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Which are our favourite stochastic processes?

Markov chains X

Diffusions → Brownian motion X

Cts-time Markov processes with jumps → Lévy processes X

Self-similar Markov processes ↑

This talk: a gentle guided tour through some of the interaction
“Self-similar Markov processes → Stable processes”.
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Lévy processes

Stick to one-dimension

A Lévy process is an R-valued random trajectory {Xt : t ≥ 0} issued
from the origin with paths that are right-continuous and left limits
and which has stationary and independent increments.

More formally stationary and independent increments means:

for 0 ≤ s ≤ t <∞, Xt − Xs = Xt−s

for 0 ≤ s ≤ t <∞, Xt − Xs = Xt−s .

It can be shown that this means the entire process is characterised
by its position at time t (in fact it suffices to characterise its
position at time 1)

E[eiθXt ] = e−Ψ(θ)t

for some appropriate function Ψ (the characteristic exponent).
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A Lévy process is an R-valued random trajectory {Xt : t ≥ 0} issued
from the origin with paths that are right-continuous and left limits
and which has stationary and independent increments.

More formally stationary and independent increments means:

for 0 ≤ s ≤ t <∞, Xt − Xs = Xt−s

for 0 ≤ s ≤ t <∞, Xt − Xs = Xt−s .

It can be shown that this means the entire process is characterised
by its position at time t (in fact it suffices to characterise its
position at time 1)

E[eiθXt ] = e−Ψ(θ)t

for some appropriate function Ψ (the characteristic exponent).
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Brownian motion
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Compound Poisson process
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Brownian motion + compound Poisson process
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Unbounded variation paths
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Bounded variation paths
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Space exploration: some successes and dissatisfaction

Fundamentally we want to understand how Lévy processes explore
space.

25 years of research has been very successful in giving an (relatively)
complete theoretical description .....

......with the caveat that the database of tractable examples for the
aforesaid theory is uncomfortably small (relative to Markov chains
and diffusions).
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Space exploration: some successes and dissatisfaction

Example 1:

P(Process first exceeds level x by an amount y) =

∫
[0,x)

U(dz)ν̄(z−x+y)

where
Ψ(θ) = κ+(−iθ)κ−(iθ), θ ∈ R,

κ+(λ) = q + δλ+

∫
(0,∞)

(1− e−λx)ν(dx), λ ≥ 0,

ν̄(x) = ν(x ,∞) and

∫
[0,∞)

e−λxU(dx) =
1

κ+(λ)
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Space exploration: some successes and dissatisfaction

Example 2:

Under appropriate assumptions,

P(Process ever hits a point x) =
u(x)

u(0)
, x ∈ R,

where ∫
R

eiθxu(x)dx =
1

Ψ(θ)
, θ ∈ R.



Self-similar Markov processes on R

α-ssMp

R-valued Markov process,
equipped with initial measures Px , x ∈ R\{0},
with 0 an absorbing state,
satisfying the scaling property(

cXc−αt

)
t≥0

∣∣∣
Px

d
= X |Pcx

, x , c > 0



Space-time changes and modulation

It turns out that up to first hitting of the origin every ssMp can be
characterised using radial distance from the origin and positive or
negative orientation as follows:

Xt = |x | exp
{
ξϕ(|x|−αt)

}
Jϕ(|x|−αt), t ≥ 0, x 6= 0,

where (ξ, J) ∈ (0,∞)× {1,−1} is a so-called Markov modulated Lévy
process and

ϕ(t) = inf

{
s > 0 :

∫ s

0

eαξudu > t

}
.

(ξ, J):

J = {Jt : t ≥ 0} is a Markov chain on {1, 2} with intensity matrix Q.

When Jt = i , ξ moves as a Lévy process of type i. “dξt = dξ
(i)
t ”

When J makes a jump at time t, e.g. 1→ 2, then ξ experiences an
additional jump ∆ξt which is an i.i.d. copy of some pre specified r.v.
U1,2.
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ϕ(t) = inf

{
s > 0 :

∫ s

0

eαξudu > t

}
.

(ξ, J): Markov modulated Lévy processes can also be characterised by a
“characteristic exponetnt”.

Ei [e
iθXt ; Jt = j ] = (exp{−Ψ(θ)t})i,j

where

Ψ(θ) =

(
Ψ1(θ) 0

0 Ψ2(θ)

)
− Q ◦

(
1 E(eiθU1,2 )

E(eiθU2,1 ) 1

)



X , |X | and ξ
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Space-time changes and modulation

If the Markov chain J has an absorbing state at −1 or never jumps to
−1, then the ssMp is a “positive self-similar Markov process” (pssMp)

Xt = x exp
{
ξϕ(x−αt)

}
, t ≥ 0, x 0,

where ξ is a Lévy process.



Positive feedback
There is one class of Lévy processes which has always been
considered to be “the next best thing after Brownian motion”: the
(α, ρ)-stable process.

Ψ(θ) = |θ|α
(

eπiα( 1
2−ρ)1{θ>0} + e−πiα( 1

2−ρ)1{θ<0}

)
, θ ∈ R,

Only allowed to take α ∈ (0, 2], ρ ∈ [0, 1]. In this talk, we always set
(α, ρ) so that X has positive and negative jumps.

In fact stable processes are also self-similar Markov processes:

E[eiθXt ] = e−Ψ(θ)t and E[eiθcXc−αt ] = e−Ψ(θ)t for all c > 0.

So α is the index of self-similarity, but ρ ∈ [0, 1] is a symmetry
index. When ρ = 1/2, Ψ(θ) = |θ|α so −X =d X .

When ρ ∈ (0, 1) (keep away from complete asymmetry!) and
α ∈ (0, 2) then the underlying Markov modulated Lévy process has
exponent

Ψ(θ) =

 −
Γ(α−iθ)Γ(1+iθ)

Γ(αρ̂−iθ)Γ(1−αρ̂+iθ)
Γ(α−iθ)Γ(1+iθ)
Γ(αρ̂)Γ(1−αρ̂)

Γ(α−iθ)Γ(1+iθ)
Γ(αρ)Γ(1−αρ) − Γ(α−iθ))Γ(1+iθ)

Γ(αρ−iθ)Γ(1−αρ+iθ)

 .
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There is one class of Lévy processes which has always been
considered to be “the next best thing after Brownian motion”: the
(α, ρ)-stable process.

Ψ(θ) = |θ|α
(

eπiα( 1
2−ρ)1{θ>0} + e−πiα( 1

2−ρ)1{θ<0}

)
, θ ∈ R,

Only allowed to take α ∈ (0, 2], ρ ∈ [0, 1]. In this talk, we always set
(α, ρ) so that X has positive and negative jumps.

In fact stable processes are also self-similar Markov processes:

E[eiθXt ] = e−Ψ(θ)t and E[eiθcXc−αt ] = e−Ψ(θ)t for all c > 0.

So α is the index of self-similarity, but ρ ∈ [0, 1] is a symmetry
index. When ρ = 1/2, Ψ(θ) = |θ|α so −X =d X .

When ρ ∈ (0, 1) (keep away from complete asymmetry!) and
α ∈ (0, 2) then the underlying Markov modulated Lévy process has
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Positive feedback

Take the trajectory of an (α, ρ), α ∈ (0, 1), ρ ∈ (0, 1) and imagine
cutting out all the negative parts of its trajectory and then shunting
up the remaining bits of path
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the resulting object is a positive self-similar Markov process. The
underlying Lévy process, ξ, has exponent

Ψ(θ) =
Γ(αρ− iθ)

Γ(−iθ)
× Γ(1− αρ+ iθ)

Γ(1− α + iθ)
, θ ∈ R.
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underlying Lévy process, ξ, has exponent

Ψ(θ) =
Γ(αρ− iθ)

Γ(−iθ)
× Γ(1− αρ+ iθ)

Γ(1− α + iθ)
, θ ∈ R.



Space exploration: some successes and dissatisfaction

P(Process first exceeds level x by an amount y) =

∫
[0,x)

U(dz)ν̄(z−x+y)

where
Ψ(θ) = κ+(−iθ)κ−(iθ), θ ∈ R,

κ+(λ) = q + δλ+

∫
(0,∞)

(1− e−λx)ν(dx), λ ≥ 0,

ν̄(x) = ν(x ,∞) and

∫
[0,∞)

e−λxU(dx) =
1

κ+(λ)

P(Process ever hits a point x) =
u(x)

u(0)
, x ∈ R,

where ∫
R

eiθxu(x)dx =
1

Ψ(θ)
, θ ∈ R.



Positive feedback

α ∈ (0, 1)

P(Stable process first enters [0, 1] in dy)

= P(ξ first enters (−∞, 0] in d(log y))

=
sin(παρ̂)

π
xαρy−αρ(x − 1)αρ̂(1− y)−αρ̂(x − y)−1dy

α ∈ (1, 2)

P(Stable process hits 1 before 0 when starting from x> 0)

= P(ξ ever hits 0 when starting from log x)

=
sin(πρα)− |x − 1|α−1[1(x>1) sin(πρ̂α) + 1(0<x<1) sin(πρα)] + xα−1 sin(πρ̂α)

(sin(πρα) + sin(πρ̂α))
.
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A bigger picture

A d-dimensional ssMp can be characterised using radial distance from the
origin and angular orientation in Sd−1 (think generalised Polar
coordinates) as follows:

Xt = |x | exp
{
ξϕ(|x|−αt)

}
Θϕ(|x|−αt), t ≥ 0, x 6= 0,

where (ξ,Θ) ∈ (0,∞)× Sd−1 is a so-called Markov modulated Lévy
process and

ϕ(t) = inf

{
s > 0 :

∫ s

0

eαξudu > t

}
.

1



A bigger picture

A d-dimensional isotropic stable Lévy process is also a ssMp:

E[eiθ·Xt ] = exp{−|θ|αt}, t ≥ 0, θ ∈ Rd ,

necessarily α ∈ (0, 2].

The radial distance of such a process from the origin, |Xt |, t ≥ 0, is
a pssMp. Its underlying Lévy process has characteristic exponent

Ψ(θ) =
Γ( 1

2 (−iθ + α))

Γ(− 1
2 iθ)

Γ( 1
2 (iθ + d))

Γ( 1
2 (iθ + d − α))

, θ ∈ R.
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E[eiθ·Xt ] = exp{−|θ|αt}, t ≥ 0, θ ∈ Rd ,

necessarily α ∈ (0, 2].

The radial distance of such a process from the origin, |Xt |, t ≥ 0, is
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Riesz-Bogdan-Zak transform

The inversion of Rd through the unit sphere:

Kx =
x

|x |2
, x ∈ Rd .

x1

Kx1

x2

Kx2

1



Riesz-Bogdan-Zak transform

Riesz-Bogdan-Zak transform

Suppose that X is a d-dimensional isotropic stable process with d ≥ 2.
Define

η(t) = inf{s > 0 :

∫ s

0

|Xu|−2αdu > t}, t ≥ 0.

Then, for all x ∈ Rd\{0}, {KXη(t) : t ≥ 0} under Px is equal in law to

(X ,Ph
Kx), where

dPh
x

dPx

∣∣∣∣
σ(Xs :s≤t)

=
|Xt |α−d

|x |α−d
, t ≥ 0,

In fact it can be shown that (X ,Ph
x), x 6= 0 corresponds to the law of X

conditioned to be continuously absorbed at the origin, that is: for
A ∈ σ(Xs : s ≤ t), x 6= 0,

Ph
x(A, t < τ{0}) = lim

a→0
Px(A, t < τ{0}|τB(0,a) <∞),

where τB(0,a) = inf{t > 0 : |Xt | < a} and τ{0} = inf{t > 0 : Xt = 0}.



Stable SDEs entering at ±∞

Consider the simple SDE

dZt = σ(Zt−) dXt , t ≥ 0,

where X is a two-sided jumping 1-d stable process with index
α ∈ (1, 2).

The weak solution of this SDE is equal in law to (Xτt : t ≥ 0) where

τt = inf{s > 0 :

∫ s

0

σ(Xs)−αds > t}, t ≥ 0.

Can the SDE solution enter simultaneously at ±∞?

Apply Riesz-Bogdan-Zak transform, compounding time changes, to
discover (with quite a bit of work) that this can happen if and only if∫

|x|>1

σ(x)−α|x |α−1 dx <∞.
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For the future

Applied probability has made prolific use of the theory of Markov
chains and diffusions (Brownian motion)

And to some extent Lévy processes and their subtle path properties

Stable processes benefit from the theory of self-similarly to provide
explicit answers for questions relating to path behaviour, promising
some robustness in the arguments

For the future: Can a catalogue of new (path discontinuous)
self-similar Markov processes be characterised which serve applied
probability in ways that the aforesaid stochastic processes cannot?
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Thank you!


