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Abstract

We develop an idea of Evans and O’Connell (1994) [13], Engländer and Pinsky (1999) [10] and
Duquesne and Winkel (2007) [4] by giving a pathwise construction of the so-called ‘backbone’ decom-
position for supercritical superprocesses. Our results also complement a related result for critical (1 + β)-
superprocesses given in Etheridge and Williams (2003) [11]. Our approach relies heavily on the use of
Dynkin–Kuznetsov N-measures.
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1. Introduction

In [13], and later in [10], a new decomposition of a supercritical superprocess with quadratic
branching mechanism was introduced in which one may write the distribution of the superprocess
at time t ≥ 0 as the result of summing two independent processes together. The first is a copy of
the original process conditioned on extinction. The second process is understood as the aggregate
accumulation of mass from independent copies of the original process conditioned on extinction
which have immigrated ‘continuously’ along the path of an auxiliary dyadic branching particle
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diffusion which starts with a Poisson number of particles. The embedded branching particle
system is known as the backbone (as opposed to the spine or immortal particle which appears
in another related decomposition, introduced in [22,12]). In both [13,10] the decomposition is
seen through the semi-group evolution equations which drive the process semi-group. However
no pathwise construction is offered.

In [4] a version of this decomposition which, albeit does not take account of spatial motion,
was established in much greater generality. In their case, quadratic branching is replaced by a
general branching mechanism ψ which is the Laplace exponent of a spectrally positive Lévy
process and which satisfies the conditions 0 < −ψ �(0+) < ∞ and

� ∞ 1/ψ(ξ)dξ < ∞.
Moreover, the decomposition is offered in the pathwise sense and described through the growth
of genealogical trees embedded within the underling continuous state branching process. In their
case the backbone is a continuous-time Galton Watson process and the general nature of the
branching mechanism induces three different kinds of immigration. Firstly there is continuous
immigration which is described by a Poisson point process of independent processes along the
backbone where the rate of immigration is given by a so-called excursion measure which assigns
zero initial mass, and finite life length of the immigrating processes. A second Poisson point
process along the backbone describes the immigration of independent processes where the rate
of immigration is given by the law of the original process conditioned on extinction and with
an initial mass randomised by an infinite measure. This accounts for so-called discontinuous
immigration. Finally, at the times of branching of the backbone, independent copies of the
original process conditioned on extinction are immigrated with randomly distributed initial mass
which depends on the number of offspring at the branch point. The last two forms of immigration
do not occur when the branching mechanism is purely quadratic.

Concurrently to the work of [4] and within the class of branching mechanisms corresponding
to spectrally positive Lévy processes with paths of unbounded variation (also allowing for the
case that −ψ �(0+) = ∞), Bertoin et al. [2] identify the aforementioned backbone as characteris-
ing prolific individuals within the genealogy of the underling continuous state branching process.
Here, a prolific individual is understood to be an individual whose descendants become infinite
in number.

In this paper we develop the decomposition of Duquesne and Winkel [4] further by adding
in the following features. We allow the possibility

� ∞ 1/ψ(ξ)dξ = ∞ which includes the
possibility of supercritical processes whose total mass may, with positive probability, die out
without this ever happening in a finite time. This also allows the inclusion of branching
mechanisms which belong to spectrally positive Lévy processes of bounded variation (previously
excluded in [2,4]). Secondly our decomposition takes care of spatial motion of individuals,
thereby bringing the Duquesne–Winkel decomposition back into the setting of superprocesses.
Finally, in the case that we ignore spatial motion, our analysis also allows for the case that
−ψ �(0+) = ∞. Our proof is fundamentally different to that of [4] and relies largely on the
manipulation of the semi-group evolution equations in the spirit of [13], taking advantage of the
so-called N-measure of Dynkin and Kuznetsov [9].

The remainder of the paper is structured as follows. In the next section we introduce some
preliminary notation and remind the reader of some standard results relevant to the subsequent
exposition. In Section 3.1 we describe a branching particle diffusion on which independent
superprocesses immigrate in three different ways. In particular we give a key result in which the
semi-group of the aforementioned process with immigration is characterised. With the latter in
hand, we are able to state and prove in Section 3.2, the backbone decomposition for supercritical
superprocesses. Finally in Section 4, we give a proof of the key analytical result in Section 3.1.
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Along the way we shall also establish the slightly stronger backbone decomposition for the case
of continuous state branching processes (i.e. when spatial considerations are ignored).

2. Preliminaries

In this section we outline some standard notation and mathematical tools as well as key
existing results, all of which will be the ingredients that together will make up the main result.

2.1. (P, ψ)-superprocess

Suppose that X = {Xt : t ≥ 0} is any superprocess motion on Rd which is well defined for
initial configurations in MF (Rd), the space of finite and compactly supported measures, having
an associated conservative diffusion semi-group P := {Pt : t ≥ 0} on Rd and general branching
mechanism ψ taking the form

ψ(λ) = αλ + βλ2 +
�

(0,∞)
(e−λx − 1 + λx1{x<1})Π (dx),

for λ ≥ 0 where α ∈ R, β ≥ 0 and Π is a measure concentrated on (0, ∞) which satisfies�
(0,∞)(1 ∧ x

2)Π (dx) < ∞. This implies that the total mass of the process X is a continuous
state branching process with branching mechanism ψ for which standard references, e.g. [7,12],
dictate that we need to assume that −ψ �(0+) < ∞. Note however that without this condition it
is always the case that −ψ �(0+) ∈ (−∞, ∞] and within this regime, continuous state branching
processes are always well defined; see for example [16]. To exclude the case of explosive
behaviour, we assume throughout that

�

0+

1
|ψ(ξ)|dξ = ∞.

Moreover, we insist that ψ(∞) = ∞ which means that with positive probability the event
limt↑∞ �Xt� = 0 will occur; see for example the summary in Chapter 10 of [19]. We refer
to such processes throughout as (P, ψ)-superprocesses.

Remark 1. It is worthy of note that the assumption that P is a conservative diffusion semi-group
on Rd can easily be replaced throughout by the much weaker assumption thatP is a general Borel
right Markov process with Lusin state space, just as in [13] or [6,7], at no cost to the analysis.
Indeed all of the proofs go through verbatim. However, purely for the sake of presentation, we
keep to the more familiar Euclidean setting.

Remark 2. Whilst the vast majority of all literature concerning (P, ψ)-superprocesses requires
the branching mechanism satisfies −ψ �(0+) < ∞, an example for which an infinite branching
rate is permitted can be found in [14]. Some of the reasons why it is hard to define an infinite
mean superprocess can be found later in the discussion following the proof of Lemma 4 in this
paper.

For each µ ∈ MF (Rd), we denote the law of X with initial configuration µ by Pµ. The
following standard result from the theory of superprocesses (cf. Theorem 1.1 of [5] Section 1.6
of [6] or Section 4.1.1 of [7] for example) describes the evolution of X as a Markov process.
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Lemma 1. For all f ∈ bp(Rd), the space of non-negative, bounded and measurable functions

on Rd
,

− log Eµ(e−� f,Xt �) =
�

Rd

u f (x, t)µ(dx), µ ∈ MF (Rd), t ≥ 0,

where u f (x, t) is the unique non-negative solution to the integral equation

u f (x, t) = Pt [ f ](x) −
�

t

0
ds · Ps[ψ(u f (·, t − s))](x). (2.1)

Here we have used the standard inner product notation, for f ∈ bp(Rd) and µ ∈ M(Rd), the
space of measures on Rd .

� f, µ� =
�

Rd

f (x)µ(dx).

Accordingly we shall write �µ� = �1, µ�.

Remark 3. In the case that we take P to correspond to a particle remaining stationary at a point,
Eq. (2.1) collapses to the classical integral equation describing the evolution of a continuous
state branching process. As alluded to above, it is known in this case that a unique non-negative
solution exists, even in the case that −ψ �(0+) = ∞.

2.2. Criticality

As noted above the total mass of a (P, ψ)-superprocess is a continuous state branching
process with branching mechanism ψ . Since there is no interaction between spatial motion
and branching we can therefore characterise the (P, ψ)-superprocess into the categories of
supercritical, critical and subcritical accordingly with the same categories for continuous state
branching processes. Respectively, these cases correspond to ψ �(0+) < 0, ψ �(0+) = 0 and
ψ �(0+) > 0. Recall that even when X is supercritical, it is possible that the process becomes
extinguished, i.e. limt↑∞ �Xt� = 0. The probability of the latter event is described in terms of
the largest root, say λ∗, of the equation ψ(λ) = 0. Note that it is known (cf. [16] or Chapter 8
of [19]) that ψ is strictly convex with ψ(0) = 0 and hence, since ψ(∞) = ∞ and ψ �(0+) < 0,
it follows that there are exactly two roots in [0, ∞), one of which is λ∗ and the other is 0. For
µ ∈ MF (Rd) we have

Pµ( lim
t↑∞

�Xt� = 0) = e−λ∗�µ�. (2.2)

We also recall that, if in addition
� ∞ 1

ψ(ξ)
dξ < ∞, (2.3)

then the event {limt↑∞ �Xt� = 0} agrees with the event of extinction, namely {ζ < ∞} where

ζ = inf{t > 0 : �Xt� = 0}.
Moreover, when the integral test in (2.3) fails, the supercritical continuous state branching pro-
cess becomes extinct with zero probability. This means that the event of becoming extinguished
corresponds to the total mass trickling away to zero but none the less being strictly positive at
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all finite times. An example of an infinite mean supercritical branching mechanism for which the
phenomena of becoming extinguished but not extinct is ψ(λ) = λ−λα where α ∈ (0, 1). A sec-
ond example in this class is Neveu’s branching mechanism ψ(λ) = λ log λ. Note that in the first
example, the associated spectrally positive Lévy process has paths of bounded variation as it can
be written as the difference of an α-stable subordinator and a linear unit-rate drift. The second
example corresponds to a spectrally positive Lévy process with paths of unbounded variation as
in that case it is known that the underlying Lévy measure is given by Π (dx) = x

−2dx .
For the remainder of the paper, unless otherwise stated, we shall henceforth assume only that

ψ is a non-exploding, supercritical branching mechanism satisfying −ψ �(0+) < ∞.
It is well known that there is a link between ψ and another branching mechanism ψ∗ where,

for λ ≥ −λ∗,

ψ∗(λ) := ψ(λ + λ∗)

= α∗λ + βλ2 +
�

(0,∞)
(e−λx − 1 + λx1{x<1})e−λ∗

xΠ (dx), (2.4)

and

α∗ = α + 2βλ∗ +
�

(0,1)
(1 − e−λ∗

x )xΠ (dx).

The connection between ψ and ψ∗ has a distinct probabilistic interpretation that we shall now
briefly discuss.

Recall that a continuous state branching process with branching mechanism ψ can always be
written as a time-changed Lévy process with no negative jumps and whose Laplace exponent is
precisely ψ ; see for example [20,19]. The assumption ψ �(0+) < 0 implies that the underlying
Lévy process drifts to +∞. Moreover, by a classical result, the branching mechanism ψ∗

corresponds to the underlying Lévy process conditioned to drift to −∞ (see Exercise 8.1
of [19]). As the next lemma confirms, it also turns out that ψ∗ is the branching mechanism
of a superprocess which can be identified as the (P, ψ)-superprocess conditioned to become
extinguished. (Similar results can be found in [2,1,23].)

Lemma 2. For each µ ∈ MF (Rd), define the law of X with initial configuration µ conditioned

on becoming extinguished by P∗
µ (with expectation operator E∗

µ). Specifically, for all events A,

measurable in the natural sigma algebra of X,

P∗
µ(A) = Pµ(A| lim

t↑∞
�Xt� = 0).

Then, for all bounded f : Rd → [−λ∗, ∞),

− log E∗
µ(e−� f,Xt �) =

�

Rd

u
∗
f
(x, t)µ(dx),

where

u
∗
f
(x, t) = u f +λ∗(x, t) − λ∗, (2.5)

and it is the unique solution of

u
∗
f
(x, t) = Pt [ f ](x) −

�
t

0
ds · Ps[ψ∗(u∗

f
(·, t − s))](x), (2.6)

where ψ∗(λ) = ψ(λ + λ∗) for λ ≥ −λ∗
. That is to say (X, P∗

µ) is a (P, ψ∗)-superprocess.
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Proof. Define the event E = {limt↑∞ �Xt� = 0}. Making use of the Strong Markov property
and (2.2), we have for f ∈ bp(Rd),

E∗
µ(e−� f,Xt �) = Eµ(e−� f,Xt �|E)

= eλ∗�µ�Eµ(e−� f,Xt �1E )

= eλ∗�µ�Eµ(e−� f,Xt �PXt
(E))

= eλ∗�µ�Eµ(e−� f,Xt �e−λ∗�Xt �)

= e−�u f +λ∗ (·,t)−λ∗,µ�.

It is trivial to check that u f +λ∗(·, t)−λ∗ solves (2.6). Moreover, since ψ∗ is the Laplace exponent
of a spectrally positive Lévy process and ψ∗�(0+) = ψ �(λ∗) > 0, it follows that the solution to
(2.6) is unique by Lemma 1. �

2.3. N∗
-measure

Associated to the laws {P∗
δx

: x ∈ Rd} are the measures {N∗
x

: x ∈ Rd}, defined on the same
measurable space, which satisfy

N∗
x
(1 − e−� f,Xt �) = − log E∗

δx
(e−� f,Xt �), (2.7)

for all f ∈ bp(Rd) and t ≥ 0. Such measures are formally defined and explored in detail
in [9]. The measures {N∗

x
: x ∈ Rd} will play a crucial role in the forthcoming analysis.

Intuitively speaking, the branching property implies that P∗
δx

is an infinitely divisible measure
on the path space of X , that is to say the space of measure-valued cadlag functions X :=
D([0, ∞) × M(Rd)), and (2.7) is a ‘Lévy–Khinchine’ formula in which N∗

x
plays the role of

its ‘Lévy measure’. See for example [8] and [21]. In the context of [4], the measure N∗ is the
analogue of what Duquesne and Winkel [4] as well as Chen and Delmas [3] call the excursion

measure, however, whilst the latter encodes genealogical trees, N∗ does not.

2.4. Prolific individuals

In [4,2] it was shown that there are certain genealogies embedded in supercritical continuous
state branching process which are exclusively responsible for the infinite growth of the process.
They show that one may identify such genealogies in the form of a continuous-time Galton
Watson process (that is to say, a version of the Galton Watson process in which individuals
remain alive for an independent and exponentially distributed period of time with a common rate
before splitting). The generator of such a continuous-time Galton Watson processes is usually
identified in the form

F(s) = q

�

n≥0
pn(sn − s),

where q > 0 is the common rate of splitting and {pn : n ≥ 0} is the offspring distribution. For
the particular continuous-time Galton Watson process representing the prolific genealogy in a su-
percritical continuous state branching process with branching mechanism ψ , the aforementioned
authors show that

F(s) = 1
λ∗ ψ(λ∗(1 − s)), s ∈ (0, 1). (2.8)

Moreover the individual components of F are given by q = ψ �(λ∗), p0 = p1 = 0 and for n ≥ 2,
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pn = 1
λ∗ψ �(λ∗)

�
β(λ∗)21{n=2} + (λ∗)n

�

(0,∞)

x
n

n! e−λ∗
xΠ (dx)

�
. (2.9)

Duquesne and Winkel [4] go further and show that, when ψ �(0+) ∈ (−∞, 0) and (2.3) holds,
the law of a continuous state branching processes with branching mechanism ψ is equal to that of
a process in which immigration occurs on the continuous-time Galton Watson process of prolific
individuals in three different ways. These are, two types of Poisson immigration along the life
span of each prolific individual and an additional package of immigration at each point of fission
of prolific individuals. In the latter case, if a prolific individual has n prolific offspring then a
continuous state branching process with branching mechanism ψ∗ immigrates at that moment of
time with random initial mass given by the distribution

ηn(dy) = 1
pnλ∗ψ �(λ∗)

�
β(λ∗)2δ0(dy)1{n=2} + (λ∗)n

y
n

n! e−λ∗
yΠ (dy)

�
. (2.10)

In the next section we progress the result of [4] further by relaxing their assumptions on ψ to
include the cases that ψ �(0+) = −∞ and

� ∞ 1/ψ(ξ)dξ = ∞ as well as taking into account
spatial considerations at the expense of keeping the condition −ψ �(0+) ∈ (0, ∞).

3. Backbone decomposition

3.1. A branching particle diffusion with three types of immigration

Let Ma(Rd) ⊂ MF (Rd) be the space of finite atomic measures on Rd . We shall write Z for
a branching P-motion whose total mass has generator given by (2.8). Hence Z is the Ma(Rd)-
valued process in which individuals, from the moment of birth, live for an independent and
exponentially distributed period of time with parameter ψ �(λ∗) during which they execute a
P-diffusion issued from their position of birth and at death they give birth at the same position
to an independent number of offspring with distribution {pn : n ≥ 2}. We shall also refer to Z

as the (P, F)-backbone. Its initial configuration is denoted by ν ∈ Ma(Rd). Moreover, when
referring to individuals in Z we may use of classical Ulam–Harris notation, see for example
p. 290 of [17]. The only feature we really need of the Ulam–Harris notation is that individuals are
uniquely identifiable amongst T , the set labels of individuals realised in Z . For each individual
u ∈ T we shall write τu and σu for its birth and death times respectively, {zu(r) : r ∈ [τu, σu]}
for its spatial trajectory and Nu for the number of offspring it has at time σu .

Inspired by [4,2], we are interested in immigrating independent (P, ψ∗)-superprocesses on Z

in a way that the immigration rate is related to the subordinator whose Laplace exponent is given
by

φ(λ) = ψ∗�(λ) − ψ∗�(0) = ψ �(λ + λ∗) − ψ �(λ∗), (3.11)

together with some additional immigration at the splitting times of Z . Note in particular that the
right hand side of (3.11) can be written more explicitly in the form

φ(λ) = 2βλ +
�

(0,∞)
(1 − e−λx )xe−λ∗

xΠ (dx).

Definition 1. For ν ∈ Ma(Rd) and µ ∈ MF (Rd) let Z be a (P, F)-branching diffusion with
initial configuration ν and �X an independent copy of X under P∗

µ. Then we define the measure-
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valued stochastic process Λ = {Λt : t ≥ 0} on Rd by

Λ = �X + I
N∗ + I

P∗ + I
η,

where the processes I
N∗ = {I

N∗
t

: t ≥ 0}, I
P∗ = {I

P∗
t

: t ≥ 0} and I
η = {I

η
t : t ≥ 0} are

independent of �X and, conditionally on Z , are independent of one another. Moreover, these three
processes are described pathwise as follows.

(i) Continuous immigration: The process I
N∗

is measure-valued on Rd such that

I
N∗
t

:=
�

u∈T

�

t∧τu<r≤t∧σu

X
(1,u,r)
t−r

,

where, given Z , independently for each u ∈ T such that τu < t , the processes X
(1,u,r)
·

are countable in number and correspond to X -valued, Poissonian immigration along the
space–time trajectory {(zu(r), r) : r ∈ (τu, t ∧ σu]} with rate 2βdr × dN∗

zu(r).
(ii) Discontinuous immigration: The process I

P∗
is measure-valued on Rd such that

I
P∗
t

:=
�

u∈T

�

t∧τu<r≤t∧σu

X
(2,u,r)
t−r

,

where, given Z , independently for each u ∈ T such that τu < t , the processes
X

(2,u,r)
· are countable in number and correspond to X -valued, Poissonian immigration

along the space–time trajectory {(zu(r), r) : r ∈ (τu, t ∧ σu]} with rate dr ×�
y∈(0,∞) ye−λ∗

yΠ (dy) × dP∗
yδzu (r)

.
(iii) Branch point biased immigration: The process I

η is also measure-valued on Rd such that

I
η
t :=

�

u∈T
1{σu≤t} X

(3,u)
t−σu

,

where, given Z , independently for each u ∈ T such that σu ≤ t , the process X
(3,u)
· is an

independent copy of X issued at time σu with law PYuδzu (σu ) where Yu is an independent
random variable with distribution ηNu

(dy).
Moreover, we denote the law of Λ by P(µ,ν).

Remark 4. In the very special case that ψ(λ) = −aλ + bλ2, where a, b > 0, note that the
discontinuous and branch point biased immigration are absent. Moreover, ψ∗(λ) = aλ + bλ2,
the backbone has binary splitting and therefore agrees with the backbone in [13].

Note that the total mass Zt (Rd) of the backbone is the continuous-time Galton Watson process
of prolific individuals found in [2]. Note also that the process ((Λ, Z), P(µ,ν)) is Markovian.
This is immediate from three important facts. Firstly the backbone, Z , is a Markov branching
diffusion. Secondly, conditional on Z immigrating mass occurs independently according to a
Poisson point process or as additional independent packages at the splitting times of Z . Finally,
the mass which has immigrated by a fixed time evolves in Markovian way thanks to the branching
property. Indeed, using these facts it is not difficult to justify that, for all s, t ≥ 0

E(µ,ν)(e−� f,Λt+s �|{(Λu, Zu) : u ≤ t}) = hs(Λt , Zt ),

where for m ∈ M(Rd), n ∈ Ma(Rd) and s ≥ 0, hs(m, n) = Em×n(e−� f,Λs �).
We conclude with the main result of this section which, amongst other things, shows that Λ is

a conservative process. The proof is given in Section 4.
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Theorem 1. For every µ ∈ MF (Rd), ν ∈ Ma(Rd) and f, h ∈ bp(Rd) we have

E(µ,ν)(e−� f,Λt �−�h,Zt �) = e−�u∗
f
(·,t),µ�−�v f,h(·,t),ν�

, (3.12)

where exp{−v f,h(x, t)} is the unique [0, 1]-valued solution to the integral equation

e−v f,h(x,t) = Pt [e−h](x) + 1
λ∗

�
t

0
ds · Ps[ψ∗(−λ∗e−v f,h(·,t−s)

+ u
∗
f
(·, t − s)) − ψ∗(u∗

f
(·, t − s))](x) (3.13)

for x ∈ Rd
and t ≥ 0. In particular, for each t ≥ 0,Λt has almost surely finite mass.

3.2. Prolific backbone decomposition of a supercritical (P, ψ)-superprocess.

A consequence of Theorem 1 is the following theorem which constitutes our main result.
It deals with the case that we randomise the law P(µ,ν) for µ ∈ MF (Rd) by replacing the
deterministic choice of ν with a Poisson random measure having intensity measure λ∗µ. We
denote the resulting law by Pµ.

Theorem 2. For any µ ∈ MF (Rd), the process (Λ, Pµ) is Markovian and has the same law as

(X, Pµ).

Proof. The proof is guided by the calculations found in the proof of Theorem 3.2 of [13]. We
start by addressing the claim that (Λ, Pµ) is a Markov process. Given the Markov property of
the pair (Λ, Z), it suffices to show that given Λt , the atomic measure Zt is equal in law to a
Poisson random measure with intensity λ∗Λt . Thanks to Campbell’s formula for Poisson random
measures (see e.g. Section 3.2 of [18]), this is equivalent to showing that for all h ∈ bp(Rd),

Eµ(e−�h,Zt �|Λt ) = exp{−�λ∗(1 − e−h),Λt �},
which in turn is equivalent to showing that for all f, h ∈ bp(Rd),

Eµ(e−� f,Λt �−�h,Zt �) = Eµ(e−�λ∗(1−e−h)+ f,Λt �). (3.14)

Note from (3.12) however that when we randomise ν so that it has the law of a Poisson random
measure with intensity λ∗µ, we find the identity

Eµ(e−� f,Λt �−�h,Zt �) = e−�u∗
f
(·,t)+λ∗(1−e−v f,h (·,t)

),µ�
.

Moreover, if we replace f by λ∗(1 − e−h) + f and h by 0 in (3.12) and again randomise ν so
that it has the law of a Poisson random measure with intensity λ∗µ then we get

Eµ(e−�λ∗(1−e−h)+ f,Λt �) = e
−�u∗

λ∗(1−e−h )+ f
(·,t)+λ∗(1−exp{−v

λ∗(1−e−h )+ f,0(·,t)}),µ�
.

These last two observations indicate that (3.14) is equivalent to showing that for all f, h ∈
bp(Rd), x ∈ Rd and t ≥ 0,

u
∗
f
(x, t) + λ∗(1 − e−v f,h(x,t)) = u

∗
λ∗(1−e−h)+ f

(x, t) + λ∗(1 − e−v
λ∗(1−e−h )+ f,0(x,t)

). (3.15)

Note that both left and right hand side of the equality above are necessarily non-negative given
they are the Laplace exponents of the left and right hand sides of (3.14). Making use of (2.6) and
(3.13), it is computationally very straightforward to show that both left and right hand side of
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(3.15) solve (2.1) with initial condition f + λ∗(1 − e−h). Since (2.1) has a unique solution with
this initial condition, namely u

f +λ∗(1−e−h)(x, t), we conclude that (3.15) holds true. The proof
of the claimed Markov property is thus complete.

Having now established the Markov property, we need to show that (Λ, Pµ) has the same
semi-group as (X, Pµ). However, from the previous part of the proof we have already established
that when f, h ∈ bp(Rd),

Eµ(e−� f,Λt �−�h,Zt �) = e−�u
λ∗(1−e−h )+ f

,µ� = Eµ(e−� f +λ∗(1−e−h),Xt �).

In particular, choosing h = 0 we find

Eµ(e−� f,Λt �) = Eµ(e−� f,Xt �),

which is equivalent to the equality of the semi-groups of (Λ, Pµ) and (X, Pµ). �

Remark 5. In the proof above, we have established the so-called Poissonisation property of
superprocesses and continuous state branching processes. Namely that, when treating λ∗

Xt as
an intensity measure of a Poisson random field, one generates a set of points whose positions
are equal in law to the support of Zt . Fleischmann and Swart [15] appeal directly to this idea to
analyse the law of Z in terms of X .

Remark 6. Once the reader is familiar with the main ideas of Theorem 2 it should be quite
clear how to describe in a pathwise sense the backbone-type decomposition in [10]. In their
paper, they work with a spatially dependent branching mechanism ψ(·, λ) = a(·)λ + b(·)λ2.
Given the semi-group computations in [10] one may easily construct the associated pathwise
decomposition. There is no discontinuous immigration and no branch point biased immigration.
However continuous immigration does occur along the backbone at rate 2b(·)dt ×dN∗

· where N∗

is again the measure constructed in [9] which is related to law of the superprocess conditioned
on extinction. The latter, as well as the law of the backbone, are already described in analytical
detail in [10].

3.3. Prolific backbone decomposition of a supercritical continuous state branching process

The analysis leading to the proof of Theorem 1 also reveals that the assumption that −ψ �

(0+) < ∞ can be dropped when considering the backbone decomposition for continuous state
branching processes. Formally we state this as a theorem.

Theorem 3. When P corresponds to a particle remaining stationary at a point, say 0, the

conclusion of Theorem 2 still holds for all µ = xδ0 with x > 0, even when −ψ �(0+) = ∞.

4. Proof of Theorems 1 and 3

To prove Theorem 1 it suffices to show, thanks to Lemma 2, that for all f, h ∈ bp(Rd), ν ∈
Ma(Rd) and t ≥ 0,

E(µ,ν)(e−� f,It �−�h,Zt �) = e−�v f,h(·,t),ν�, (4.16)

where I := I
N∗ + I

P∗ + I
η and v f,h solves (3.13). We do this with the help of some preliminary

results.
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Lemma 3. For all f ∈ bp(Rd), ν ∈ Ma(Rd), µ ∈ MF (Rd) and t ≥ 0, we have

E(µ,ν)(e−� f,I
N∗
t

+I
P∗
t

�|{Zs : s ≤ t}) = exp
�
−

�
t

0
�φ ◦ u

∗
f
(·, t − s), Zs�ds

�
.

Proof. Using the notation from Definition 1, write

� f, I
N∗
t

+ I
P∗
t

� =
�

u∈T

�

t∧τu<r≤t∧σu

� f, X
(1,u,r)
t−r

� +
�

u∈T

�

t∧τu<r≤t∧σu

� f, X
(2,u,r)
t−r

�.

Hence conditioning on Z , appealing to independence of the immigrating processes together with
Campbell’s formula and (2.7) we have

E(µ,ν)(e−� f,I
N∗
t

+I
P∗
t

�|{Zs : s ≤ t})

= exp

�

−
�

u∈T
2β

�
t∧σu

t∧τu

dr · N∗
zu(r)(1 − e−� f,Xt−r �)

−
�

u∈T

�
t∧σu

t∧τu

�

(0,∞)
dr × ye−λ∗

yΠ (dy) · E∗
yδzu (r)

(1 − e−� f,Xt−r �)

�

= exp

�

−
�

u∈T
2β

�
t∧σu

t∧τu

dr · u
∗
f
(zu(r), t − r)

−
�

u∈T

�
t∧σu

t∧τu

�

(0,∞)
dr × ye−λ∗

yΠ (dy) · (1 − exp{−u
∗
f
(zu(r), t − r)y})

�

= exp
�
−

�
t

0
dr · �φ ◦ u

∗
f
(·, t − r), Zr �

�
,

as required. �

Lemma 4. Suppose that f, h ∈ bp(Rd) and gs(x) is jointly measurable in (s, x) and bounded

on finite time horizons of s. Then for x ∈ Rd
and t ≥ 0,

E(µ,ν)

�
exp

�
−

�
t

0
�gt−s, Zs�ds − � f, I

η
t � − �h, Zt �

��
= e−�ω(·,t),ν�,

where exp{−ω(x, t)} is the unique [0, 1]-valued solution to the integral equation

e−ω(x,t) = Pt [e−h](x) + 1
λ∗

�
t

0
ds · Ps[Ht−s(·, −λ∗e−ω(·,t−s))

− λ∗
gt−s(·)e−ω(·,t−s)](x) (4.17)

and, for λ ≥ −λ∗
,

Ht−s(·, λ) := λψ �(λ∗) + βλ2 +
�

(0,∞)
(e−λx − 1 + λx)e−(λ∗+u

∗
f
(·,t−s))xΠ (dx).

Proof. Following similar arguments to those in the proof of Theorem 2.2 of [13], it suffices
to consider the case that, in addition to the assumptions in the statement of the lemma, g is
time-invariant. Moreover, using the branching property of Z it suffices to consider the case that



Author's personal copy

1326 J. Berestycki et al. / Stochastic Processes and their Applications 121 (2011) 1315–1331

ν = δx for x ∈ Rd . In that case, suppose that ξ := {ξt : t ≥ 0} is the stochastic process whose
semi-group is given by P . We shall use the expectation operators {Ex : x ∈ Rd} defined by
Ex ( f (ξt )) = Pt [ f ](x). Define a new semi-group (of the diffusion ξ killed at rate g)

Pg

t [ f ](x) = Ex

�
e−

�
t

0 g(ξs )ds
f (ξt )

�
,

for f, g ∈ bp(Rd). Standard Feynman–Kac manipulations (see Lemma 2.3 of [13]) give us that

Pg

t [ f ](x) = Pt [ f ](x) −
�

t

0
ds · Ps[g(·)Pg

t−s
[ f ](·)](x). (4.18)

Conditioning on the time of the first branching and recalling that branching occurs at rate q =
ψ �(λ∗) we get that

e−ω(x,t) = e−qtPg

t [e−h](x)

+ q

�
t

0
ds · e−qsPg

s

�
�

n≥2
pne−nω(·,t−s)

�

(0,∞)
ηn(dy)e−yu

∗
f
(·,t−s)

�

(x).

Next note from (2.10) that
�

n≥2
pne−nω(·,t−s)

�

(0,∞)
ηn(dx)e−xu

∗
f
(·,t−s)

= 1
qλ∗

�
�

n≥2
β(λ∗e−ω(·,t−s))21{n=2}

+ 1
n!

�

(0,∞)
(xλ∗e−ω(·,t−s))ne−(λ∗+u

∗
f
(·,t−s))xΠ (dx)

�

= 1
qλ∗

�

β(λ∗e−ω(·,t−s))2

+
�

(0,∞)
(exλ∗e−ω(·,t−s) − 1 − xλ∗e−ω(·,t−s))e−(λ∗+u

∗
f
(·,t−s))xΠ (dx)

�

= 1
qλ∗ [Ht−s(·, −λ∗e−ω(·,t−s)) + qλ∗e−ω(·,t−s)].

We now have that

e−ω(x,t) = e−qtPg

t [e−h](x)

+ 1
λ∗

�
t

0
ds · e−qsPg

s

�
Ht−s(·, −λ∗e−ω(·,t−s)) + qλ∗e−ω(·,t−s)

�
(x)

= Pg

t [e−h](x) + 1
λ∗

�
t

0
ds · Pg

s

�
Ht−s(·, −λ∗e−ω(·,t−s))

�
(x), (4.19)

where the second equality follows by a standard technique found, for example, in Lemma 4.1.1
of [7]; see also the computations in [13].

Next, we use (4.18) and note that

e−ω(x,t) = Pt [e−h](x) −
�

t

0
ds · Ps[g(·)Pg

t−s
[e−h](·)](x)
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+ 1
λ∗

�
t

0
ds ·

�

Ps[Ht−s(·, −λ∗e−ω(·,t−s))](x)

−
�

s

0
dr · Pr [g(·)Pg

s−r
[Ht−s(·, −λ∗e−ω(·,t−s))]](x)

�

= Pt [e−h](x) + 1
λ∗

�
t

0
ds · Ps[Ht−s(·, −λ∗e−ω(·,t−s)) − λ∗

g(·)e−ω(·,t−s)](x),

where in the final equality we have used (4.19) to deduce that
�

t

0
ds · Ps[g(·)Pg

t−s
[e−h](·)](x)

+ 1
λ∗

�
t

0
ds ·

�
s

0
dr · Pr [g(·)Pg

s−r
[Ht−s(·, −λ∗e−ω(·,t−s))]](x)

=
�

t

0
ds · Ps[g(·)Pg

t−s
[e−h](·)](x)

+ 1
λ∗

�
t

0
dr · Pr

�
g(·)

�
t

r

ds · Pg

s−r
[Ht−s(·, −λ∗e−ω(·,t−s))](·)

�
(x)

=
�

t

0
ds · Ps[g(·)Pg

t−s
[e−h](·)](x)

+ 1
λ∗

�
t

0
dr · Pr

�
g(·)

�
t−r

0
dθ · Pg

θ [Ht−θ−r (·, −λ∗e−ω(·,t−θ−r))](·)
�

(x)

=
�

t

0
dr · Pr

�

g(·)
�

Pg

t−r
[e−h](·)

+ 1
λ∗

�
t−r

0
dθ · Pg

θ [Ht−r−θ (·, −λ∗e−ω(·,t−r−θ))](·)
��

(x)

=
�

t

0
ds · Ps

�
g(·)e−ω(·,t−s)

�
(x).

The proof is complete as soon as we can establish uniqueness to (4.17). By multiplying the
latter equation through by λ∗ we note that, by an application of Lemma 2.1 of [13] (which
offers sufficient conditions for solutions to a general family of integral equations), it has a unique
solution providing the assumptions of that lemma are satisfied. For this purpose it suffices to
check that for each y ∈ Rd and λ ∈ [0, λ∗], J (s, y, λ) := [Hs(y, −λ) − g(y)λ] is continuous in
s and that for each fixed T > 0, there exists a K > 0 such that

sup
s≤T

sup
y∈Rd

|J (s, y, u(y)) − J (s, y, v(y))| ≤ K sup
y∈Rd

|u(y) − v(y)|,

where u and v are any two measurable mappings from Rd to [0, λ∗]. In light of the assumption
of boundedness on g(y), thanks to the triangle inequality, it suffices to check that for each fixed
T > 0, there exists a K > 0 such that

sup
s≤T

sup
y∈Rd

|Hs(y, −u(y)) − Hs(y, −v(y))| ≤ K sup
y∈Rd

|u(y) − v(y)|,

where u and v are any two measurable mappings from Rd to [0, λ∗].
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To this end let us define for λ ≥ −λ∗ and u ≥ 0,

χu(λ) := λψ �(λ∗) + βλ2 +
�

(0,∞)
(e−λx − 1 + λx)e−(λ∗+u)xΠ (dx)

so that by definition Hs(y, λ) = χu
∗
f
(y,s)(λ), for λ ≥ −λ∗. We need the following facts about

χu(λ):

Lemma 5. For λ ≥ −λ∗
we have that

χu(λ) = ψ∗(λ + u) − ψ∗(u) − λ[ψ∗�(u) − ψ∗�(0)].
Moreover, when we allow ψ �(0+) ∈ [−∞, ∞), for each u, u > 0 we have

sup
u≤u≤u

sup
λ∈[0,λ∗]

|χ �
u
(−λ)| < ∞. (4.20)

If however, −ψ �(0+) < ∞ then we may take u = 0 in (4.20).

The proof of this result is somewhat technical and disjoint from the core of the argument that
we are currently pursuing, so its proof is postponed until the end of the paper.

With the help of the above lemma, we see that for each fixed T > 0,

sup
s≤T

sup
y∈Rd

|Hs(y, −u(y)) − Hs(y, −v(y))|

= sup
s≤T

sup
y∈Rd

|χu
∗
f
(y,s)(−u(y)) − χu

∗
f
(y,s)(−v(y))|

≤ sup
0≤u∗≤uT

sup
y∈Rd

|χu∗(−u(y)) − χu∗(−v(y))|

≤ K sup
y∈Rd

|u(y) − v(y)|, (4.21)

where u and v are any two measurable mappings from Rd to [0, λ∗],

K = sup
0≤u∗≤uT

sup
λ∈[0,λ∗]

|χ �
u∗(−λ)| < ∞, (4.22)

(observe that (4.22) is true if and only if ψ �(0+) > −∞) and

uT = sup
s≤T

sup
y∈Rd

u
∗
f
(y, s) < ∞.

Note that the finiteness of uT can be deduced as follows. Suppose, without loss of generality, that
f is bounded by θ ≥ 0. Then for all y ∈ Rd and s ≥ 0,

e−u
∗
f
(y,s) = E∗

δy
(e−� f,Xs �) ≥ E∗

δy
(e−θ�Xs�) = e−U

∗
θ (s),

where U
∗
θ (s) is the unique solution to the equation

U
∗
θ (s) +

�
s

0
ψ∗(U∗

θ (u))du = θ . (4.23)

Hence we have uT ≤ sup
s≤T

U
∗
θ (s) < ∞. �
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Proof of Theorem 1. Recall from earlier remarks that it suffices to prove (4.16). Putting Lem-
mas 3 and 4 together it thus suffices to show that when gt−s(·) = φ(u∗

f
(·, t − s)), with

φ(λ) = ψ∗�(λ) − ψ∗�(0), we have that exp{−ω(x, t)} is the unique solution to (3.13). For this to
be the case, it is enough that

Ht−s(·, −λ∗e−ω(·,t−s)) − λ∗φ(u∗
f
(·, t − s))e−ω(·,t−s)

= ψ∗(−λ∗e−ω(·,t−s) + u
∗
f
(·, t − s)) − ψ∗(u∗

f
(·, t − s)). (4.24)

Note that in order to appeal to Lemma 4, we require that gs(y) is bounded on each finite time
horizon of s. This follows by virtue of the fact that φ is a Bernstein function (and therefore
concave) and that, as indicated in the proof of Lemma 4, for each fixed T > 0, 0 ≤ sup

s≤T

sup
y∈Rd u

∗
f
(y, s) < ∞. To prove (4.24), note that

Ht−s(·, −λ∗e−ω(·,t−s)) − λ∗φ(u∗
f
(·, t − s))e−ω(·,t−s)

= χu
∗
f
(·,t−s)(−λ∗e−ω(·,t−s)) − λ∗e−ω(·,t−s)[ψ∗�(u∗

f
(·, t − s)) − ψ∗�(0)],

and the desired equality follows by Lemma 5. �
Note that up until this point in our reasoning, there are only two points where we have used the

assumption that −ψ �(0+) < ∞. The first place occurs at (2.1) where classical literature imposes
the aforesaid assumption as a sufficient condition to guarantee that a unique non-negative solution
exists. The second place occurs is in justifying the finiteness in (4.22). See in particular Lemma 5.

Morally speaking the imposition of −ψ �(0+) < ∞ in these two cases boils down to the same
issue of using Gronwall’s Lemma to establish the existence of a unique non-negative solution to
an integral equation. Moreover, it seems difficult to see how one might remove this condition in
general. To see why consider, for example (4.22). Let f be a compactly supported function and
consider all y outside of the support of f . It is then clear by definition that for this f and all such
y,

u
∗
f
(y, 0) = 0,

and hence χu
∗
f
(y,0)(λ) = χ0(λ) = ψ∗(λ). If in addition ψ �(0+) = −∞, the failure of the

function χ0 to be Lipschitz on [−λ∗, 0] prevents us from deducing (4.22).
We conclude by reviewing the above arguments when spatial motion is disregarded (forma-

lly P corresponds to a particle remaining stationary at a point) thereby giving the proof of
Theorem 3.

Proof of Theorem 3. Suppose now that −ψ �(0+) = ∞ and P corresponds to a particle remain-
ing stationary at a point. It suffices to show that the two points (noted in the discussion above)
where the condition −ψ �(0+) < ∞ was used no longer need this assumption.

With regard to the use of (2.1), recall that, in the current setting where Xt = �Xt� for all
t ≥ 0, (2.1) collapses to the integral equation (4.23). Moreover, as alluded to in the discussion
at the beginning of Section 2.1, (4.23) always has a unique non-negative solution even when
−ψ �(0+) = ∞; see also Remark 3.

With regard to justifying the finiteness in (4.22), note that in the current setting, the quantity
u

∗
f
(y, s) can be replaced by U

∗
θ (s) for θ ≥ 0. Since u

T
:= infs≤T U

∗
θ (s) > 0 then the estimate

in (4.21) can be replaced by

sup
u

T
≤u∗≤uT

sup
y∈Rd

|χu∗(−u(y)) − χu∗(−v(y))|.
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Now proceeding with the proof of Lemma 4, taking note of the conclusion of Lemma 5, we see
that the condition −ψ(0+) < ∞ is no longer necessary. �

4.1. Proof of Lemma 5

It is a straightforward algebraic exercise to deduce that

ψ∗(λ + u) − ψ∗(u) = λ

�
2βu + α∗ +

�

(0,1)
(1 − e−ux )xe−λ∗

xΠ (dx)

�
+ βλ2

+
�

(0,∞)
(e−λx − 1 + λx1{x<1})e−(λ∗+u)xΠ (dx).

It follows, with the help of (2.4), that

ψ∗(λ + u) − ψ∗(u) = χu(λ) − λψ �(λ∗) − λ

�

[1,∞)
xe−(λ∗+u)xΠ (dx)

+ λ

�
2βu + α∗ +

�

(0,1)
(1 − e−ux )xe−λ∗

xΠ (dx)

�

= χu(λ) + λ

�
2βu + α∗ +

�

(0,∞)
(1{x<1} − e−ux )xe−λ∗

xΠ (dx) − ψ∗�(0)

�
.

However, it is again a simple exercise to deduce from (2.4) that

ψ∗�(u) = 2βu + α∗ +
�

(0,∞)
(1{x<1} − e−ux )xe−λ∗

xΠ (dx),

and hence the first part of the lemma follows.
Next notice that χu(λ) is the Laplace exponent of a spectrally positive Lévy process and

therefore is strictly convex and infinitely smooth on (−λ∗, ∞). Moreover, remembering that
ψ∗(λ) = ψ(λ + λ∗), we have for all λ ≥ −λ∗,

χ �
u
(λ) = ψ �(λ + λ∗ + u) − ψ �(λ∗ + u) + ψ �(λ∗).

The proof of the remaining parts of the lemma are now straightforward. �
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