) - U(lﬁ,l’l - 1)< sup El//('Pr/\n - 'Pr/\(nfl))

€7 0,00

= Sup EII/(EWH,I('PI/\I)_Wn—I)

<Ey(w(¥,-1,1))
<Ey(¥,-1 v b(1))
<v(y,n— 1)+ b(1),

where we used the strong Markov property and the properties of v(., 1) and b(.). It
follows that for all k,i>1 we can roughly estimate

o(, k + ) <2'(o(, k) + b(1)). (24)
Now fix some =1 and ¢>0. We use the notation from Remark 12, that is

U(k(”)»”)(lﬁ) = sup £Q® EW(TIA@M”)\")

€7 0,00

and set A, = {Ou),, >u + ¢} for every n. We can estimate

W D) — v, w)| < sup & @ Ey(Lg; ¥enoy,,) — sup Ey(Pen)

€7 000 €7 0,00
+ Sup g ® El//(lAy, lIl’L’/\@k(,l)yn)
‘L'E.To,{x,

and the first term on the right is easily seen to converge to 0, for example by using
dominated convergence after reformulating the expression under the measure P; (see
also Eq. (6)). With the notation

Bl ={u+e+i—1<Op,<u+e+i}
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for every n and i>1, the second term allows the following estimate:

Sup éﬂ ® E‘p(lAn qlf/\@k(n),rl) = Sup (g} ® El// <Z 137 TTA@]\’(UM)

€7 0,00 €7 000 i>1

< Z sup & ® Ey(1p ¥enquretiy)

i>1 ‘EEF()VOO

< @W.u+2e)+b(1)- > 26(p),

i=1

where the last inequality uses (24). Using the known density of @), it is a
straightforward exercise to show that the last summation above tends to 0 as n — oo
and the proof is completed. O

5. Numerical results and implementation

In this section, we discuss the implementation of the algorithm for a numerical
approximation of v and b as implied by Algorithm 2 and present some of the results,
where we focus on how the output depends on the values of the parameters «, r and
a. We used the package Mathematica to generate graphical output. Although the
Algorithm suggests a piecewise constant approximation of v and b with respect to the
time u, we used Mathematica’s interpolation functionality to produce a smooth
surface rather. Due to the monotone nature of v, this does not hurt the interpretation
of the plots below as the approximation suggested by the Algorithm at all.

Some technical remarks about the implementation. With the computer facilities
we had available, we were limited to n = 100. This limitation is due to the fast
growth of the amount of constants a(,.,.), b(.,.,.) and ¢(.,.,.) involved as n gets
bigger. Furthermore we have T to be chosen for every combination of parameters. If
o>0, vand b are for every u bounded from above by y — v(}, 00) and b, the value
function and optimal threshold corresponding to the perpetual Russian option
respectively. With the monotonicity of v and b with respect to u in mind, we take 7'
such that the difference between v”)(.) and v(., 00), and between y(n, n) and b, both
are less than a small (artificial) value: 1072 This small difference, together with the
upper bound and the monotonicity, indicates that nothing interesting will happen if
we increase 7" more. If « = 0 than the perpetual option has infinite value, in that case
the above reasoning does not make sense and we make an educated guess for a good
value of T. Now we turn to the plots. Figs. 1-7 plot the value function on the left and
its corresponding free boundary on the right to give a general overview and some
feeling for the dependence on the parameters r, « and s. Figs. 8-10 show plots of the
free boundary only, while keeping two parameters fixed and varying the third.
Finally, Figs. 11 and 12 investigate the behaviour of the free boundary when o =0
some more. We see that the algorithm captures numerically all the expectedbeha-
viour from the original optimal stopping problem. That is to say the free boundary
respects the following logic:
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(b) T-u

Fig. 1. r=0.1,0=03,5s=09and T =17.
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Fig.3. r=0.1,0=0.3,0=0.1 and T =0.1.
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Fig. 4. r=0.1,0=0,0=0.1 and T = 2.
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Fig. 6. r=0.1, 0 =04, 06 =0.1 and T = 0.02.
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Fig. 8. r=0.1 and ¢ = 0.3.
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Fig. 9. r=0.1 and o = 0.1.
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Fig. 10. « =0.2 and ¢ = 0.3.
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Fig. 11. r=02,0=0and 7T = 1.
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Fig. 12. «=0,0=02and T = 1.
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e The greater the value of r or « the greater punishment the holder experiences for
waiting causing the exercise threshold to move more dramatically to the origin.

e The larger the expiry date of the contract, the more the solution behaves like the
perpetual case (for o>0) for which the optimal strategy is to exercise once the
process Y crosses a fixed threshold.

e The larger the value of ¢ the more volatile the underlying Brownian motion is and
hence it experiences ‘larger’ excursions. This allows for the holder to feel more free
about waiting longer resulting in a larger exercise threshold.

6. Conclusion

In parallel with Peskir [15] this paper offers a characterization of the finite expiry
Russian option as the unique solution to a free boundary problem. Further, using
Carr’s idea of ‘Canadization” we deduce an algorithm to approximate the solution to
this free boundary value problem. The algorithm captures numerically all the
expected behaviour from the optimal stopping problem represented in (4) and (6).
That is to say the free boundary respects the following logic.

e The greater the value of r or « the greater punishment the holder experiences for
waiting causing the exercise threshold to move more dramatically to the origin.

e The larger the expiry date of the contract, the more the solution behaves like the
perpetual case (for o>0) for which the optimal strategy is to exercise once the
process ¥ crosses a fixed threshold.

@ The larger the value of ¢ the more volatile the underlying Brownian motion is and
hence it experiences ‘larger’ excursions. This allows for the holder to feel more free
about waiting longer resulting in a larger exercise threshold.
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Appendix A

The constants in Algorithm 4 and Lemma 17 are given in a recursive way by the
following systems of equations. Suppose that the functions vU*” and thresholds Yin
are known for all j =0,...,k— 1.

First we show how the a(.,., k) and b(.,., k) can be determined directly.
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The constants a(.,i,k) and b(.,i,k) for 1<i<k can be defined by a backwards
recursion over i from their predecessors in the following way:

e if i = k there are no a(.,i,k) and b(., i, k) present;

e if i = k — 1 then we have only one of each:
a(lik)y= ———e(l,k— 1,k — 1),

“7(2/31 —D—r

—2

b(l,i,k)=5————
Y N

ek — 1,k —1);

e if 1 <i<k — 2, then for every i we have a(m, i, k) and b(m, i, k) to be determined,
for 1 <m<k —i. This is again done by a backwards recursion, this time over m. So
we start out with m =k — i:

”

A

w0 s - -n

aim—1,i,k — 1),

”

—A

m(&G(2p, — 1) — 1)

followed by, form=k—-i—1,...,2:

Za(m —1,i,k — 1) — 20 a(m 4 1,1, k)
7Qp ~ 1=

b(m, i, k) = bm — 1,ik — 1),

>

a(m,i, k) =

=ih(m — 1, ik — 1) — 20 Dpn 4 1,1, k)
TQp—1—r
and we conclude by defining the first two:
—e(1, ik — 1) — a%a(2,i, k)
T2p — D —r
—2c(2,ik — 1) — a*b(2,i, k)
72— —r

b(m, i, k) =

a(l,i,k) =

>

b(l,i,k) =

The terms c(1,i,k) and ¢(2,i,k) for 1<i<k together with the threshold
Wkny> W (k-1 are determined by the following conditions given in Lemma 17

) UU"”)’(I:Z) =0, . L —y
(ii) oE ) = 0 W) and 850G = o500 ,,) for all 1<j<k — 1,
(iii) U(k’n)('//(k,n)) = Yk and U(k’")/(lﬁ(k,n)) =1
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Since a(., ., k), b(., ., k) and lz(,-,n) for 1 <i<k — 1 are known at this time, we can define
for 1<i<k—1

k—i—1 k—i
5B . T m . T m
Ci= w(,-im(Ejl a(m, i+ 1,k)log(W ;) —Zl a(m, i, k) log(P;,) >

k—i—1

k—i
~ B . ~ m . ~ m
+w<,-,n)<2 b(m, i+ 1,k)1og(W ) —Zl b(m, i,k)log(P; ) )

m=1
~—1 k—i—1 _ _ .
Di = lp([qn) Z ﬁl a(m’ i + 1’ k) 1Og(l/j(i,n))m + ma(ma l + 19 k) log(lp(i,n)),n7
m=1
k—i

" Bra(m, i, k) log( ;)" + ma(m, i, k) 1og(nZ<,-,n>)’”-‘>

m=1

k—i—1
~Br—1 . 7 m . 7 m—
+ Vi <Z Bob(m, i + 1, k) 1og( ;)" + mb(m, i+ 1,k)log( )"

m=1

k—i _ _
- Z ﬁzb(l’}’l, ia k) IOg(‘ﬁ(l‘,n))m + mb(m, ia k) log(lp(i,n))ml>

m=1
and
K=t z (D (Bt = By ) + BiB2Con(Fomy = B )|

Now J(k’n) is defined as the unique solution bigger than J(k_l,n) to the equation

~pr+1 ~ B+l ~2p, ~Bi+B;
B1Bo(1 —9) (W(k,n) —Yiem) ) + pK (lp(k,n) — Yien) )
~ ~ B ~ B2 ~ B
= ((1 — W m — KW(k,n)) (ﬁllﬁ(k,n) - ﬁz‘/f(k,n)) (25)

and ¢(1,k, k) and ¢(2, k, k) solve the linear system
Bic(l, k, k) + Brc(2, k., k) = K,

~pi—1 ~pr—1
ﬂllp(k,n) o(l,k, k) + ﬁz‘//(k,n) a2,k k)+0=1. (26)

Finally, the remaining c¢(1,7,k) and ¢(2,i,k) for 1<i<k —1 can be found by a
backwards recursion over i, at every step using the pair

D€L 1) (2, 1) = e+ 1K) = B e2,1,K) = €,
Bty (i k) + Botbiy (2,0 k) — By c(1,i+ 1,k)
Bl e2,ik) = Dy, @7
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