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NEUTRON FLUX

I Neutron flux is a measure of the intensity of neutron radiation, determined by the
rate of flow of neutrons; measured in (# neutrons)/cm2/s.

I We want to describe neutron flux as a function of spatial position and time in
complex domains:

Ψ(r, υ, t), r ∈ D ⊆ Rd, υ ∈ V := {υ ∈ Rd : υmin ≤ |υ| ≤ υmax},

for 0 < υmin < υmax <∞.
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NEUTRON FISSION
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NEUTRON SCATTERING
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NEUTRON TRANSPORT EQUATION

Neutron flux is thus identified as Ψg : D× V → [0,∞), which solves the
integro-differential equation

∂Ψg

∂t
(t, r, υ) + υ · ∇Ψg(t, r, υ) + σ(r, υ)Ψg(t, r, υ)

= Q(r, υ, t) +

∫
V

Ψg(r, υ′, t)σs(r, υ′)πs(r, υ′, υ)dυ′ +
∫

V
Ψg(r, υ′, t)σf(r, υ′)πf(r, υ′, υ)dυ′,

where the different components are measurable in their dependency on (r, υ) and are
explained as follows:

σs(r, υ′) : the rate at which scattering occurs from incoming velocity υ′,

σf(r, υ′) : the rate at which fission occurs from incoming velocity υ′,

σ(r, υ) : the sum of the rates σf + σs and is known as the cross section,

πs(r, υ′, υ)dυ′ : the scattering yield at velocity υ from incoming velocity υ′,

satisfying πs(r, υ,V) = 1, and

πf(r, υ′, υ)dυ′ : the neutron yield at velocity υ from fission with incoming velocity υ′,

satisfying πf(r, υ,V) <∞ and

Q(r, υ, t) : non-negative source term. (Immediately remove the source term Q = 0)

We will assume that all quantities are uniformly bounded away from zero and infinity.
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BOUNDARY CONDITIONS

I Boundary conditions which represent ‘fission containment’ Ψg(0, r, υ) = g(r, υ) for r ∈ D, υ ∈ V, (initial condition)

Ψg(t, r, υ) = g(r, υ) = 0 for r ∈ ∂D if υ · nr < 0, (neutron annihilation)

I nr is the outward facing normal of D at r ∈ ∂D
I g : D×V → [0,∞) is a bounded, measurable function which we will later assume

has some additional properties.
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DON’T PANIC!
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YOUR NUCLEAR FUTURE



9/ 35

NEUTRON TRANSPORT EQUATION

∂Ψg

∂t
(t, r, υ) + υ · ∇Ψg(t, r, υ) + σ(r, υ)Ψg(t, r, υ)

=

∫
V

Ψg(r, υ′, t)σs(r, υ′)πs(r, υ′, υ)dυ′ +
∫

V
Ψg(r, υ′, t)σf(r, υ′)πf(r, υ′, υ)dυ′,

I With some rearrangements, the components of NTE separate into transport,
scattering and fission. Specifically,

Tg(r, υ) := −υ · ∇g(r, υ)− σ(r, υ)g(r, υ) (forwards transport)

Sg(r, υ) :=
∫

V g(r, υ′)σs(r, υ′)πs(r, υ′, υ)dυ′ (forwards scattering)

Fg(r, υ) :=
∫

V g(r, υ′)σg(r, υ′)πg(r, υ′, υ)dυ′ (forwards fission)

I More natural to look for solutions as time-varying in L2(D× V) so that, for
f ∈ L2(D× V),

∂

∂t
〈f ,Ψg(t, ·, ·)〉 = 〈f , (T + S + F)Ψg(t, ·, ·)〉

Abstract Cauchy problem - taking the problem into the domain of c0-semigroups
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ABSTRACT CAUCHY PROBLEM

I Written more simply with everything in understood in the L2(D× V) space

∂

∂t
Ψg(t, ·, ·) = (T + S + F)Ψg(t, ·, ·)

I c0-semigroup allows us to see the solution to this problem as the orbit in L2 space:

Ψg(t, r, υ) = e(T+S+F)tg(r, υ), t ≥ 0,

where e(T+S+F)t =
∑∞

k=0(T + S + F)ktk/k!

I More generally can replace L2(D× V) by Lp(D× V) for p ∈ (1,∞).
I Problems occur for the transport operator if one is to look at L1(D× V) or

L∞(D× V): A shame as this is normally where we do probability theory!
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STEADY-STATE REACTORS

I What constitutes a nuclear reactor?

I Heuristically we want to find an eigenvalue λ ∈ R , positive eigenfunction pair
h : D× V → [0,∞) and h̃ on D× V such that, ideally with λ = 0

Forwards : λ〈h, f 〉 = 〈h, (T + S + F)f 〉 and λ〈g, h̃〉 = 〈g, (T + S + F)h̃〉
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STEADY-STATE REACTORS

I The eigenfunction h is called an importance map and gives the first order neutron
flux (radioactivity) profile

I Roughly speaking, now as an Abstract Cauchy Problem on L2(D× V),

∂ψh

∂t
= (T + S + F)ψh, ψh = h at t = 0 and ψh = 0 for r ∈ ∂D, υ · nr > 0

the solution can be thought of as

ψh(t, r, υ) = e(T+S+F)th(r, υ) :=
∑
k≥0

tk

k!
(T + S + F)kh(r, υ)

I Hence for f ∈ L2(D× V),

〈f , ψh(t, ·, ·)〉 =
∑
k≥0

tk

k!
〈f , (T + S + F)kh〉 =

∑
k≥0

tk

k!
λk〈f , h〉 = eλt〈f , h〉

I Said another way
ψh(t, r, υ) = eλth(r, υ)
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PERRON-FROBENIUS

I T is a nasty (unbounded) operator making it harder than usual to find
eigenfunctions, S and F are nice (bounded) operators whose spectral analysis is
easier to handle.

I In looking for λ, h as a lead eigen pair we need

(T + S + F)h = λh =⇒ (T− λI)−1(S + F)h = h

I Fix µ, use either operator perturbation methods or Krein-Rutman Theorem to
deduce that (as a linear operator on an L2 space),

(T− µI)−1(S + F)

has a spectral radius rµ and positive eigenfunction hµ
I Verify that rµ varies continuously with µ on a range (0, r∗), where r∗ > 1.
I Now vary µ and find λ∗ such that rλ∗ = 1. The accompanying eigenfunction is h

and together they solve

(T− λ∗I)−1(S + F)h = h =⇒ (T + S + F)h = λ∗h

I Comes hand-in-hand with a left-eigen function h̃.
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PERRON-FROBENIUS

Projecting onto the lead eigenvalue, ∃ε > 0:

e−λ∗tψg(t, r, υ) ∼ h(r, υ)〈h̃, g〉+ O(e−εt)

Theorem
Let D be convex. Assume that σf(r, υ)πf(r, υ, υ′) and σs(r, υ)πs(r, υ, υ′) are piece-wise
continuous and uniformly bounded from above and below on D× V × V. Then,

(i) the neutron transport operator (T + S + F) has a leading eigenvalue λ∗ ∈ R, which is
simple and isolated and which has a corresponding positive right and left eigenfunctions
in L2(D× V), h and h̃ respectively, and

(ii) there exists an ε > 0 such that, as t→∞,

||e−λ∗tψg(t, ·, ·)− 〈h̃, g〉h||2 = O(e−εt), (1)

for all g ∈ L2(D× V).

The sign of λ∗ dictates the criticality of the system:

I λ∗ < 0: subcritical and fission dies out
I λ∗ = 0: critical, i.e. a nuclear reactor
I λ∗ > 0: supercritical (not quite a bomb, that would be non-existence of λ∗)
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OVER WHAT DOMAINS DO WE NEED EIGENFUNCTIONS OF THE NTE?
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(FORWARD →BACKWARDS) NEUTRON TRANSPORT EQUATION

I Note that, for f , g ∈ L2(D× V), with f respecting the boundary condition
g(r, υ) = 0 for r ∈ ∂D if υ · nr < 0, we can verify with a simple integration by
parts that

〈f , υ · ∇g〉 =

∫
∂D×V

(υ · υ′)f (r, υ′)g(r, υ′)drdυ′ − 〈υ · ∇f , g〉 = −〈υ · ∇f , g〉

providing we insist that f respects the boundary f (r, υ) = 0 for r ∈ ∂D if υ · nr > 0.
I Moreover, Fubini’s theorem also tells us that, for example, with f , g ∈ L2(D× V),

〈f ,
∫

V
g(·, υ′)σs(·, υ′)πs(·, υ′, ·)dυ′〉 = 〈σs(·, ·)

∫
V

f (·, υ)πs(·, ·, υ)dυ, g〉.
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(FORWARD →BACKWARDS) NEUTRON TRANSPORT EQUATION

I Hence, with similar computations, this tells us that, for f , g ∈ L2(D× V),

〈f , (T + S + F)g〉 = 〈(T + S + F)f , g〉,

where
T f (r, υ) := υ · ∇f (r, υ) (backwards transport)

Sf (r, υ) := σs(r, υ)
∫

V f (r, υ′)πs(r, υ, υ′)dυ′ − σs(r, υ)f (r, υ) (backwards scattering)

F f (r, υ) := σf(r, υ)
∫

V f (r, υ′)πf(r, υ, υ′)dυ′ − σf(r, υ)f (r, υ) (backwards fission)

I This leads us to the so called backwards neutron transport equation (which is also
known as the adjoint neutron transport equation) given by the Abstract Cauchy
Problem on L2(D× V),

∂ψ

∂t
(t, ·, ·) = (T + S + F)ψ(t, ·, ·)

with additional boundary conditions ψ(0, r, υ) = g(r, υ) for r ∈ D, υ ∈ V,

ψ(t, r, υ) = 0 for r ∈ ∂D if υ · nr > 0.
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known as the adjoint neutron transport equation) given by the Abstract Cauchy
Problem on L2(D× V),

∂ψ

∂t
(t, ·, ·) = (T + S + F)ψ(t, ·, ·)

with additional boundary conditions ψ(0, r, υ) = g(r, υ) for r ∈ D, υ ∈ V,

ψ(t, r, υ) = 0 for r ∈ ∂D if υ · nr > 0.
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UNDERLYING STOCHASTICS (LEADING TO MONTE-CARLO)
I Backwards equation lends itself well to stochastic representation in the L2 sense,

∂ψ

∂t
(t, r, υ) = υ · ∇ψ(t, r, υ)− σ(r, υ)ψ(t, r, υ)

+ σs(r, υ)

∫
V
ψ(r, υ′, t)πs(r, υ, υ′)dυ′ + σf(r, υ)

∫
V
ψ(r, υ′, t)πf(r, υ, υ′)dυ′,

I The physical process of fission is a Markov-additive branching process (neutron
branching process).

I Represented by a configuration of physical location and velocity of particles in
D× V, say {(ri(t), υi(t)) : i = 1, . . . ,Nt}, where Nt is the number of particles alive
at time t ≥ 0.

I Represent as a process in the space of the atomic measures

Xt(A) =

Nt∑
i=1

δ(ri(t),υi(t))(A), A ∈ B(D× V), t ≥ 0,

where δ is the Dirac measure, define on B(D× V), the Borel subsets of D.
I Then the stochastic representation of the backwards NTE is nothing more than

φt[g](r, υ) = Eδ(r,υ) [〈g,Xt〉] = Eδ(r,υ)

 Nt∑
i=1

g(ri(t), υi(t))

 , t ≥ 0.
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NEUTRON BRANCHING PROCESS
I A particle position at r with velocity υ (configruration (r, υ)) will continue to

move along the trajectory r + υt, until one of the following things happens.
I The particles that leave the physical domain D are killed.
I For a neutron with configuration (r, υ), if Ts is the random time that scattering

may occur, then

Pr(Ts > t) = exp

{
−
∫ t

0
σs(r + υt, υ))ds

}
.

I When scattering occurs at space-velocity (r, υ), the new velocity is selected
independently with probability πs(r, υ, υ′)dυ′.

I For a neutron with configuration (r, υ), if Tf is the random time that scattering
may occur, then independently of any other physical event that may affect the
neutron,

Pr(Tf > t) = exp

{
−
∫ t

0
σf(r + υt, υ))ds

}
.

I When fission occurs at location r ∈ Rd from a particle with incoming velocity
υ ∈ V, the quantity πf(r, v, υ′)dυ′ describes the average number of particles
released from nuclear fission with outgoing velocity in the infinitesimal
neighbourhood of υ′.

I Note, the possibility that Pr(N = 0) > 0 is possible, which will be tantamount to a
fission taking place in which no neutrons are released. Experiments show that this
is a possible outcome during a fission event.
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MILD EQUATION

I Define for g ∈ L+
∞(D× V), the (physical process) expectation semigroup

φt[g](r, υ) := Eδ(r,υ) [〈g,Xt〉], t ≥ 0, r ∈ D, υ ∈ V,

and the advection semigroup

Ut[g](r, υ) = g(r + υt, υ)1{t<κD
r,υ}

, t ≥ 0.

where κD
r,υ := inf{t > 0 : r + υt 6∈ D}.

Lemma
When g ∈ L+

∞(D× V), the space of non-negative functions in L+
∞(D× V), the expectation

semigroup (φt[g], t ≥ 0) is the unique bounded solution to the mild equation

φt[g] = Ut[g] +

∫ t

0
Us[(S + F)φt−s[g]]ds, t ≥ 0.

Lemma
The mild solution (φt, t ≥ 0), is dual to (ψ(t, ·, ·), t ≥ 0) on L2(D× V), i.e.

〈f , φt[g]〉 = 〈ψf (t, ·, ·), g〉

for all f , g ∈ L2(D× V)
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EIGENFUNCTIONS OF THE EXPECTATION SEMI-GROUP?

I So far
〈f , φt[g]〉 = 〈ψf (t, ·, ·), g〉

for all f , g ∈ L2(D× V)

I We want to play with the eigenfunction h̃ ∈ L2(D× V), e.g.

〈f , φt[h̃]〉 = 〈ψf (t, ·, ·), h̃〉 = eλt〈f , h̃〉

suggesting (at least in the L2(D× V) sense)

φt[h̃](r, υ) = Eδ(r,υ) [〈h̃,Xt〉] := eλth̃(r, υ)

⇒ points us towards Monte-Carlo methods - especially when λ = 0

I Problem! No good unless h̃ ∈ L+
∞(D× V), but we only know h̃ ∈ L+

2 (D× V)
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PERRON-FROBENIUS AGAIN

Recent work of Champagnat and Villemonais on quasi-stationary distributions for
Markov semigroups (in the spirit of Tweedie’s R-theory) allows us to conclude the
following

Theorem
Suppose that D is non-empty and convex,

β := inf
r∈D,υ∈V

σf(r, υ)

(∫
V
πf(r, υ, υ′)dυ′ − 1

)
> 0.

Then there exists a λ∗ ∈ R, a positive right eigenfunction ϕ ∈ L+
∞(D× V) and a left

eigenmeasure which is absolutely continuous with respect to Lebesgue measure on D× V with
density ϕ̃ ∈ L+

∞(D× V), both having associated eigenvalue eλct, and such that ϕ (resp. ϕ̃) is
uniformly (resp. a.e. uniformly) bounded away from zero on each compactly embedded subset of
D× V. In particular for all g ∈ L+

∞(D× V)

〈ϕ̃, φt[g]〉 = eλ∗t〈ϕ̃, g〉 (resp. φt[ϕ] = eλ∗tϕ) t ≥ 0.

Moreover, there exists ε > 0 such that, for all g ∈ L+
∞(D× V),∥∥∥e−λ∗tϕ−1φt[g]− 〈ϕ̃, g〉

∥∥∥
∞

= O(e−εt) as t→ +∞.
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STOCHASTIC PERRON-FROBENIUS

Theorem
For all g ∈ L+

∞(D× V) such that, up to a multiplicative constant, g ≤ ϕ, under the
assumptions as the previous Theorem,

lim
t→∞

e−λ∗t〈g,Xt〉 = 〈g, ϕ̃〉W∞.

almost surely, where W∞ is a special random variable (in fact a martingale limit). Moreover,
W∞ is positive with positive probability if and only if λ∗ > 0, otherwise W∞ = 0.
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WE ARE NOW MONTE-CARLO-READY

I Suppose now we can efficiently simulate the Neutron branching process, recalling
that

φt[g](r, υ) := Eδ(r,υ) [〈g,Xt〉], t ≥ 0, r ∈ D, υ ∈ V,

I

λ∗ = lim
t→∞

1
t

log φt[g](r, υ) = lim
t→∞

1
t

logEδ(r,υ) [〈g,Xt〉], t ≥ 0, r ∈ D, υ ∈ V.

I and e.g.
ϕ(r, υ)

ϕ(r0, υ0)
= lim

t→∞

φt[g](r, υ)

φt[g](r0, υ0)
= lim

t→∞

Eδ(r,υ) [〈g,Xt〉]
Eδ(r0,υ0)

[〈g,Xt〉]
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Eδ(r,υ) [〈g,Xt〉]
Eδ(r0,υ0)

[〈g,Xt〉]
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OOPS...
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PROBLEM!

I Needs a massive supercomputer to deal with an industrial scale simulation

I Simulating (inhomogeneous) branching trees is no joke: cannot be parallelised.
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MANY-TO-ONE AND MONTE-CARLO PARALLELISATION

I Recall semigroup operators

T f (r, υ) := υ · ∇f (r, υ) (backwards transport)

Sf (r, υ) := σs(r, υ)
∫

V(f (r, υ′)− f (r, υ))πs(r, υ, υ′)dυ′ (backwards scattering)

F f (r, υ) := σf(r, υ)
∫

V f (r, υ′)πf(r, υ, υ′)dυ′ − σf(r, υ)f (r, υ) (backwards fission)

I Basic algebra gives

T +S+F = υ·∇f (r, υ, t)+α(r, υ)

∫
V

(
f (r, υ′, t)−f (r, υ, t)

)
π(r, υ, υ′)dυ′+β(r, υ)f (r, υ)

where

α(r, υ) := σs(r, υ) + σf(r, υ)

∫
V
πf(r, υ, υ′)dυ′,

π(r, υ, υ′)dυ′ := α−1(r, υ)
[
σs(r, υ)πs(r, υ, υ′)dυ′ + σf(r, υ)πf(r, υ, υ′)dυ′

]
,

β(r, υ) := α(r, υ)− σs(r, υ)− σf(r, υ).
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MANY-TO-ONE AND MONTE-CARLO PARALLELISATION

I The representation T + S + F = L+ β, where

Lf (r, υ) = υ · ∇f (r, υ, t) + α(r, υ)

∫
V

(
f (r, υ′, t)− f (r, υ, t)

)
π(r, υ, υ′)dυ′

implies

φt[g](r, υ) = Eδ(r,υ) [〈g,Xt〉] = E(r,υ)

[
e
∫ t

0 β(Ru,Υu)dug(Rt,Υt)1(t<τD)

]
,

for t ≥ 0, r ∈ D, υ ∈ V, where

τD = inf{t > 0 : Rt 6∈ D}.

and ((Rt,Υt), t ≥ 0) with probabilities P(r,υ), r ∈ V, υ ∈ D, is the L-neutron
random walk.

I This affords new parallelisable opportunities to Monte-Carlo solve numerically
for h:

can be replaced by
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IMPORTANCE SAMPLING
I Pick a ‘first guess’ of ϕ, denoted here by η, that satisfies η(r, υ) = 0 for r ∈ ∂D if
υ · nr > 0.

I Perform the Doob η-transform

dPη
(r,υ)

dP(r,υ)

∣∣∣∣∣
σ((Rs,Υs),s≤t)

:= exp

(
−
∫ t

0

Lη(Rs,Υs)

η(Rs,Υs)
ds
)
η(Rt,Υt)

η(r, υ)
1(t<τD)

I Gives new neutron random walk characterised by

Lη f (r, υ) = υ · ∇f (r, υ) + α(r, υ)

∫
V

(
g(r, υ′)− g(r, υ)

) η(r, υ′)
η(r, υ)

π(r, υ, υ′)dυ′.

Lemma
Moreover,

ψt[g](r, υ) = Eη
(r,υ)

[
exp

{∫ t

0

(←
Kη(Rs,Υs)

η(Rs,Υs)
+ β(Rs,Υs)− α(Rs,Υs)

)
ds

}

×
Nt∏

i=1

η(RTi ,ΥTi−1 )

η(RTi ,ΥTi )
g(Rt,Υt)1(t<τD)

]

where
←
Kη(r, υ) = α(r, υ)

∫
V
η(r, υ′)π(r, υ, υ′)dυ′.



31/ 35

IMPORTANCE SAMPLING
I Pick a ‘first guess’ of ϕ, denoted here by η, that satisfies η(r, υ) = 0 for r ∈ ∂D if
υ · nr > 0.

I Perform the Doob η-transform

dPη
(r,υ)

dP(r,υ)

∣∣∣∣∣
σ((Rs,Υs),s≤t)

:= exp

(
−
∫ t

0

Lη(Rs,Υs)

η(Rs,Υs)
ds
)
η(Rt,Υt)

η(r, υ)
1(t<τD)

I Gives new neutron random walk characterised by

Lη f (r, υ) = υ · ∇f (r, υ) + α(r, υ)

∫
V

(
g(r, υ′)− g(r, υ)

) η(r, υ′)
η(r, υ)

π(r, υ, υ′)dυ′.

Lemma
Moreover,

ψt[g](r, υ) = Eη
(r,υ)

[
exp

{∫ t

0

(←
Kη(Rs,Υs)

η(Rs,Υs)
+ β(Rs,Υs)− α(Rs,Υs)

)
ds

}

×
Nt∏

i=1

η(RTi ,ΥTi−1 )

η(RTi ,ΥTi )
g(Rt,Υt)1(t<τD)

]

where
←
Kη(r, υ) = α(r, υ)

∫
V
η(r, υ′)π(r, υ, υ′)dυ′.



31/ 35

IMPORTANCE SAMPLING
I Pick a ‘first guess’ of ϕ, denoted here by η, that satisfies η(r, υ) = 0 for r ∈ ∂D if
υ · nr > 0.

I Perform the Doob η-transform

dPη
(r,υ)

dP(r,υ)

∣∣∣∣∣
σ((Rs,Υs),s≤t)

:= exp

(
−
∫ t

0

Lη(Rs,Υs)

η(Rs,Υs)
ds
)
η(Rt,Υt)

η(r, υ)
1(t<τD)

I Gives new neutron random walk characterised by

Lη f (r, υ) = υ · ∇f (r, υ) + α(r, υ)

∫
V

(
g(r, υ′)− g(r, υ)

) η(r, υ′)
η(r, υ)

π(r, υ, υ′)dυ′.

Lemma
Moreover,

ψt[g](r, υ) = Eη
(r,υ)

[
exp

{∫ t

0

(←
Kη(Rs,Υs)

η(Rs,Υs)
+ β(Rs,Υs)− α(Rs,Υs)

)
ds

}

×
Nt∏

i=1

η(RTi ,ΥTi−1 )

η(RTi ,ΥTi )
g(Rt,Υt)1(t<τD)

]

where
←
Kη(r, υ) = α(r, υ)

∫
V
η(r, υ′)π(r, υ, υ′)dυ′.



32/ 35

IMPORTANCE SAMPLING

Want to choose η so that the Neutron Random Walk Lη remains trapped in D

Theorem
A sufficient condition on η for (R,Υ) under Pη to be conservative is that

inf
r∈∂D,υ·nr>0

|υ · ∇η(r, υ)| > 0
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IMPORTANCE SAMPLING: INTERVAL REACTOR
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ONGOING WORK

I Complexity analysis of rates of convergence of Monte-Carlo schemes
I Hybrid constrained neutron branching / random walk methods
I Stochastic growth methods at criticality e.g. conditionally on survival,

lim
t→∞

Law
(

1
t
〈f ,Xt〉

∣∣∣∣ 〈1,Xt〉
)
∼de

where e is an exponential distribution.
I Fleming-Viot methods (resampling / bootstrapping)
I Scalable for industry?
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Thank you!


