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Abstract

We consider the Russian option introduced by Shepp and Shiryayev (Ann. Appl. Probab. 3

(1993) 631, Theory Probab. Appl. 39 (1995) 103) but with finite expiry and show that its space-

time value function characterizes the unique solution to a free boundary problem. Further,

using a method of randomization (or Canadization) due to Carr (Rev. Financ. Stud. 11 (1998)

597) we produce a numerical algorithm for solving the aforementioned free boundary

problem.

r 2004 Elsevier B.V. All rights reserved.

MSC: primary 91B28; 35R35; 45G10

Keywords: American options; Russian options; Optimal stopping problem; Stefan boundary problem;

Local time-space
1. Introduction: the Russian option

Consider the Black–Scholes market. That is, a market with a risky asset S and a
riskless bond, B. The bond evolves according to the dynamic

dBt ¼ rBt dt;
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where tX0 and r40: The risky asset is written as the process S ¼ fSt : tX0g where

St ¼ s expfsW t þ mtg;

where s40 is the initial value of S and W ¼ fW t : tX0g is a Brownian motion
defined on the filtered probability space O;F; F ¼ fFtgtX0;P

� �
satisfying the usual

conditions. Suppose now that Ps is the risk-neutral measure for S under the
assumption that S0 ¼ s: Recall that standard Black–Scholes theory dictates that this
measure exists and is uniquely defined via a Girsanov change of measure such that

fe�rtSt : tX0g (1)

is a martingale. We shall denote Es expectation under Ps:
The Russian option with expiry To1 is an American-type option with payout of

the form

e�at max m; sup
u2½0;t	

Su

( ) !
for aX0; m40 and t 2 ½0;T 	: Introduced by Shepp and Shiryayev [21,22] as being an
option where one has ‘reduced regret’ because a minimum payout of m is
guaranteed, this option can be considered to be something like an American-type
lookback option.
Classical optimal stopping arguments for American-type options tell us that the

value of this option is given by the process

Vt ¼ ess-supt2Tt;T
Es e�rðt�tÞe�atmax m; sup

u2½0;t	
Su

( )�����Ft

 !
; (2)

whereTt;T is the set of F-stopping times valued in ½t;T 	: Following the lead of Shepp
and Shiryayev [22], we use the fact that under Ps; (1) is an exponential martingale
and thus can be used to make a change of measure via

dPs

dPs

����
Ft

¼
e�rtSt

s
:

Note that the process S solves

dSt

St

¼ sWP
t þ r þ s2

� �
dt;

where WP ¼ fWP
t : tX0g; defined on ðO;F;FÞ; is a standard Brownian motion under

P: Suppose that �T0 is some arbitrary moment in the past before the contract was
initiated ðT040Þ: Define St ¼ supu2½�T0;t	 Su and assume that S0 is F0 measurable.
With a slight abuse of notation, we can adapt the definition of the measure Psð�Þ to
Pm=sð�Þ ¼ Pð�jS0 ¼ m;S0 ¼ sÞ: In that case the value process of the option can be
written more conveniently as

fe�atStv Ct;T � tð Þ : t 2 ½0;T 	g; (3)



ARTICLE IN PRESS

J.J. Duistermaat et al. / Stochastic Processes and their Applications 115 (2005) 609–638 611
where C ¼ fCt ¼ St=St : t 2 ½0;T 	g; Pm=sðC0 ¼ m=sÞ ¼ 1 and for each c ¼ m=sX1;

vðc; uÞ ¼ sup
t2T0;u

Ecðe
�atCtÞ: (4)

By writing stopping times in (2) in the form t ¼ t þ t0 for some t0 2 T0;T�t we see
where the factor e�at in (3) comes from. It is also important to note in this case the
well established fact from optimal stopping theory that stopping times inTt;T which
cannot be written in this way may be ignored as they do not offer an optimal
strategy.
Effectively the change of measure has reduced an optimal stopping problem for

two stochastic processes to that of one stochastic process, namely C: For future
reference, we shall also note that v may be represented in the following forms

vðc; uÞ ¼ sup
t2T0;u

E e�at St _ c
St

����S0 ¼ 1;S0 ¼ 1

� 	
ð5Þ

¼ sup
t2T0;u

E1ðe
�ðrþaÞtðSt _ cÞÞ: ð6Þ

Remark 1. At this point it is worth mentioning that, to some extent, one may
consider the parameter a as superficial for the finite expiry option. Its original
purpose for the perpetual case was essentially to justify the existence of a solution to
the optimal stopping problem associated with the option; cf. Shepp and Shiryayev
[21,22]. For finite expiry, the existence of a solution to the optimal stopping problem
(4) is guaranteed even when a ¼ 0:

Clearly vðc; uÞXc for all uX0: Standard theory of optimal stopping tells us that
the optimal stopping time in (2) is given by

Znt ¼ inffsXt : vðCs;T � sÞpCsg ^ ðT � tÞ:

(Here and throughout we work with the definition inf ; ¼ 1:)
Again from the classical theory of optimal stopping (cf. [19]) we know that for

t 2 ½0;T 	

fe�asvðCs;T � sÞ : s 2 ½t;T 	g (7)

is a P-supermartingale and that

fe�aðs^Znt ÞvðCs^Znt ;T � ðs ^ Znt ÞÞ : s 2 ½t;T 	g (8)

is a P-martingale.
Let us finish this section by making note of some analytical facts concerning the

functions v and b.

Lemma 2. We have the following properties of v and b.
(i)
 The function v is convex in c:

(ii)
 The optimal stopping time in (5) may be identified in the form

tnc ¼ infftX0 : ðSt _ cÞ=StXbðu � tÞg ^ u; (9)
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where b : ð0;1	 ! ½1;1Þ is defined by

bðuÞ ¼ inffcX1 : vðc; uÞ ¼ cg

for u40:

(iii)
 The function v is jointly continuous in u and c and monotone non-decreasing in u.

(iv)
 The boundary b is monotone non-decreasing and continuous from the left. Further

CðbÞ :¼fðc; uÞ : 1ocobðuÞ; u 2 ð0;TÞg

is open.

(v)
 The function v is strictly increasing in c:
Proof. (i) Since the object in the expectation in (6) is convex for each t 2 T0;u and
convexity is preserved by integration and taking the supremum, convexity of v in c
follows. Since vXc the form of the stopping time follows.
(ii) As a partial step, let us prove that for each u40 the function vðc; uÞ � c is non-

increasing in c: To this end, consider 1pc1pc2o1: Write

t�c :¼ infftX0 : vððSt _ cÞ=St; u � tÞpðSt _ cÞ=Stg ^ u

for the optimal stopping time associated with the right-hand side of (5) and note by
optimality that

vðc1; uÞXE1ðe
�ðrþaÞt�c2 ðSt�c2

_ c1ÞÞ:

It now follows that

vðc2; uÞ � vðc1; uÞpE1ðe
�ðrþaÞt�c2 ½ðSt�c2

_ c2Þ � ðSt�c2
_ c1Þ	Þ

pE1ðe
�ðrþaÞt�c2 ðc2 � c1ÞÞ

pc2 � c1

from which the claimed monotonicity follows. We may now deduce from this
monotonicity together with the fact that vðc; uÞXc that once the function vðc; uÞ
touches the diagonal c then it remains equal to c: Together with convexity this latter
conclusion implies the statement in part (ii) of the lemma.
(iii) From the definition (4), the function v is clearly monotone non-decreasing in

u. The proof of joint continuity is a straightforward argument using dominated
convergence. We leave the details to the reader and otherwise we refer to [18].
(iv) The fact that b is non-decreasing follows from the monotonicity in u of v: The

continuity of v implies that the function b is half-continuous from below (that is to
say lim infv!u bðvÞXbðuÞ). Further, a monotone non-decreasing function is half-
continuous from below if and only if it is left continuous. Next note that the region
CðbÞ is open if and only if the function b is half-continuous from below, which is
the case.
(v) Note that for 1pxoy; on the event fStoyg we have

St _ x

St

o
y

St

¼
St _ y

St
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and on the event fStXyg we have

St _ x

St

¼
St

St

¼
St _ y

St

:

It follows from the continuity of the paths of S that the stopping time t�c is
stochastically monotone in c and further, for any c14c2X1; Pðt�c1

ot�c2
jS0 ¼ 1;

S0 ¼ 1Þ40: Noting from (5) that

vðc; uÞ ¼ Eðe�at�cðSt�c
_ cÞ=St�c

jS0 ¼ 1;S0 ¼ 1Þ;

the claim follows by taking account of the aforementioned stochastic monotonicity,
part (ii) and the fact that bðu � �Þ is non-increasing. &
2. Main results

In this paper, we have two clear and simple goals. The first is to show that v may
be characterized as the unique solution to a free boundary problem where the
boundary turns out to be monotone and continuous and the second is to give a
numerical algorithm for solving this free boundary problem. We summarize our
results as follows.

Theorem 3. The pair

v : ½1;1Þ � ½0;T 	 ! ½1;1Þ and b : ½0;T 	 ! ½1;1Þ

form the unique solution to the free boundary problem

s2

2
c2 @2f

@c2
� rc

@f

@c
� af �

@f

@u


 �
ðc; uÞ ¼ 0 on CðjÞ;

f ðc; uÞ ¼ c on f½1;1Þ � ð0;TÞgnCðjÞ; f ðc; uÞ4c on CðjÞ;

f ðc; 0Þ ¼ c for c 2 ½1;1Þ;

@f

@c
ðjðuÞ�; uÞ ¼

@f

@c
ðjðuÞþ; uÞ ¼ 1 for u 2 ð0;TÞ ðsmooth pastingÞ;

@f

@c
ð1; uÞ ¼ 0 for u 2 ð0;T 	 ðreflectionÞ; (10)

where CðjÞ ¼ fðc; uÞ : 1ocojðuÞ; u 2 ð0;TÞg for some monotone non-decreasing,
bounded continuous function j : ð0;TÞ ! ð1;1Þ:

(Note, the solution to the above free boundary problem is the pair ðf ;jÞ:) The
proof of this theorem will be the result of the combined conclusions found in the next
section.
Next we turn to a numerical algorithm which serves as a good approximation to

the solution to the above free boundary problem.
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Algorithm 4. For each nX1; the solution to the free boundary problem may be

approximated by

vðc; uÞ ¼ vðk;nÞðcÞ and bðuÞ ¼ ecðk;nÞ if u 2 ðk � 1Þ
T

n
; k

T

n

� �
for k ¼ 1; . . . ; n where the functions vðk;nÞ : ½1;1Þ ! ½1;1Þ and thresholds ecðk;nÞ relate

to one another as follows. Let

ln ¼
n

T
and dn ¼

ln

r þ aþ ln

and let b1ob2 be the two solutions too the quadratic equation

s2

2
b2 � r þ

s2

2

� 	
b� ðaþ lnÞ ¼ 0:

Then vð0;nÞðcÞ ¼ c and ecð0;nÞ ¼ 1 and for k ¼ 1; . . . ; n

vðk;nÞðcÞ ¼ c

if cXecðk;nÞ and otherwise, when c 2 ½ecði�1;nÞ;
ecði;nÞ	 and i ¼ 1; . . . ; k;

vðk;nÞðcÞ ¼ cb1 cð1; i; kÞ þ
Xk�i

m¼1

aðm; i; kÞ logðcÞm
 !

þ cb2 cð2; i; kÞ þ
Xk�i

m¼1

bðm; i; kÞ logðcÞm
 !

þ dk�iþ1
n c:

All the constants in the latter are defined recursively and on account of the complexity

of the recursion are given in Appendix A.

The algorithm will be dealt with in Section 4.
The formulation in Algorithm 4, although somewhat complicated, allows for one

to construct quite precise numerical approximations to the free boundary problem in
a package such as Mathematica for example. Indeed in the final section of this paper
we give an exposition of the value functions as surfaces and optimal exercise
boundaries produced by this algorithm with some indication of the efficiency of the
programme.
Let us conclude this section by making some final remarks on our main results. To

some extent our conclusions are not surprising on account of analogous results being
available and well studied in the literature for American put options as well as
the known results for perpetual Russian options. The reader is referred to
[1–3,9–13,20–22]. Nonetheless, until very recently, there was no literature concerning
finite expiry Russian options. In parallel to the writing of this paper however, the
authors learnt of the work of [15]. This paper, which also handles the case of finite
expiry Russian options, has some overlaps with the work presented here, but none
the less deals with slightly different issues to the ones we address here. In particular,
the main objective of Peskir’s paper is to show how the function v may be expressed
in terms of the optimal stopping boundary b which itself is the unique solution to a
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non-linear integral equation. Peskir [14] also deals with a similar representation for
the American option.
3. Free boundary problem: proof of Theorem 3

We break the proof into a series of Lemmas which themselves are shared between
two subsections dealing with existence and uniqueness respectively.

3.1. At most one solution to the free boundary problem

Lemma 5. If a solution to (10) exists then it is equal to the pair ðv; bÞ: That is to say,
(10) has at most one solution.

Proof. Let ðf ;jÞ be any solution to (10). Note that the corresponding region CðjÞ is
open for reasons given in the proof of Lemma 2. Define for each t 2 ½0;T 	

tCðjÞt ¼ inffsXt : CtXjðT � t � sÞg ^ ðT � tÞ

and

L ¼
s2

2
c2 @2

@c2
� rc

@

@c
� a�

@

@u
:

Since in CðjÞ; f is C2;1 (that is twice differentiable with continuous derivatives in the
first parameter and once differentiable with continuous derivative in the second
parameter) and Lf ¼ 0; Itô’s formula together with boundedness of j easily yields
that for each t 2 ½0;T 	;

fe�aðs^tCðjÞt Þf ðC
s^tCðjÞt

;T � ðs ^ tCðjÞt ÞÞ : s 2 ½t;T 	g

is a uniformly integrable Pc-martingale for cojðT � tÞ:
Making use of a new generalized version of Itô’s formula for continuous

semimartingales given in Theorem 3.1 of Peskir [16] (see also [4,7] for developments
prior to Peskir’s formula and [5,17] for developments proceeding Peskir’s
formula) together with the fact that dCt ¼ �CtðsWP

t þ rdtÞ þ dSt=St (cf. [22]) we
may write

eatd½e�atf ðCt;T � tÞ	

¼ Lf ðCt;T � tÞdt � sCt
@f

@c
ðCt;T � tÞdWP

t þ
1

St

@f

@c
ðCt;T � tÞdSt

þ
1

2

@f

@c
ðCþ

t ;T � tÞ �
@f

@c
ðC�

t ;T � tÞ

� �
1ðCt¼jðT�tÞÞ dL

jðT�tÞ
t ; ð11Þ

where LjðT��Þ
� is a version of the local time of C at the curve jðT � �Þ: Note that

Theorem 3.1 of Peskir [16] has three conditions which need checking. It can
easily be confirmed that these conditions are automatically satisfied on account of
the following facts: Lf ¼ 0 on CðjÞ; Lf ¼ �ðr þ aÞc on intfCðjÞcg; there is
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monotonicity of j and the function f is assumed to have smooth pasting. We leave it
as an exercise to confirm that the conditions of Peskir’s theorem are fulfilled. The
precise definition of LjðT��Þ

� is not of importance here since by the smooth pasting
assumption we have that the coefficient of dL

jðT�tÞ
t is zero. The reader is otherwise

referred to [16,17] for further details of local time on a space-time curve (or local
time-space).
We may now deduce from (11) that e�atf ðCt;T � tÞ is the sum of a local

martingale and a process of bounded variation which decreases (since Lf ¼

�ðr þ aÞfo0 on the complement of the continuation region). Since @f =@c is
bounded, the local martingale is in fact a martingale and we are left with the
conclusion that, for each t 2 ½0;T 	;

fe�asf ðCs;T � sÞ : s 2 ½t;T 	g (12)

is a P-supermartingale.
The martingale and supermartingale properties, (8) and (7) respectively, together

with the facts that f4c on CðjÞ and that f ðCtCðjÞt
;T � tCðjÞt Þ ¼ CtCðjÞt

are now
sufficient using classical methods to establish that f ¼ v: Indeed, for each t 2 ½0;TÞ

using the supermartingale property,

e�atf ðc;T � tÞX sup
t2T0;T�t

Ecðe
�aðtþtÞf ðCt;T � ðt þ tÞÞÞ

Xe�at sup
t2T0;T�t

Ecðe
�atCtÞ

and further

e�atf ðc;T � tÞ ¼ Eðe�atCðjÞt f ðCtCðjÞt
;T � tCðjÞt Þ jCt ¼ cÞ

¼ Eðe�atCðjÞt CtCðjÞt
jCt ¼ cÞ

pe�at sup
t2T0;T�t

Ecðe
�atCtÞ

proving that f ðc;T � tÞ ¼ supt2T0;T�t
Ecðe

�atCtÞ: &

3.2. At least one solution to the free boundary problem

It is clear now that we have one of the two directions in the proof of Theorem 3.
The other direction requires more analysis which we now proceed with in the shape
of further Lemmas. For clarity, recall that CðbÞ ¼ fðc; uÞ : 1ocobðuÞ; u 2 ð0;TÞg

which defines an open region; the so called continuation region.

Lemma 6. In CðbÞ; the function v is C2;1 and satisfies Lv ¼ 0 with

@v

@c
ð1; �Þ :¼

@v

@c
ð1þ; �Þ ¼ 0:

Proof. The proof is based on an analogous result for American put options treated
in [10]; see Theorem 2.7.7. It requires one to construct a local parabolic Dirichlet
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problem in any small open rectangular space-time region embedded in the
continuation domain with boundary value v and reflection condition on c ¼ 1
should this be included in the domain. Then a classic result giving unique stochastic
representation identifies v as the solution to the Dirichlet problem and hence gives
the smoothness properties of v [8]. The details are left as an exercise for the
reader. &

Lemma 7. The boundary bðuÞ is bounded for each u40:

Proof. The proof is trivial for the case when a40 as the finite horizon value function
is upper bounded by the infinite horizon problem which has a finite boundary. For
a ¼ 0 there is no solution to the infinite horizon problem and hence we proceed with
our proof for this case.
Since ST is integrable (this follows from standard distributional properties of

Brownian motion), dominated convergence together with (6) gives us that

0pvðc; uÞ � cpE1½ðSt�c
� cÞ _ 0	 ! 0 (13)

as c tends to infinity, where t�c was given in Lemma 2. Using Lemma 6 together with
the properties of v given in Lemma 2 we have that on CðbÞ

@2v

@c2
ðc; uÞX

2r

s2
c�1 @v

@c
ðc; uÞX0: (14)

Integration of the last inequality in c yields

@v

@c
ðc; uÞX

2r

s2

Z c

1

x�1
@v

@c
ðx; uÞdx

in CðbÞ:
Suppose now that bðuÞ ¼ 1 for some u 2 ð0;T 	: For this u, the last inequality is

valid for all c41: Also for this u, we know from (13) and convexity that @vðc; uÞ=@c
tends to one as c tends to infinity. However, these last two observations are
incompatible because together they also imply that @vðc; uÞ=@c tends to infinity as c
tends to infinity. The contradiction lies in the assumed unboundedness of bðuÞ so the
proof is complete. &

Lemma 8. The value function v satisfies the boundary conditions.
(i)
 vðc; uÞXc for u 2 ð0;T 	 and vðc; 0Þ ¼ c:

(ii)
 For all u 2 ð0;T 	 we have that vð1; uÞ41: In particular, from Lemma 6 it follows

that for all u 2 ð0;T 	;

@v

@c
1; uð Þ ¼ 0:
Proof. (i) The first two conditions have been discussed in the introduction.
(ii) Suppose there exists a u040 such that vð1; u0Þ ¼ 1: By the monotonicity in u

established in Lemma 2, it follows that vð1; uÞ ¼ 1 for all upu0: This means that
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vðc; uÞ ¼ c for any such u and the optimal stopping time in (6) is to stop
immediately. According to the supermartingale property given in (7) it now follows
together with the representation of the value of the Russian option given in (3) that
e�ðrþaÞtSt is a Pð�jS0 ¼ S0 ¼ sÞ-supermartingale for 0ptpu0:Note now that the latter
process has no martingale component and therefore must be a process which is
monotone decreasing from an initial value s. In particular, it follows that

sup
0ptpu0

e�ðrþaÞtSt ¼ sup
0ptpu0

s � e�ðrþaÞtesW tþðr�s2=2Þtps;

where W is a P Brownian motion. However this leads to a contradiction since by the
Law of the Iterated Logarithm for Brownian motion as t # 0; it follows that, given
any c40; there exists a decreasing sequence of times tnðoÞ # 0 such that
W tn

4
ffiffiffiffi
tn

p
4ctn and hence the supremum above is strictly greater than s. The

consequence of this contradiction is that vð1; u0Þ41: &

Lemma 9. The function v exhibits the smooth pasting condition

@v

@c
ðbðuÞþ; uÞ ¼

@v

@c
ðbðuÞ�; uÞ ¼ 1 for u 2 ð0;T 	:

Proof. Since vðc; uÞ ¼ c for cXbðuÞ and vðc; uÞ4c for 1pcobðuÞ and vð�; uÞ is
convex for each u 2 ð0;T 	; it is trivial that

1 ¼
@v

@c
ðbðuÞþ; uÞX

@v

@c
ðbðuÞ�; uÞ: (15)

It remains to prove then that

@v

@c
ðbðuÞ�; uÞX1 (16)

for all u 2 ð0;T 	:
To this end, note from (6) that optimality implies that for u 2 ð0;TÞ

vðbðuÞ; uÞXE1ðe
�ðrþaÞt�

bðuÞ��ðSt�
bðuÞ��

_ bðuÞÞÞ;

where �40 is small and t�bðuÞ�� is given in Lemma 2. It now follows that

1

�
ðvðbðuÞ; uÞ � vðbðuÞ � �; uÞÞ

X
1

�
E1ðe

�ðrþaÞt�
bðuÞ�� ½ðSt�

bðuÞ��
_ bðuÞÞ � ðSt�

bðuÞ��
_ ðbðuÞ � �ÞÞ	Þ:

It is easy to check that ½ðSt�
bðuÞ��

_ bðuÞÞ � ðSt�
bðuÞ��

_ ðbðuÞ � �ÞÞ	=� is valued in ½0; 1	 and
hence regularity of Brownian paths together with dominated convergence implies
that (16) holds. &
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Lemma 10. The boundary function b is continuous on ð0;T 	 and bð0þÞ ¼ 1:

Proof. Left continuity has already been dealt with in Lemma 2. For right continuity,
fix some u0 2 ½0;TÞ and work with the convention that bð0Þ :¼ 1: We shall prove that
limu#u0 bðuÞ ¼ bðu0Þ and hence in the case that u0 ¼ 0 this means that bð0þÞ ¼ 1:
Since vðbðu0Þ; u0Þ ¼ bðu0Þ and vðbðuÞ; uÞ ¼ bðuÞ we have the following integral

formula

vðbðu0Þ; uÞ � bðu0Þ ¼

Z bðuÞ

bðu0Þ

1�
@v

@c
ðx; uÞ

� 	
dx (17)

for each u 2 ðu0;TÞ: Note that bðuÞXbðu0Þ: For any bðu0ÞpxpbðuÞ; we have

1�
@vðx; uÞ

@x
¼

Z bðuÞ

x

@2vðZ; uÞ
@Z2

dZ;

because @vðx; uÞ=@x ! 1 as x " bðuÞ: We now use the second-order differential
equation Lv ¼ 0; in combination with vðZ; uÞXZ40 and @vðZ; uÞ=@ZX0; in order to
obtain the estimate, for each xpZobðuÞ;

@2vðZ; uÞ
@Z2

X
2r

s2Z
@vðZ; uÞ

@Z
X

2r

s2Z
@vðx; uÞ

@x
;

where we have used the convexity of c 7! vðc; uÞ in the second inequality. This leads,
with the notation

wðx; uÞ ¼
2r

s2
logðbðuÞ=xÞ;

to the estimates

1�
@vðx; uÞ

@x
Xwðx; uÞ

@vðx; uÞ
@x

;

hence

@vðx; uÞ
@x

p1=ð1þ wðx; uÞÞ

and therefore

1�
@vðx; uÞ

@x
Xwðx; uÞ=ð1þ wðx; uÞÞ;

which in turn implies that

vðbðu0Þ; uÞ � vðbðu0Þ; u0ÞX

Z bðuÞ

bðu0Þ

wðx; uÞ
1þ wðx; uÞ

dx:

Suppose now that bðuþ
0 Þ4bðu0Þ: Because the left-hand side converges to zero, this

would imply that

0 ¼

Z bðuþ
0
Þ

bðu0Þ

wðx; u0Þ
1þ wðx; u0Þ

dx;
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in which case

wðx; u0Þ ¼
2r

s2
logðbðuþ

0 Þ=xÞ40 when 0oxobðuþ
0 Þ:

This contradiction proves the right continuity and hence continuity of the
function b. &
4. Canadization

Carr [3] proposes a novel and yet simple method of approximating the price of the
finite expiry American put at time T via a method of randomization or Canadization
as he calls it. The idea is quite simple. As a first approximation, one may consider
randomizing the expiry date, T ; of the option by an independent exponential
distribution having mean T and forcing the American put claim should the option
expire at the end of this exponential time. The logic behind this randomization is that
the free boundary problem is converted from a time variant one to a time invariant
one as a consequence of the lack of memory property; if the holder has not yet
exercised, then there is still an exponential time remaining. It is reasonably intuitive
to see that the effect of this randomization is to convert the parabolic free boundary
problem associated with the American put to an elliptic free boundary problem. The
latter being explicitly solvable.
A natural generalization of this idea which Carr further pursues is to replace the

exponential distribution by a sum of n independent exponential distributions, each
having mean T=n so that the expectation of the sum is T and again forcing the
American put claim should the option expire at this random time. We shall refer to
this as an nth-order randomization. Suppose we denote each of these exponentials by
ei;n then by the Law of Large Numbers it follows thatXn

i¼1

ei;n ¼
Xn

i¼1

T

n

n

T
ei;n

h i
! T

almost surely. This shows that if one can solve the optimal stopping problem with a
randomized expiry according to the independent distribution

Pn
i¼1ei;n then to some

extent for large n one has a good approximation to the finite expiry case; and hence
by the previous section a good approximation to the associated free boundary value
problem. Carr [3] makes good of this approximation and provides an explicit
expression for the case of the nth-order randomization of the American put option.
This expression is the consequence of a sequence of iterated elliptic free boundary
problems.
In this section, we formulate the problem of the nth-order randomization for

the Russian option and show that like Carr’s results for the American put the
resulting approximation is represented by the solution to an iterated system of
elliptic free boundary problems which we solve explicitly. This solution leads to
Algorithm 4.
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4.1. nth-order randomization

The nth-order randomization which approximates the function vðc;TÞ is the
solution to the optimal stopping problem

vðn;nÞðcÞ ¼ sup
t2T0;1

E� Ecðe
�aðt^Yn;nÞCt^Yn;n Þ;

where under the measure P (having expectation operator E), Yn;n is the sum of n

independent exponential random variables fei;n : i ¼ 1; . . . ; ng with parameter

ln :¼ n=T

and T0;1 is the set of F-stopping times valued in ½0;1Þ: The choice of notation
vðn;nÞðcÞ and Yn;n will become apparent in a moment.

Lemma 11. The function vðn;nÞðcÞ is the final step in the recursion

vð0;nÞðcÞ ¼ c and

vðk;nÞðcÞ ¼ sup
t2T0;1

Ec e�ðaþlnÞtCt þ ln

Z t

0

e�ðaþlnÞsvðk�1;nÞðCsÞds

� 	
for k ¼ 1; . . . ; n:

Proof. Suppose that under measure P we now define

Yk;n ¼
Xn

i¼k

ei;n:

We have

vðn;nÞðcÞ ¼ sup
t2T0;1

E� Ecðe
�aðt^Yn;nÞCt^Yn;nð1ðtpY1;nÞ þ 1ðt4Y1;nÞÞÞ

¼ sup
t2T0;1

E� Ecðe
�atCt1ðtpY1;nÞ

þ 1ðt4Y1;nÞe
�aY1;ne�aððt�Y1;nÞ^Yn�1;nÞCY1;nþððt�Y1;nÞ^Yn�1;nÞÞ

¼ sup
t2T0;1

E� Ecðe
�atCt1ðtpY1;nÞ

þ 1ðt4Y1;nÞe
�aY1;nE� E

FY1;n

c ½e�aððt�Y1;nÞ^Yn�1;nÞCY1;nþððt�Y1;nÞ^Yn�1;nÞ	Þ;

where in the third equality FY1;n ¼ sðFt : tpY1;nÞ: The Strong Markov Property
together with the dynamic programming principle and lack of memory property now
gives us

vðn;nÞðcÞ ¼ sup
t2T0;1

E� Ecðe
�atCt1ðtpY1;nÞ

þ 1ðt4Y1;nÞe
�aY1;n sup

t2T0;1

E� ECY1;n
½e�aðt^Yn�1;nÞCt^Yn�1;n 	Þ:



ARTICLE IN PRESS

J.J. Duistermaat et al. / Stochastic Processes and their Applications 115 (2005) 609–638622
Now writing

vðn�1;nÞðcÞ ¼ sup
t2T0;1

E� Ec½e
�aðt^Yn�1;nÞCt^Yn�1;n 	

it follows that

vðn;nÞðcÞ ¼ sup
t2T0;1

E� Ecðe
�atCt1ðtpY1;nÞ þ 1ðt4Y1;nÞe

�aY1;n vðn�1;nÞðCY1;n ÞÞ

¼ sup
t2T0;1

Ec e�ðaþlnÞtCt þ ln

Z t

0

e�ðaþlnÞsvðn�1;nÞðCsÞds

� 	
:

Iterating this argument and noting that

vð1;nÞðcÞ ¼ sup
t2T0;1

Ec e�ðaþlnÞtCt þ ln

Z t

0

e�ðaþlnÞsCs ds

� 	
the proof is complete. &

Remark 12. Using similar reasoning it is easy to deduce that we may also identify

vðk;nÞðcÞ ¼ sup
t2T0;1

E� Ec½e
�aðt^Yk;nÞCt^Yk;n

	

for each 1pkon:

Remark 13. Roughly speaking, by considering the case k ¼ 1; one may establish that
vð1;nÞðcÞ is a convex function associated to which is the value ecð1;nÞ41 ¼: ecð0;nÞ such
that the optimal stopping time in the definition of vð1;nÞðcÞ is given by

tð1;nÞ ¼ infftX0 : CtX
ecð1;nÞg:

Indeed, similar conclusions were drawn for the first-order randomization in [11] for
the case that a ¼ 0 and n ¼ 1: Proceeding to the cases nXkX2; using an iteration
which takes advantage of the convexity of vðk�1;nÞðcÞ it is possible to show that, the
optimal stopping time in the definition of vðk;nÞðcÞ takes the form

tðk;nÞ ¼ infftX0 : CtX
ecðk;nÞg

for some ecðk;nÞ4ecðk�1;nÞ:

4.2. Discrete Stefan system

The goal of this subsection is to show that the discrete Stefan system, defined
below, has exactly one solution which can be described explicitly. Further, we will
show that any solution must correspond to the nth-order randomization fvðk;nÞ : k ¼

0; . . . ; ng and hence the justification of Algorithm 4 will follow.

Definition 14 (Discrete Stefan system). We say the pair ff ðk;nÞ : k ¼ 0; . . . ; ng and
fjðk;nÞ : k ¼ 0; . . . ; ng where

f ðk;nÞ : ½1;1Þ ! ½1;1Þ and jðk;nÞ
X1
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solves the discrete Stefan system if f ð0;nÞ
ðcÞ ¼ c and jð0;nÞ ¼ 1 and for k ¼ 1; . . . ; n we

have

s2

2
c2 d

2f ðk;nÞ

dc2
ðcÞ � rc

df ðk;nÞ

dc
ðcÞ � ðaþ lnÞf

ðk;nÞ
ðcÞ ¼ �lnf ðk�1;nÞ

ðcÞ

for 1ocojðk;nÞ and f ðk;nÞ
ðcÞ ¼ c for cXjðk;nÞ: ð18Þ

Furthermore, for k ¼ 1; . . . ; n;

lim
c#1

df ðk;nÞ

dc
ðcÞ ¼ 0; lim

c"jðk;nÞ

df ðk;nÞ

dc
ðcÞ ¼ 1 and lim

c"jðk;nÞ
f ðk;nÞ

ðcÞ ¼ jðk;nÞ:

The following theorem is proved at the end of this subsection.

Theorem 15. A unique solution exists to the discrete Stefan system. In addition, this

unique solution satisfies jðn;nÞ4 � � �4jð0;nÞ ¼ 1 and for all k ¼ 1; . . . ; n

df ðk;nÞ

dc
ðcÞo1 and f ðk;nÞ

ðcÞ4c;

when 1pcojðk;nÞ: Further the unique solution may be identified by f ðk;nÞ
¼ vðk;nÞ for all

k ¼ 0; . . . ; n and hence the thresholds fecðk;nÞ : k ¼ 1; . . . ; ng referred to in Remark 13
are precisely fjðk;nÞ : k ¼ 0; . . . ; ng:

Remark 16. Eq. (18) can be rewritten

s2

2
c2f ðk;nÞ00

ðcÞ � rcf ðk;nÞ0
ðcÞ � af ðk;nÞ

ðcÞ ¼
f ðk;nÞ

ðcÞ � f ðk�1;nÞ
ðcÞ

T
n

: (19)

For partial differential equations, such as the Stefan problem with solution v from
the previous section, one has the so-called method of lines as a method of
approximation. In this case, it could consist of putting a uniform grid on some fixed
interval ½0;T 	 with distance T=n and approximate the derivative in the T-direction by
its difference quotient

v c; kT
n

� �
� v c; ðk � 1ÞT

n

� �
T
n

such that the pde is broken up in a set of differential equations. Note that if we
associate f ðk;nÞ

ðcÞ with vðc; k T
n
Þ this method precisely results in the set of differential

equations of the form (19).
One important difference between the discrete Stefan system we deduced and this

method of lines, is that it’s not a priori clear how to deal with the fact that the
boundary of the definition area of the pde is a curve rather than fixed.

Next we identify the promised explicit solution to the discrete Stefan system.
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Lemma 17. The pair fvðk;nÞ : k ¼ 0; . . . ; ng and fecðk;nÞ : k ¼ 0; . . . ; ng are given byecð0;nÞ ¼ 1;

vðk;nÞðcÞ ¼

c for cXecðk;nÞ

cb1ðcð1; i; kÞ þ
Pk�i

m¼1aðm; i; kÞ logðcÞmÞ

þcb2 ðcð2; i; kÞ þ
Pk�i

m¼1bðm; i; kÞ logðcÞmÞ þ dk�iþ1c

for c 2 ½eci�1; ecði;nÞ	 and i ¼ 1; . . . ; k;

8>>>>><>>>>>:
(20)

where b1ob2 are the two solutions too the quadratic equation

s2

2
b2 � r þ

s2

2

� 	
b� ðaþ lnÞ ¼ 0;

d ¼ ln=ðr þ aþ lnÞ and, on account of their complexity, the constants að:; :; :Þ; bð:; :; :Þ;
cð:; :; :Þ and the thresholds ecðk;nÞ are given in Appendix A. This pair solves, for k ¼

1; . . . ; n;

s2

2
c2 d

2vðk;nÞ

dc2
ðcÞ � rc

dvðk;nÞ

dc
ðcÞ � ðaþ lnÞv

ðk;nÞðcÞ ¼ �lnvðk�1ÞðcÞ

for 1ocoecðk;nÞ

vðk;nÞðcÞ ¼ c for cXecðk;nÞ

and furthermore

lim
c#1

dvðk;nÞ

dc
ðcÞ ¼ 0; lim

c"ecðk;nÞ

dvðk;nÞ

dc
ðcÞ ¼ 1 and lim

c"ecðk;nÞ

vðk;nÞðcÞ ¼ ecðk;nÞ:

Proof. Given that we have identified the pair fvðk;nÞ : k ¼ 0; . . . ; ng and fecðk;nÞ : k ¼

0; . . . ; ng as the unique solution, it suffices to check that the right-hand side of (20)
solves the discrete Stefan system. Sadly there is no elegant proof of this and a manual
computation is the quickest way of establishing this result. In the computation, one
should use the result of Theorem 15 to ensure that the defining equation for ecðk;nÞ

(Eq. (25) in the Appendix A) indeed has a unique solution that is strictly bigger thanecðk�1;nÞ: Otherwise there is nothing special involved in the calculation other than the
need for endurance. We leave the proof to the reader. &

Returning to the proof of Theorem 15, we first need the following result which, as
we shall see, easily resolves the issue of existence together with some of the
conditions stipulated in Theorem 15. These latter conditions turn out to be crucial in
order to prove that the unique solution is precisely fvðk;nÞ : k ¼ 0; . . . ; ng:

Theorem 18. Fix l40: Suppose that the function f : ½1;1Þ ! ½1;1Þ satisfies the

following:
(i)
 there exists a bX1 such that f ðcÞ ¼ c for all cXb and
(ii)
 if b41 then f 0
ðcÞo1 for all 1pcob:
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s2 2 00 0
Then the system

2
c u ðcÞ � rcu ðcÞ � ðaþ lÞuðcÞ ¼ �lf ðcÞ for 1ococ (21)

and uðcÞ ¼ c for cXc; with the boundary conditions

lim
c#1

u0ðcÞ ¼ 0; lim
c"c

uðcÞ ¼ c and lim
c"c

u0ðcÞ ¼ 1;

has at least one pair ðu; cÞ with c41 as its solution. Every possible solution ðu; cÞ
possesses the property u0ðcÞo1 for all 1pcoc and either we have cXb or for all

cpcpb

f ðcÞp
r þ aþ l

l
c:

Proof. From general theory of differential equations it follows that every solution of
(21) can be written in the form

uðcÞ ¼ acb2 þ dcb1 þ u0ðcÞ (22)

with

u0ðcÞ ¼
�2l

s2ðb2 � b1Þ

Z c

1

c
x

� 	b2
�

c
x

� 	b1
 !

f ðxÞ
x

dx;

b1ob2 solutions to the quadratic equation

s2

2
bðb� 1Þ � rb� ðaþ lÞ ¼ 0

and the a and d free constants.
Now pick any x41: We can choose the constants a ¼ ax and d ¼ dx now such

that two out of three boundary conditions are satisfied: uðxÞ ¼ x and u0ðxÞ ¼ 1: A
straightforward calculation shows that the appropriate choices are

ax ¼
2l

s2ðb2 � b1Þ

Z x

1

x�b2 f ðxÞ
x

dxþ
1� b1
b2 � b1

x1�b2

and

dx ¼
�2l

s2ðb2 � b1Þ

Z x

1

x�b1 f ðxÞ
x

dxþ
b2 � 1

b2 � b1
x1�b1 :

The solution u we are looking for thus must be a member of the family of functions
uxðcÞ ¼ axc

b2 þ dxc
b1 þ u0ðcÞ: We define the following operator:

Ff : x 7! u0
xð1Þ
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and note that we are looking for a root of this operator, meaning a cX1 such that
Ff ðcÞ ¼ 0: Once again straightforward calculation shows

Ff ðxÞ ¼
2l

s2ðb2 � b1Þ

Z x

1

ðb2x
�b2 � b1x

�b1Þ
f ðxÞ
x

dxþ b2
1� b1
b2 � b1

x1�b2

þ b1
b2 � 1

b2 � b1
x1�b1 : ð23Þ

Now, c is a root of Ff if and only if the pair ðuc; cÞ is a solution as meant in Theorem
18. It is easy to check that Ff ð1Þ ¼ 1 and using f ðxÞ ¼ x for all xXb

lim
x!1

Ff ðxÞ ¼ lim
x!1

Cx1�b1

with

C ¼
2b1ðr þ aÞ

ð1� b1Þðb2 � b1Þs2
o0 and b1o0;

so that we can be sure that there exists at least one root of Ff on ð1;1Þ and therefore
a solution ðu; cÞ:
To prove that u0ðcÞo1 for all 1pcoc; note that the representation of u, given by

(22), indicates that in fact u is a C1-function on the interval ð1; cÞ: With this in mind
we do the following. Define xðcÞ ¼ u0ðcÞ and suppose that x attains a maximum in
some c0; where 1pc0oc: As a consequence we have that x0ðc0Þ ¼ 0 and x00ðc0Þp0:
By differentiating the differential equation in (21) once, we see that this boils

down to

s2

2
c2
0x

00
ðc0Þ � ðr þ aþ lÞxðc0Þ ¼ �lf 0

ðc0Þ;

which leads to

ðr þ aþ lÞxðc0Þ ¼
s2

2
c2
0x

00
ðc0Þ þ lf 0

ðc0Þpl

and

xðc0Þ ¼
l

r þ aþ l
o1:

So the only possibility for u0 to be bigger than or equal to 1 somewhere on the
interval ½1; cÞ; with u0ðcÞ ¼ 1 in mind and avoiding reaching a maximum, is when
there exists a c0 such that for all c0ococ we have u0ðcÞ ¼ 1: For such a c we would
have x0ðcÞ ¼ x00ðcÞ ¼ 0 and the above reasoning would still be valid, again leading to
xðcÞ ¼ u0ðcÞo1: Thus u0ðcÞo1 for all 1pcoc is proven.
For the last part, suppose that cob: From u0ðcÞo1 for all 1pcoc and u0ðcÞ ¼ 1 it

follows that u00ðc�ÞX0: Using this with u0ðcÞ ¼ 1 and uðcÞ ¼ c in taking the limit
c " c in (21) leads to

f ðcÞp
r þ aþ l

l
c:
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Combining this with f 0p1 we arrive at

f ðcÞp
r þ aþ l

l
c

for all cpcpb: &

Proof of Theorem 15. Note that the matter of existence is covered by inductively
applying the result from Theorem 18, starting from f ð0;nÞ

ðcÞ ¼ c: Now the proof
breaks up in two parts. First we use the properties that a solution to the discrete
Stefan system has according to Theorem 18 to prove that every possible solution
may be identified by f ðk;nÞ

¼ vðk;nÞ; obviously implying uniqueness together with the
other properties mentioned in Theorem 15, except for the fact that the thresholds
jð0;nÞ; . . . ;jðn;nÞ are strictly increasing, which will be dealt with in the second part of
this proof.
For the first part, note that it is clear that f ð0;nÞ

ðcÞ ¼ vð0;nÞðcÞ and properties (i) and
(ii) in Theorem 18 are satisfied. Next suppose that we have established that
f ðk�1;nÞ

ðcÞ ¼ vðk�1;nÞðcÞ and such that properties (i) and (ii) of Theorem 18 hold. Then
Theorem 18 tells us that a solution f ðk;nÞ

ðcÞ;jðk;nÞ exists and has the stated properties.
To finish this part, we must henceforth show that f ðk;nÞ

ðcÞ ¼ vðk;nÞðcÞ:
To this end we make an application of Itô’s formula to the process

fe�atf ðk;nÞ
ðCtÞ : tX0g:

Noting that f ðk;nÞ is sufficiently smooth to use the standard version of Itô’s formula,
that is to say it is smooth everywhere except at jðk;nÞ where it is C1 (cf. [10, p. 215] for
example), we have

d½e�ðaþlnÞtf ðk;nÞ
ðCtÞ	 þ lne

�ðaþlnÞtf ðk�1;nÞ
ðCtÞdt

¼ e�ðaþlnÞt
s2

2
c2 d

2f ðk;nÞ

dc2
� rc

df ðk;nÞ

dc
� ðaþ lnÞf

ðk;nÞ
þ lnf ðk�1;nÞ

" #
ðCtÞdt

� e�ðaþlnÞtsCt

df ðk;nÞ

dc
ðCtÞdWP

t :

Noting that the first derivative of f ðk;nÞ is bounded, and that from the conclusions of
Theorem 18 we have

s2

2
c2 d

2f ðk;nÞ

dc2
� rc

df ðk;nÞ

dc
� ðaþ lnÞf

ðk;nÞ
þ lnf ðk�1;nÞ

" #
ðcÞp0

both if jðk;nÞ
Xjðk�1;nÞ and jðk;nÞojðk�1;nÞ; we deduce that

e�ðaþlnÞtf ðk;nÞ
ðCtÞ þ ln

Z t

0

e�ðaþlnÞsf ðk�1;nÞ
ðCsÞds : tptðk;nÞ

� �



ARTICLE IN PRESS

J.J. Duistermaat et al. / Stochastic Processes and their Applications 115 (2005) 609–638628
is a martingale where tðk;nÞ ¼ infftX0 : CtXjðk;nÞg and

e�ðaþlnÞtf ðk;nÞ
ðCtÞ þ ln

Z t

0

e�ðaþlnÞsf ðk�1;nÞ
ðCsÞds : tX0

� �
is a supermartingale.
Once again we appeal to classical arguments from the theory of optimal stopping

to finish the proof. That is, using the supermartingale property together with the
lower bound on f ðk;nÞ we have with the help of Doob’s Optional Stopping Theorem

f ðk;nÞ
ðcÞX sup

t2T0;1

Ec e�ðaþlnÞtf ðk;nÞ
ðCtÞ þ ln

Z t

0

e�ðaþlnÞsf ðk�1;nÞ
ðCsÞds

� 	
X sup

t2T0;1

Ec e�ðaþlnÞtCt þ ln

Z t

0

e�ðaþlnÞsf ðk�1;nÞ
ðCsÞds

� 	
:

On the other hand, by the martingale property, we also have that

f ðk;nÞ
ðcÞ ¼ Ec e�ðaþlnÞtðk;nÞ f ðk;nÞ

ðCtðk;nÞ Þ þ ln

Z tðk;nÞ

0

e�ðaþlnÞsf ðk�1;nÞ
ðCsÞds

 !

¼ Ec e�ðaþlnÞtðk;nÞCtðk;nÞ þ ln

Z tðk;nÞ

0

e�ðaþlnÞsf ðk�1;nÞ
ðCsÞds

 !
showing that f ðk;nÞ

ðcÞ ¼ vðk;nÞðcÞ and that jðk;nÞ is the optimal threshold.
Now for a proof that jðn;nÞ4 � � �4jð0;nÞ; again by induction. It is straightforward

that jð1;nÞ4jð0;nÞ ¼ 1: Suppose that jðk�1;nÞojðk;nÞ: From Theorem 18 we have for all
jðk�1;nÞpcojðk;nÞ that f ðk;nÞ

ðcÞ4c ¼ f ðk�1;nÞ
ðcÞ: Furthermore we have from the part

above and by definition of vð:;nÞ (see Remark 12) that for all cX1

f ðk;nÞ
ðcÞ ¼ vðk;nÞðcÞXvðk�1;nÞðcÞ ¼ f ðk�1;nÞ

ðcÞ:

Combining these two inequalities shows that for all xXjðk;nÞZ x

1

ðb2x
�b2 � b1x

�b1Þ
f ðk;nÞ

ðxÞ
x

dx4
Z x

1

ðb2x
�b2 � b1x

�b1 Þ
f ðk�1;nÞ

ðxÞ
x

dx:

Now, recall the operator F f defined in Eq. (23). With this notation and using the
uniqueness of solutions we proved in the part above, we have that the unique root of
Ff k�1

determines jðk;nÞ and the unique root of F f k
determines jðkþ1;nÞ: By

construction we have Ff k�1
ðjðk;nÞÞ ¼ 0 and the above inequality shows that for all

xXjðk;nÞ it follows Ff k
ðxÞ4Ff k�1

ðxÞ: Recalling that F :ð1Þ ¼ 1 we have as a
consequence that the unique root of Ff k

; which equals jðkþ1;nÞ; is strictly bigger
than jðk;nÞ: &

Justification for Algorithm 4. The function vðk;nÞ characterizes the value of the nth-
order randomization of the optimal stopping problem at hand during the kth
exponential period. The expression given in Algorithm 4 is the function which is
equal to vðk;nÞ over the time interval ððk � 1ÞT=n; kT=n	 rather than over the kth
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exponential period. Lemma 19 below shows that there is pointwise convergence of
ðvðk;nÞ; bðk;nÞ

Þ to ðv; bÞ along an appropriate sequence of ðk; nÞ:

Lemma 19. Let kðnÞ be a sequence in n such that kðnÞT=n ! u as n tends to infinity.

Then ðvðkðnÞ;nÞðcÞ; bðkðnÞ;nÞ
ðuÞÞ converges pointwise to ðvðc; uÞ; bðuÞÞ:

Proof. We give the proof for the case a ¼ 0: The proof for a40 follows with minor
adjustments. Note in addition, for a40 one may re-consider the proof of
Proposition 5.1 of Kyprianou and Pistorius [11] and note that with minor changes
it also delivers the required convergence.
From the properties mentioned in Theorems 3 and 15 its easily deduced that

vðkðnÞ;nÞðcÞ ! vðc; uÞ for all cX1 implies bðkðnÞ;nÞ
ðuÞ ! bðuÞ; so we focus on proving

the former convergence.
First a preliminary estimation. Note that we can write for all nX2 and cX1

vðc; nÞ � vðc; n � 1Þp sup
t2T0;1

EcðCt^n �Ct^ðn�1ÞÞ

¼ sup
t2T0;1

EcðECn�1
ðCt^1Þ �Cn�1Þ

pEcðvðCn�1; 1ÞÞ

pEcðCn�1 _ bð1ÞÞ

pvðc; n � 1Þ þ bð1Þ;

where we used the strong Markov property and the properties of vð:; 1Þ and bð:Þ: It
follows that for all k; iX1 we can roughly estimate

vðc; k þ iÞp2iðvðc; kÞ þ bð1ÞÞ: (24)

Now fix some cX1 and �40: We use the notation from Remark 12, that is

vðkðnÞ;nÞðcÞ ¼ sup
t2T0;1

E� EcðCt^YkðnÞ;n
Þ

and set An :¼fYkðnÞ;n4u þ �g for every n. We can estimate

jvðkðnÞ;nÞðcÞ � vðc; uÞjp sup
t2T0;1

E� Ecð1Ac
n
Ct^YkðnÞ;n

Þ � sup
t2T0;1

EcðCt^uÞ

�����
�����

þ sup
t2T0;1

E� Ecð1An
Ct^YkðnÞ;n

Þ

and the first term on the right is easily seen to converge to 0, for example by using
dominated convergence after reformulating the expression under the measure P1 (see
also Eq. (6)). With the notation

Bn
i :¼fu þ �þ i � 1oYkðnÞ;npu þ �þ ig
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for every n and iX1; the second term allows the following estimate:

sup
t2T0;1

E� Ecð1An
Ct^YkðnÞ;n

Þ ¼ sup
t2T0;1

E� Ec

X
iX1

1Bn
i
Ct^YkðnÞ;n

 !
p
X
iX1

sup
t2T0;1

E� Ecð1Bn
i
Ct^ðuþ�þiÞÞ

p ðvðc; u þ �Þ þ bð1ÞÞ �
X
iX1

2iEð1Bn
i
Þ;

where the last inequality uses (24). Using the known density of YkðnÞ;n it is a
straightforward exercise to show that the last summation above tends to 0 as n ! 1

and the proof is completed. &
5. Numerical results and implementation

In this section, we discuss the implementation of the algorithm for a numerical
approximation of v and b as implied by Algorithm 2 and present some of the results,
where we focus on how the output depends on the values of the parameters a; r and
s: We used the package Mathematica to generate graphical output. Although the
Algorithm suggests a piecewise constant approximation of v and b with respect to the
time u; we used Mathematica’s interpolation functionality to produce a smooth
surface rather. Due to the monotone nature of v; this does not hurt the interpretation
of the plots below as the approximation suggested by the Algorithm at all.
Some technical remarks about the implementation. With the computer facilities

we had available, we were limited to n ¼ 100: This limitation is due to the fast
growth of the amount of constants að:; :; :Þ; bð:; :; :Þ and cð:; :; :Þ involved as n gets
bigger. Furthermore we have T to be chosen for every combination of parameters. If
a40; v and b are for every u bounded from above by c ! vðc;1Þ and b1; the value
function and optimal threshold corresponding to the perpetual Russian option
respectively. With the monotonicity of v and b with respect to u in mind, we take T

such that the difference between vðn;nÞð:Þ and vð:;1Þ; and between cðn; nÞ and b1 both
are less than a small (artificial) value: 10�2: This small difference, together with the
upper bound and the monotonicity, indicates that nothing interesting will happen if
we increase T more. If a ¼ 0 than the perpetual option has infinite value, in that case
the above reasoning does not make sense and we make an educated guess for a good
value of T :Now we turn to the plots. Figs. 1–7 plot the value function on the left and
its corresponding free boundary on the right to give a general overview and some
feeling for the dependence on the parameters r; a and s: Figs. 8–10 show plots of the
free boundary only, while keeping two parameters fixed and varying the third.
Finally, Figs. 11 and 12 investigate the behaviour of the free boundary when a ¼ 0
some more. We see that the algorithm captures numerically all the expectedbeha-
viour from the original optimal stopping problem. That is to say the free boundary
respects the following logic:
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�
 The greater the value of r or a the greater punishment the holder experiences for
waiting causing the exercise threshold to move more dramatically to the origin.
�
 The larger the expiry date of the contract, the more the solution behaves like the
perpetual case (for a40) for which the optimal strategy is to exercise once the
process c crosses a fixed threshold.
�
 The larger the value of s the more volatile the underlying Brownian motion is and
hence it experiences ‘larger’ excursions. This allows for the holder to feel more free
about waiting longer resulting in a larger exercise threshold.

6. Conclusion

In parallel with Peskir [15] this paper offers a characterization of the finite expiry
Russian option as the unique solution to a free boundary problem. Further, using
Carr’s idea of ‘Canadization’ we deduce an algorithm to approximate the solution to
this free boundary value problem. The algorithm captures numerically all the
expected behaviour from the optimal stopping problem represented in (4) and (6).
That is to say the free boundary respects the following logic.
�
 The greater the value of r or a the greater punishment the holder experiences for
waiting causing the exercise threshold to move more dramatically to the origin.
�
 The larger the expiry date of the contract, the more the solution behaves like the
perpetual case (for a40) for which the optimal strategy is to exercise once the
process C crosses a fixed threshold.
�
 The larger the value of s the more volatile the underlying Brownian motion is and
hence it experiences ‘larger’ excursions. This allows for the holder to feel more free
about waiting longer resulting in a larger exercise threshold.
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Appendix A

The constants in Algorithm 4 and Lemma 17 are given in a recursive way by the
following systems of equations. Suppose that the functions vðj;nÞ and thresholds ecðj;nÞ

are known for all j ¼ 0; . . . ; k � 1:
First we show how the að:; :; kÞ and bð:; :; kÞ can be determined directly.
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The constants að:; i; kÞ and bð:; i; kÞ for 1pipk can be defined by a backwards
recursion over i from their predecessors in the following way:
�
 if i ¼ k there are no að:; i; kÞ and bð:; i; kÞ present;

�
 if i ¼ k � 1 then we have only one of each:

að1; i; kÞ ¼
�l

s2
2
ð2b1 � 1Þ � r

cð1; k � 1; k � 1Þ;

bð1; i; kÞ ¼
�l

s2
2
ð2b2 � 1Þ � r

cð2; k � 1; k � 1Þ;
�
 if 1pipk � 2; then for every i we have aðm; i; kÞ and bðm; i; kÞ to be determined,
for 1pmpk � i: This is again done by a backwards recursion, this time over m. So
we start out with m ¼ k � i:

aðm; i; kÞ ¼
�l

mðs
2

2
ð2b1 � 1Þ � rÞ

aðm � 1; i; k � 1Þ;

bðm; i; kÞ ¼
�l

mðs
2

2
ð2b2 � 1Þ � rÞ

bðm � 1; i; k � 1Þ;

followed by, for m ¼ k � i � 1; . . . ; 2:

aðm; i; kÞ ¼
�l
m

aðm � 1; i; k � 1Þ � s2ðmþ1Þ
2

aðm þ 1; i; kÞ
s2
2
ð2b1 � 1Þ � r

;

bðm; i; kÞ ¼
�l
m

bðm � 1; i; k � 1Þ � s2ðmþ1Þ
2

bðm þ 1; i; kÞ
s2
2
ð2b2 � 1Þ � r

and we conclude by defining the first two:

að1; i; kÞ ¼
�lcð1; i; k � 1Þ � s2að2; i; kÞ

s2
2
ð2b1 � 1Þ � r

;

bð1; i; kÞ ¼
�lcð2; i; k � 1Þ � s2bð2; i; kÞ

s2
2
ð2b2 � 1Þ � r

The terms cð1; i; kÞ and cð2; i; kÞ for 1pipk together with the thresholdecðk;nÞ4ecðk�1;nÞ are determined by the following conditions given in Lemma 17
(i)
 vðk;nÞ0ð1þÞ ¼ 0;
� þ � þ
(ii)
 vðk;nÞ0ðecðj;nÞÞ ¼ vðk;nÞ0ðecðj;nÞÞ and vðk;nÞðecðj;nÞÞ ¼ vðk;nÞðecðj;nÞÞ for all 1pjpk � 1;
� �
(iii)
 vðk;nÞðecðk;nÞÞ ¼
ecðk;nÞ and vðk;nÞ0ðecðk;nÞÞ ¼ 1:
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Since að:; :; kÞ; bð:; :; kÞ and ecði;nÞ for 1pipk � 1 are known at this time, we can define
for 1pipk � 1
Ci :¼ ecb1
ði;nÞ

Xk�i�1

m¼1

aðm; i þ 1; kÞ logðecði;nÞÞ
m
�
Xk�i

m¼1

aðm; i; kÞ logðecði;nÞÞ
m

 !

þ ecb2
ði;nÞ

Xk�i�1

m¼1

bðm; i þ 1; kÞ logðecði;nÞÞ
m
�
Xk�i

m¼1

bðm; i; kÞ logðecði;nÞÞ
m

 !
;

Di :¼ ecb1�1
ði;nÞ

Xk�i�1

m¼1

b1aðm; i þ 1; kÞ logðecði;nÞÞ
m
þ maðm; i þ 1; kÞ logðecði;nÞÞ

m�1

 

�
Xk�i

m¼1

b1aðm; i; kÞ logðecði;nÞÞ
m
þ maðm; i; kÞ logðecði;nÞÞ

m�1

!

þ ecb2�1
ði;nÞ

Xk�i�1

m¼1

b2bðm; i þ 1; kÞ logðecði;nÞÞ
m
þ mbðm; i þ 1; kÞ logðecði;nÞÞ

m�1

 

�
Xk�i

m¼1

b2bðm; i; kÞ logðecði;nÞÞ
m
þ mbðm; i; kÞ logðecði;nÞÞ

m�1

!

and

K :¼
1

b2 � b1

Xk�1
m¼1

Dm b1ec1�b1
ðm;nÞ � b2ec1�b2

ðm;nÞ

� �
þ b1b2Cm

ecb2
ðm;nÞ �

ec1�b1
ðm;nÞ

� �h i
:

Now ecðk;nÞ is defined as the unique solution bigger than ecðk�1;nÞ to the equation

b1b2ð1� dÞ ecb2þ1
ðk;nÞ � ecb1þ1

ðk;nÞ

� �
þ b2K ec2b2

ðk;nÞ �
ecb1þb2
ðk;nÞ

� �
¼ ð1� dÞecðk;nÞ � Kecb1

ðk;nÞ

� �
b1ecb2

ðk;nÞ � b2ecb1
ðk;nÞ

� �
ð25Þ

and cð1; k; kÞ and cð2; k; kÞ solve the linear system

b1cð1; k; kÞ þ b2cð2; k; kÞ ¼ K ;

b1ecb1�1
ðk;nÞ cð1; k; kÞ þ b2ecb2�1

ðk;nÞ cð2; k; kÞ þ d ¼ 1: (26)

Finally, the remaining cð1; i; kÞ and cð2; i; kÞ for 1pipk � 1 can be found by a
backwards recursion over i, at every step using the pair

ecb1
ði;nÞcð1; i; kÞ þ

ecb2
ði;nÞcð2; i; kÞ �

ecb1
ði;nÞcð1; i þ 1; kÞ � ecb2

ði;nÞcð2; i; kÞ ¼ Ci;

b1ecb1�1
ði;nÞ cð1; i; kÞ þ b2ecb2�1

ði;nÞ cð2; i; kÞ � b1ecb1�1
ði;nÞ cð1; i þ 1; kÞ

� b2ecb2�1
ði;nÞ cð2; i; kÞ ¼ Di: ð27Þ
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