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MEASURE CHANGE IN MULTITYPE BRANCHING

J. D. BIGGINS,∗ University of Sheffield

A. E. KYPRIANOU,∗∗ University of Utrecht

Abstract

The Kesten–Stigum theorem for the one-type Galton–Watson process gives necessary and
sufficient conditions for mean convergence of the martingale formed by the population
size normed by its expectation. Here, the approach to this theorem pioneered by Lyons,
Pemantle and Peres (1995) is extended to certain kinds of martingales defined for Galton–
Watson processes with a general type space. Many examples satisfy stochastic domination
conditions on the offspring distributions and suitable domination conditions combine
nicely with general conditions for mean convergence to produce moment conditions,
like the X log X condition of the Kesten–Stigum theorem. A general treatment of this
phenomenon is given. The application of the approach to various branching processes
is indicated. However, the main reason for developing the theory is to obtain martingale
convergence results in a branching random walk that do not seem readily accessible
with other techniques. These results, which are natural extensions of known results
for martingales associated with binary branching Brownian motion, form the main
application.
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1. Introduction

In the one-type Galton–Watson process with mean family size m ∈ (0, ∞), the Kesten–
Stigum theorem states that the nonnegative martingale Wn, formed by the population size
normed by its expectation, converges in mean exactly when E N log+ N is finite, where N is the
family size. This result has been generalized to several more complicated branching processes
and a number of different approaches to the proof are known. The original motivation for
this study was the search for sharp results of this kind on the mean convergence of a signed
martingale that arises in the homogeneous branching random walk. That signed martingale
can be well approximated by other, nonnegative, ones and the method initiated by Lyons et al.
(1995), which exploits a change of measure argument, seemed the most promising approach
to the mean convergence of these approximating martingales. That initial study discussed the
one-type Galton–Watson process but there have been several later papers dealing with other
models. In particular, Athreya (2000) considered a general multitype homogeneous process,
which is fairly close to the framework adopted here. However, none of the existing results

Received 18 November 2002; revision received 22 October 2003.
∗ Postal address: Department of Probability and Statistics, Hicks Building, University of Sheffield, Sheffield S3 7RH,
UK. Email address: j.biggins@sheffield.ac.uk
∗∗ Postal address: University of Utrecht, Department of Mathematics, Buadapestlaan 6, 3584CD, The Netherlands.
Email address: kyprianou@math.uu.nl

544

http://www.appliedprobability.org
mailto:j.biggins@sheffield.ac.uk?subject=Adv. Appl. Prob.%20paper%2010628
mailto:kyprianou@math.uu.nl?subject=Adv. Appl. Prob.%20paper%2010628


Measure change in multitype branching 545

seemed applicable to the problem we faced. Rather than develop the theory in the context of
the motivating example, an attempt has been made to derive quite general results, which apply
to many different examples, including the one we are particularly interested in. Hence, the
most general part of this discussion has some of the character of a review and so we will show
that the results obtained apply to a variety of models. Sometimes results that are technically
new are obtained in this way, but that is not the main point.

Kesten–Stigum-like results often contain the assertion that, when the martingale converges
in mean, the process dies out on the trajectories where the martingale limit is zero. No attempt
is made here to seek general conditions for this to be so. MacPhee and Schuh (1983) and
D’Souza and Biggins (1992) gave examples of (varying environment) processes where this
assertion fails.

The usual multitype branching process is considered, except that the type space, S, is quite
general. The process starts from a single individual of a specified type who produces a family
whose members also have types in S. These children produce families in a similar way, and
so on. It is convenient for the formulation to insist that every person has a countably infinite
number of children. More usual formulations can be embedded in this one by having one of
the types in S as a ‘ghost’ type, ∂; individuals of type ∂ have children only of type ∂ and these
individuals (and all of their descendants) are interpreted as being absent.

To be a bit more formal about the sample space, let T be the labelled nodes of the family
tree in which every node has a countably infinite number of children. The basic random object
constructed is S, which is a S-valued function on the nodes of T and is drawn from the sample
space B = ST . Then S(ν) is the type of node ν ∈ T .

Reproduction depends on the parent’s type; given that type, there is an associated distribution
of the types of the children, called the family distribution. Let F = SN and for f ∈ F write
f = (f1, f2, . . . ). The children of an individual are described by an element f ∈ F: f1 is the
type of the first child, f2 the type of the second and so on. A kernel, Ps(df ), from S to F
specifies the reproduction mechanism. The family distribution for a parent of type s is Ps and
the corresponding expectation is denoted by Es .

The family tree is produced in the usual way from this specification of family distributions.
Given the family history to generation n, individuals in that generation reproduce independently
of each other with the family distribution for each parent’s type. In this way, the law for the
branching process B is constructed from the kernel Ps(df ) by using the theorem of Ionescu
Tulcea. Here, B is the law given the type of the initial ancestor, but, for notational simplicity,
the starting type is not explicitly recorded. The corresponding expectation is EB.

A finite nonnegative function H on S will be called mean-harmonic when H(s̃) > 0 for
some s̃ and, with f = (f1, f2, . . . ) ∈ F,

Es

[∑
i

H(fi)

]
= H(s) for all s ∈ S.

Thus, mean-harmonic functions are ‘conserved’ on average under reproduction and so, as
we will now see, produce martingales.

Write |ν| for the generation of the node ν ∈ T , c(ν) for the children of ν and 0 for the
initial ancestor. Let Gn be the σ -algebra generated by the first n generations. Also, though
the notation will not be needed for some time, let {νi : i = 0, 1, . . . , |ν|} be the ancestry of ν

ordered in the natural way, starting from ν0 = 0.
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The functions {Wn} are defined for S ∈ B by

Wn(S) =
∑

|σ |=n

H(S(σ )) =
∑

|ν|=n−1

∑
σ∈c(ν)

H(S(σ ));

then

EB[Wn | Gn−1] =
∑

|ν|=n−1

EB

[ ∑
σ∈c(ν)

H(S(σ ))

∣∣∣∣ Gn−1

]

=
∑

|ν|=n−1

ES(ν)

[∑
i

H(fi)

]
=

∑
|ν|=n−1

H(S(ν)) = Wn−1,

and so Wn forms a nonnegative martingale with respect to Gn. Let W = lim supn Wn; of course
W is actually limn Wn almost surely under B, but it is convenient to have it defined everywhere.
Let

SH = {s ∈ S : H(s) > 0},
which are the types for the initial ancestor that give W0 > 0. The main objective here is to
give conditions that determine when the martingale Wn converges in mean; that is, to obtain
Kesten–Stigum-like results for such martingales. Clearly, this question is only interesting when
the type of the initial ancestor lies in SH .

When Y is defined on S × F, Es Y is defined, on S, by Es Y = ∫
Y (s, f ) Ps(df ). Let Bn

be the projection of B onto the first n generations. Clearly, B1 is equivalent to S × F, with
the first component being the initial type and the second being the types of the first generation.
The definition of Es Y therefore serves also for Y defined on B1.

Conditions are needed on the distribution of W1/W0 as the initial type, and hence W0, varies.
To describe these neatly, let

X(S) = W1

W0
1(W0 > 0) + 1(W0 = 0) for S ∈ B.

The variables W1, W0 and X are all defined on the sample space B = ST but are actually
determined on B1. Hence, X can be defined in a consistent way also on S × F. Specifically,
with f = (f1, f2, . . . ) ∈ F, X is given by

X(s, f ) =
∑

i H(fi)

H(s)
1(H(s) > 0) + 1(H(s) = 0). (1.1)

With this definition, Ps(X > x) makes sense.
One further ingredient is needed before a typical result can be stated. Let ζ = {ζ0, ζ1, . . . }

be the Markov chain on SH with the (proper) transition measure given by

1

H(s)
Es

[∑
i

H(fi)1(fi ∈ A)

]
for A ⊂ SH . (1.2)

The fact that H is mean-harmonic ensures that this is a probability measure for any s ∈ SH .
Whenever ζ occurs, it is assumed that the type of the initial ancestor of the branching process
is in SH , so that W0 > 0 and ζ0 is given by this type.

The interplay between the development of the Markov chain ζ and the distribution of X

under Pζn often determines when Wn converges in mean. The next theorem, which is a special
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case of Corollary 2.1 given later, gives the flavour. In it, and the remainder of the paper,
unadorned P and E will be used for probability and expectation on an (undefined) auxiliary
probability space. The essence of the result is that estimates of the behaviour at infinity of
a certain random function lead to moment conditions on suitable bounding variables for the
family-size distributions, which imply that either EB W = W0 or EB W = 0.

Theorem 1.1. For x > 0, let

A(x) =
∞∑
i=1

1(H(ζi)x > 1),

which is a random function of ζ . Suppose that L is a positive increasing function that is slowly
varying at infinity; L may be different in (i) and (ii).

(i) Suppose that there is a random variable X∗ with

Ps(X > x) ≤ P(X∗ > x) for all s ∈ SH

and that supx>0{A(x)/L(x)} is bounded above, almost surely. If E[X∗L(X∗)] < ∞, then
EB W = W0.

(ii) Suppose that there is a random variable X∗ with

Ps(X > x) ≥ P(X∗ > x) for all s ∈ SH

and that, for some y, infx>y{A(x)/L(x)} is bounded below by a positive constant, almost
surely. If E[X∗L(X∗)] = ∞, then EB W = 0.

For orientation, it is worth casting the simplest, much-studied, case into the present frame-
work, thereby illustrating that the type space often needs to be richer than in the traditional
formulations. Consider the (one-type) Galton–Watson process with family size N satisfying
E N = m ∈ (1, ∞). The appropriate type space is S = {∂, 0, 1, 2, . . . }, where ∂ is a ‘ghost’
type and other nodes are typed by their generation. Hence, generically, a person of type i

gives birth to N children of type i + 1, and the remaining children are of type ∂ . Now, the
function H defined by H(n) = m−n and H(∂) = 0 is mean-harmonic and Wn is then the
usual martingale, given by normalizing the population size at generation n by its expectation,
mn. Then ζi = i and so A(x) = ∑∞

i=1 1(H(ζi)x > 1) = ∑∞
i=1 1(mi < x) ≈ log x/ log m.

Furthermore, both X∗ and X∗ can be N/m. Thus, the two parts of the theorem combine to
show that the martingale converges in mean exactly when E N log+ N < ∞ and the limit is
zero when this fails, which is a familiar Kesten–Stigum theorem.

The generality of the type space brings many particular branching processes within the
scope of the theorems. Some of these are discussed briefly later to illustrate this. However, the
original motivation for this extension of earlier work was to study the convergence of a signed
martingale for a certain boundary case in the homogeneous branching random walk. We call
that martingale a ‘derivative’ martingale for reasons explained in Section 5.

We now summarize how the treatment will develop. The next section describes the general
results about the mean convergence of the martingale Wn. This is followed immediately by
a section discussing several simple applications of these general results. Then, in Sections 4
and 5, the homogeneous branching random walk is introduced, the derivative martingale is
described and discussed and the results obtained about it are stated. We need to consider the
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sum of H(S(ν)) over collections of nodes other than the nth generation ones; specifically
over what Jagers (1989) calls optional lines. Section 6 introduces the ideas and gives the
results we need, which concern conditions for the limit over an increasing sequence of such
lines to be W , that is, to be the same limit as when the lines are just formed by the generations.
Sections 7–9 contain a discussion of various examples: the branching random walk in a random,
ergodic environment; the multitype branching random walk; and the general branching (or
CMJ) process. The approach to the derivative martingale is through a coupling to a branching
random walk with a barrier. That process is described and the relevant results about it obtained
in Section 10. The last four sections give the proofs of the results claimed in Sections 2, 5 and 6.
In particular, a full description of the measure change at the heart of the proof is deferred until
Section 12 since the results described in Section 2 and, hence, the applications of them do not
require knowledge of it.

2. Results on mean convergence of Wn

The various general results on mean convergence are now recorded. The proofs are in
Sections 12 and 13. It is not necessary to read these proofs to follow the various applications
of the results. All the results in this section involve conditions on the Markov chain ζ with
transition kernel given at (1.2). It is not immediately clear that these conditions translate to
useful conditions on the family distributions. In fact, they often do and the main route for this
is via Corollaries 2.1 and 2.2, given towards the end of the section.

The first theorem is the basic one with the subsequent ones being deductions from it that are
designed to be easier to apply. Here, and throughout, x ∧ y = min{x, y}.
Theorem 2.1. Let X be given by (1.1) and let ζ be the Markov chain with transition kernel (1.2).

(i) If
∞∑

n=1

Eζn [X((H(ζn)X) ∧ 1)] < ∞ (2.1)

almost surely, then EB W = W0.

(ii) If, for all y > 0,
∞∑

n=1

Eζn [X1(H(ζn)X ≥ y)] = ∞ (2.2)

almost surely, then EB W = 0.

(iii) If lim supn H(ζn) = ∞ almost surely, then EB W = 0.

Writing x(a ∧ 1) = xa1(a < 1) + x1(a ≥ 1) splits (2.1) into two sums; the second of
these is then the one in (2.2) when y = 1. This indicates that (2.1) and (2.2) are quite close;
a necessary and sufficient condition for mean convergence of the martingale will be obtained
when there are no intermediate cases. It is possible to refine the first part of Theorem 2.1
slightly at some cost in elegance. The refinement is useful if X becomes degenerate under Pζn

as n increases, which is not usual. We will use this extension, given in the next result, only for
one-type varying environment Galton–Watson processes.
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Proposition 2.1. In Theorem 2.1 the condition (2.1) can be replaced by the weaker conditions

lim inf
n

H(ζn) < ∞ and
∞∑

n=1

Eζn [
∑

i H(fi)((
∑

j 	=i H(fj )) ∧ 1)]
H(ζn)

< ∞ (2.3)

without changing the conclusion. When
∑

n H(ζn) < ∞ almost surely, (2.1) and (2.3) are
equivalent.

One other refinement, which will not be used, is also worth recording. Recall that, by
assumption, the initial type is chosen with W0 > 0.

Proposition 2.2. If either (2.1) or (2.3) holds with positive probability (rather than almost
surely), then EB W > 0. If (2.2) holds with positive probability, then EB W < W0.

The proofs of these three results are given in Section 12 and the basic measure change used
in the proof is described there. The rest of the results described in this section arise from using
stochastic domination conditions to simplify the series in Theorem 2.1. Their proofs, which
require nothing from Section 12, are in Section 13.

In the first part of the next theorem, note that A is a function of ζ , and so is random, and
that the expectation in (2.4) is only over the auxiliary random variable X∗, not over A, which
accounts for the qualification ‘almost surely’. The same is true of (2.5) in the second part. For
orientation, this theorem can be read first with the assumptions that the function g always takes
the value 1 and the stochastic bounds hold for all types, that is with F = S.

Theorem 2.2. (i) Suppose that there is a random variable X∗, a positive function g on S and
a subset F ⊆ S such that

Ps(X > x) ≤ P(g(s)X∗ > x) for all s ∈ F ⊂ S

and that ζ is eventually in F almost surely. Let the increasing function A be defined by

A(x) =
∑

i

g(ζi)1(xg(ζi)H(ζi) ≥ 1).

If ∫ ∞

1

E[X∗A(X∗w)]
w2 dw < ∞ (almost surely), (2.4)

then EB W = W0.

(ii) Suppose that there is a random variable X∗, a positive function g on S and a subset F ⊆ S
such that

Ps(X > x) ≥ P(g(s)X∗ > x) for all s ∈ F ⊂ S.

Let
A(x) =

∑
i

g(ζi)1(xg(ζi)H(ζi) ≥ 1)1(ζi ∈ F).

If, for all w > 0,
E[X∗A(X∗w)] = ∞ (almost surely), (2.5)

then EB W = 0.
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The next result shows that (2.4) and (2.5) become simple moment conditions when the
appropriate function A can be bounded suitably.

Corollary 2.1. Let L be a positive increasing function that is slowly varying at infinity and let
δ be a constant satisfying δ ∈ [0, 1); L and δ may be different in (i) and (ii).

(i) In Theorem 2.2(i) suppose, instead of (2.4), that

sup
x>0

{
A(x)

xδL(x)

}
< ∞ almost surely

and E[(X∗)1+δL(X∗)] < ∞. Then EB W = W0.

(ii) In Theorem 2.2(ii) suppose, instead of (2.5), that, for some y,

inf
x>y

{
A(x)

xδL(x)

}
> 0 almost surely

and E[(X∗)1+δL(X∗)] = ∞. Then EB W = 0.

These results suffice for most purposes; indeed g can often be taken to be the identity
function.

However, for our main example the natural upper bounds on the reproduction take a more
complex form than that in Theorem 2.2(i), and so the next two results formulate a straightforward
extension. Roughly, they say that, if the upper bound involves the sum of several random
variables, it is enough to check moment conditions for them separately.

Theorem 2.3. Throughout, j ∈ {1, 2, . . . , J }. Suppose that there are random variables X∗
j ,

positive functions gj on S and a subset F ⊆ S such that

Ps(X > x) ≤ P

(∑
j

gj (s)X
∗
j > x

)
for all s ∈ F ⊂ S

and that ζ is eventually in F almost surely. Let the increasing functions Aj be defined by

Aj(x) =
∑

i

gj (ζi)1(xgj (ζi)H(ζi) ≥ 1).

If

max
j

∫ ∞

1

E[X∗
j Aj (wX∗

j )]
w2 dw < ∞ (almost surely), (2.6)

then EB W = W0.

Corollary 2.2. Let Lj be positive increasing functions that are slowly varying at infinity and
let δj be constants satisfying δj ∈ [0, 1). In Theorem 2.3 suppose, instead of (2.6), that

max
j

sup
x>0

{
Aj(x)

xδj Lj (x)

}
< ∞ almost surely

and maxj E[(X∗
j )

1+δj Lj (X
∗
j )] is finite. Then EB W = W0.
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3. Simple examples

Example 3.1. (Varying environment.) Let S = {∂, 0, 1, 2, . . . } and let a person of type i give
birth only to children of types i + 1 and ∂ . Assume that the initial ancestor is of type 0. Let Ni

be the (generic) family size for a person of type i, that is the number of children of type i + 1,
and let E Ni = mi . Then the function

H(n) =
n−1∏
i=0

1

mi

, H(0) = 1, H(∂) = 0

is mean-harmonic and the corresponding martingale is Zn/ E Zn, where Zn is the number
of nth generation people. In this example, ζn = n and H(ζn) = H(n) = 1/ E Zn, which
are not random; hence, (2.1), (2.2) and (2.3) are all deterministic. A routine application of
Proposition 2.1 gives the following result.

Corollary 3.1. Let N ′
i = Ni − 1. If infn E Zn > 0 and

∞∑
i=1

E

[
Ni

mi

((
N ′

i

E Zi+1

)
∧ 1

)]
< ∞,

then EB W = 1.

It is worth noting that, since N ′
i < Ni and, for a suitable K > 0,

y ∧ 1 ≤ K

(
1 − 1 − e−y

y

)
,

this result contains the main result, Theorem 5, of Goettge (1975).
To illustrate the use of bounding variables, Corollary 2.1 yields the following result for

varying environment processes. The special case when X∗ and X∗ are the same and {n(1),

n(2), . . . } = N leads to a classical Kesten–Stigum result, as was already indicated.

Corollary 3.2. (i) Suppose that lim inf(E Zn)
1/n > 1 and there is a random variable X∗ such

that
P(Nn/mn > x) ≤ P(X∗ > x).

If E[X∗ log+(X∗)] is finite, then EB W = 1.

(ii) Suppose that there are positive integers {n(1), n(2), . . . } such that supj (E Zn(j))
1/j is finite

and there is a random variable X∗ with

P(Nn/mn > x) ≥ P(X∗ > x) for n ∈ {n(1), n(2), . . . }.
If E[X∗ log+(X∗)] is infinite, then EB W = 0.

Proof. This is an application of Corollary 2.1. For the first part, A(x) = ∑
n 1(H(n)x ≥ 1)

and the condition on the means translates to the restriction that, for some C > 0 and a > 0,
H(n) < Ce−an for all n; hence, A(x)/ log(x + 2) is bounded above. For the second part,
taking F = {n(1), n(2), . . . } gives A(x) = ∑

j 1(H(n(j))x ≥ 1); now the condition on the
means yields, for some C > 0 and a > 0, H(n(j)) > Ce−aj for all j , which implies that
infx>y A(x)/ log x is positive for y large enough.
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The growth conditions on E Zn imposed here produce exponential decay rates for H(n),
leading to the X log X conditions. Other growth assumptions on the means will yield alternative
results; an observation already made, in his notation, by Goettge (1975).

Example 3.2. (Homogeneous, finite type space.) Consider an irreducible, homogeneous,
multitype, supercritical Galton–Watson process with the finite type space {1, 2, . . . , p}, which,
with the minor extra assumption of positive regularity, is the framework in the original Kesten–
Stigum theorem (1966). Let S = Z+ × {∂, 1, 2, . . . , p}, where the first component of S
tracks the generation. If ρ is the Perron–Frobenius eigenvalue of the mean matrix and v the
corresponding strictly positive right eigenvector, then the function

H(n, j) = ρ−nvj , H(n, ∂) = 0

is mean-harmonic and Wn is a weighted sum of the numbers in the nth generation, with type
j having weight ρ−nvj . Corollary 2.1 translates to one part of the multitype Kesten–Stigum
theorem. To see this, note first that the second component of ζn forms an irreducible Markov
chain on {1, 2, . . . , p}. The sum of all the offspring variables can be used for X∗ and any
component of any one of them for X∗. In either case, the associated A(x) looks like log x; in
the lower bound, this is a consequence of the chosen type having a finite mean recurrence time
under the chain on {1, 2, . . . , p}.

The full multitype Kesten–Stigum theorem considers the convergence of the vector formed
by the numbers of each type, not just a particular weighted sum of the components. The best
way to get from one to the other, in this model and more complex ones, is by establishing
(by law-of-large-number arguments) the stabilization of the proportion of each type; see, for
example, SectionV.6 ofAthreya and Ney (1972). Kurtz et al. (1997) also discussed the multitype
Galton–Watson process through the change-of-measure argument.

Combining this example with the previous one leads to the multitype Galton–Watson process
in a varying environment, which was considered using other methods by Biggins et al. (1999).
The parts of that discussion which consider martingales arising from mean-harmonic functions,
which are there just called harmonic, can certainly be tackled using the ideas developed here.

It is worth looking briefly at a homogeneous Galton–Watson process on a general type space
�, with (σ1, σ2, . . . ) being the types in a family. Suppose that there are a function H̃ and
an m ∈ (0, ∞) such that Eσ

∑
i H̃ (σi) = mH̃(σ). Augmenting the type space to include

the generation, H(n, σ ) = H̃ (σ )/mn is mean-harmonic. Write ζn = (n, ζ̃n) to identify the
two components of ζ . Then ζ̃n is a Markov chain on �. Suppose that ζ̃ has a stationary
distribution given by π(dσ) = H̃ (σ )ν(dσ) for some measure ν. Let Y = m−1 ∑

i H̃ (σi). A
little calculation shows that, when ζ̃ has its stationary distribution, (2.1) holds when

∫
Eσ [Y log+ Y ]1(H̃ (σ ) > 0)ν(dσ) < ∞.

Hence, when this holds, Wn converges in mean for a set of initial types with probability 1
under π .

Example 3.3. (Reproduction depending on family history.) In the language adopted here,
Waymire and Williams (1996) allowed reproduction at a node to depend on the reproduction
of the node’s ancestors. This can be accommodated easily by augmenting the type suitably.
Recall that {νi : i = 0, 1, . . . , |ν|} is the ancestry of ν. Let

S′(ν) = {(σ, S(σ )) : σ = 0 or σ ∈ c(νi), i = 0, 1, . . . , |ν| − 1},
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so that S′(ν) contains all the information on the families of the ancestors of ν. Using S′
as the new type allows reproduction to depend on the family history. There is an obvious
consistency condition—the relevant part of a child’s type must agree with the parent’s. A very
simple illustration is a one-type ‘Galton–Watson’ process in which a person’s family size has
a fixed mean m but a distribution that varies with the number of siblings that person has. Then
Corollary 2.1(i) implies that the martingale Zn/mn will converge in mean when the various
family-size distributions are dominated by a distribution with a finite X log X moment.

4. The branching random walk

The branching random walk in various guises will provide the more substantial test cases
for the general results. The basic notation for it is introduced in this section.

Let Z = ∑
i δ(zi) be a point process on the reals, with points at {zi} and intensity measure

µ. Points may be multiple, since Z is a discrete measure with integer masses. Also, it is worth
saying explicitly that Z may have an infinite number of points. A branching random walk is a
branching process with types in R ∪ ∂ corresponding to position. The point process describing
the relative positions of the (non-ghost) children of a person at s is distributed like Z.

For a fixed real θ > 0, let m(θ) = ∫
e−θzµ(dz) and assume that this is finite; assume

also that −m′(θ), interpreted as
∫

ze−θzµ(dz), exists. Augment the types in R to include the
generation; then the function

H(n, s) = e−θs
n−1∏
i=0

1

m(θ)
= e−θs

m(θ)n
, H(∂) = 0 (4.1)

is mean-harmonic.
Here and in all other examples, the ‘ghost’ state ∂ contributes only zeros to the sums defining

Wn. Hence, sums over |ν| = n can and will be interpreted as being over the nodes that occur,
that is those that do not have type ∂ . With this convention, the martingale derived from this
mean-harmonic function is

Wn =
∑
|ν|=n

e−θS(ν)

m(θ)n
. (4.2)

This class of martingales has been studied by several authors; see, for example, Kingman
(1975), Biggins (1977), Liu (1997) and Lyons (1997). In particular, Lyons (1997) studied mean
convergence using the techniques employed here; indeed, that paper was the main inspiration
for the general results in this one.

Using (1.2), a straightforward calculation shows that ζn = (n,
∑n−1

i=0 Yi), where {Yi} are
independent and identically distributed, with the law that has derivative e−θx/m(θ) with respect
to µ, so that E[Yi] = −m′(θ)/m(θ). Hence,

− log H(ζn) =
n−1∑
i=0

(θYi + log m(θ)).

With these observations it is straightforward to apply Theorem 2.1. However, rather than
doing this, we include the result as a special case of the branching random walk in a random
environment. This is discussed in Section 7, which could be read now.
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It is easy to reduce the general case to the one where θ = 1 and m(θ) = 1. Specifically,
given θ > 0 and Z, let

Z∗ =
∑

i

δ(θzi − log m(θ))

with points z∗
i = θzi − log m(θ). Let the intensity measure of Z∗ be µ∗. Then∫
e−xµ∗(dx) = 1 and

∫
xe−xµ∗(dx) = −

(
θ
m′(θ)

m(θ)
+ log m(θ)

)
.

The transformation of the type space (n, z) → (n, θz − n log m(θ)) takes a realization of the
branching process based on Z to one based on Z∗.

There is a direct correspondence between the branching random walk and what are called
multiplicative cascades. To make this correspondence, the type space R ∪ ∂ , used in the
branching random walk, becomes [0, ∞) by taking s to e−s , with the convention that e∂ = 0.
This transforms the addition of displacements along lines of descent, which define the branching
random walk, into multiplications. In the branching random walk, let z(ν) be the displacement
of ν from its parent and let A(ν) = e−z(ν); otherwise, when the node ν has type ∂ , let
A(ν) = 0. Then the first-generation point process Z corresponds to A = (A1, A2, . . . ), which
is usually called the generator of the cascade, and m(1) = E

∫
e−zZ(dz) = E

∑
i Ai . This

correspondence is discussed at greater length in Liu (1998), for example.

5. The derivative martingale in a branching random walk

The derivative martingale considered, which will be defined shortly, is the natural analogue
of a martingale arising in binary branching Brownian motion that is associated with a minimal-
speed travelling wave of the KPP equation. Results on the convergence of that martingale,
discussed in Neveu (1988) and Harris (1999), lead naturally to questions answered here for the
branching random walk. In particular, the approach used by Harris (1999) is adapted to yield
convergence of the derivative martingale here.

Let

∂Wn =
∑
|ν|=n

(
S(ν) + n

m′(θ)

m(θ)

)
e−θS(ν)

m(θ)n
.

Differentiating (4.2) with respect to θ gives −∂Wn and indicates that ∂Wn ought to be a
martingale, a fact easily verified by direct calculation. For this reason, we call ∂Wn a derivative
martingale, even if m(ξ) is not actually finite anywhere other than at ξ = θ so that the derivative
is fictional.

The case when log m(θ) = −θm′(θ)/m(θ) is particularly interesting and is the one we
focus on. Known results for the martingale Wn and its analogue for branching Brownian
motion indicate that this is a boundary case. The convergence of derivative martingales and
related questions have been considered before; see, for example, Biggins (1991), (1992) and
Barral (2000) for nonboundary cases. More relevantly, the convergence in the boundary case
has been considered by Kyprianou (1998) and Liu (2000), drawing on results from a related
functional equation; the approach here, which is more direct, gives convergence under weaker
conditions.

Making the reduction to θ = 1 and m(θ) = 1 described in Section 4 and then focusing on
the boundary case simplifies the assumptions about µ to∫

e−xµ(dx) = 1,

∫
xe−xµ(dx) = 0 (5.1)
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and ∂Wn becomes
∂Wn =

∑
|ν|=n

S(ν)e−S(ν).

Thus, ∂Wn corresponds to the ‘harmonic’ function H(s) = se−s , which takes negative values.
Since ∂Wn is a signed martingale, its convergence is not guaranteed. However, the derivative
martingale turns out to be naturally connected to a nonnegative one arising in the branching
random walk with a barrier, which can be studied using the results in Section 2. Kyprianou
(2003) gave an extensive discussion of the use of change of measure ideas for branching
Brownian motion and of the use of a barrier to discuss derivative martingales in that context.
Here, the first result is that ∂Wn does converge when a mild extra condition holds.

Theorem 5.1. Suppose that (5.1) holds and that
∫

x21(x < 0)e−xµ(dx) < ∞.

Then the martingale ∂Wn converges to a finite nonnegative limit, �, almost surely. Furthermore,

� =
∑
j

e−zj �j , (5.2)

where �j are copies of � independent of each other and Z, and B(� = 0) is equal to either
the extinction probability or 1.

Moment conditions are needed to describe when the limit � is nontrivial. To state these, let

X̃1 =
∑
j

zj e−zj 1(zj > 0), X̃2 =
∑
j

e−zj and X̃3(s) =
∑
j

e−zj 1(zj > −s).

Note that X̃3(s) ↑ X̃2 as s ↑ ∞ and, if Z is concentrated on (−s, ∞), then X̃3(s) = X̃2.

Theorem 5.2. Suppose that (5.1) holds and that
∫

x2e−xµ(dx) < ∞.

Let φ(x) = log log log x and

L1(x) = (log x)φ(x), L2(x) = (log x)2φ(x),

L3(x) = log x

φ(x)
, L4(x) = (log x)2

φ(x)
.

Then the limit � in Theorem 5.1 has infinite mean, and so is not identically zero, when
both E[X̃1L1(X̃1)] and E[X̃2L2(X̃2)] are finite. The limit is identically zero when either
E[X̃1L3(X̃1)] is infinite or, for some s, E[X̃3(s)L4(X̃3(s))] is infinite.

There is a (small) gap between the slowly varying functions used in the two sets of moment
conditions in Theorem 5.2. In the proof, this gap arises from oscillations in the ζ . The gap in
the random variables, between using X̃2 on the one hand and X̃3(s) on the other, arises from
the upper and lower bounds on the reproduction having slightly different forms.
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The equation (5.2) is an example of a smoothing transform, in the sense of Durrett and
Liggett (1983) and Liu (1998); the Laplace transform of � satisfies an associated functional
equation. It was this functional equation that was important in the study of the convergence of
∂Wn by Kyprianou (1998) and Liu (2000). In contrast, the results here yield results about the
functional equation as a by-product, as explained by Biggins and Kyprianou (2001). For that
study, it turned out to be important to consider the analogue of ∂Wn in which the sum is formed
over sets of nodes other than the generations. Specifically, the set of nodes C[t] is defined by
individuals born to the right of t but with all their antecedents born to the left of t . Thus, C[t]
focuses attention on nodes near t , regardless of generation, thereby making sums over C[t]
comparatively well behaved. The set of nodes C[t] is what is called an optional line; the next
section describes and develops the necessary theory about such lines.

Define ∂WC[t] by

∂WC[t] =
∑

ν∈C[t]
S(ν)e−S(ν).

Results on optional lines and ideas used in the proof of Theorem 5.1 yield the following theorem.

Theorem 5.3. Suppose that (5.1) holds and that∫
x21(x < 0)e−xµ(dx) < ∞.

Let � be the limit of ∂Wn introduced in Theorem 5.1. Then ∂WC[t] converges to � almost
surely.

6. Optional lines

There are natural reasons to want to consider the sum of H(S(ν)) over collections of nodes
other than the nth generation ones. For relevant discussion, see, for example, Jagers (1989),
Chauvin (1991), Biggins and Kyprianou (1997) and Kyprianou (2000). In particular, Jagers
(1989) established the basic framework.

Associated with a function  from the nodes T to {0, 1} is the set of nodes {ν : (ν) = 1}.
This set, and the corresponding function , is called a line if no member of it is the ancestor of
any other, so that (with the ancestry of ν being {νi : i = 0, 1, . . . , |ν|}) (ν) = 1 implies that
(νi) = 0 for all i < |ν|. Lines in this sense cut across the family tree, in (complete) contrast to
lines of descent; however, a line does not have to include a node from every line of descent, so
it does not have to cut all branches from the root. Although, formally, a line  is a function on
the nodes it will often be convenient to identify  with the set of nodes where the function takes
the value 1. The σ -algebra G contains full information on the life histories of all individuals
that are neither in  nor a descendant of any member of . For the line , let

W =
∑
ν∈T

(ν)H(S(ν)).

Clearly, Wn is W when  is the line formed by all nth generation nodes. The partial ordering of
T by ‘is an ancestor of’ (<) induces a partial order on lines, with 1 ≤ 2 when every member
of 2 is a descendant (not necessarily strict) of some member of 1. It therefore makes sense to
speak of an increasing collection of lines.

Informally, an optional line, L, is a random line with the property that its position is
determined by the history of the process up to the position of the line. More precisely, an
optional line L is a random line with the property that, for any fixed line , {L ≤ } ∈ G.
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Then the σ -algebra associated with the optional line L, GL, is the information about the
reproduction of all individuals that are neither on the line nor a descendant of any member of
the line. Jagers (1989) showed that the branching property, which is that, given Gn, different
individuals in generation n give rise to independent copies of the original tree, extends to any
optional line. Important questions are when WL defines a martingale as L varies through some
increasing collection of optional lines and, when it does, whether its limit is the same as that
of the martingale Wn.

Unfortunately, optional lines seem to be too general for some of the results sought here,
necessitating some restriction. The optional line L will be called simple when, for all ν,
the function L(ν) is measurable with respect to G|ν|; thus, whether ν is on the line or not is
determined by looking at the process up to generation |ν|. Let Aν be the σ -algebra generated
by {S(νi) : i = 0, 1, . . . , |ν|}. Then it is reasonable to call an optional line very simple when,
for all ν, the function L(ν) is measurable with respect to Aν ; then, whether ν is on the line or
not is determined by looking at the types in its ancestry.

For a very simple optional line, the rule applied to a line of descent to determine membership
of the line can be applied to any trajectory of the Markov chain ζ introduced at (1.2). Let N(ζ)

be the, possibly infinite, stopping time obtained in this way. The next lemma provides the key
to the martingale property, which relies on expectation being preserved. Later, in Lemma 14.1,
a more general result is given which applies to simple optional lines, rather than very simple
ones, but which depends more heavily on the measure-change argument.

Lemma 6.1. When L is a very simple optional line, EB[WL] = W0 if and only if N(ζ) < ∞
almost surely.

Lemma 6.1 (or its generalization Lemma 14.1) is useful for checking the hypothesis that
expectations are preserved that appears in the next theorem. Recall that W is the almost sure
limit of the martingale (Wn, Gn). Let Ln be the (function corresponding to the) line formed by
members of L in the first n generations and the nth generation nodes with no ancestor in L.

Theorem 6.1. Let {L[t] : t ≥ 0} be simple optional lines that are increasing with t and satisfy
EB[WL[t]] = W0 for every t . Then (WL[t], GL[t]) is a positive martingale. If, for each n,
WL[t]n tends to Wn almost surely as t → ∞, then WL[t] converges to W almost surely.

The final lemma in this section gives a fairly simple necessary condition for WL[t]n to tend
to Wn, which is one of the hypotheses of Theorem 6.1.

Lemma 6.2. Let {L[t] : t ≥ 0} be (not necessarily simple) optional lines that are increasing
with t . If H(S(ν))L[t](ν) → 0 as t → ∞ for each ν with |ν| ≤ (n − 1), then WL[t]n → Wn.

The results in Theorem 6.1 are easier to establish when the original martingale {Wn}
converges in mean. However, in our main applications mean convergence does not necessarily
hold.

There is an important particular case of increasing lines that sets the scene for a discussion
of the general branching process. Let

I[t](ν) = 1(H(S(ν)) < e−t but H(S(νi)) ≥ e−t for i < |ν|),
which is the (very simple) optional line formed by picking out individuals whose value under
H is less than e−t but whose antecedents’ values are not. Obviously these lines increase with t .
The following proposition is a straightforward application of the previous three results.

Proposition 6.1. If lim infn H(ζn) = 0, then (WI[t], GI[t]) is a martingale converging to W .
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7. Branching random walk in a random environment

In the original formulation, the basic data are contained in a function from the type space
S into probability laws on SN, giving the family distributions {Ps : s ∈ S}. Denote the set
of such functions by L. In a sense, the collection of family distributions, that is the element
of L used, defines the external environment. Thus, a natural generalization is to allow some
choice from L; the varying environment process, already described, can be viewed in this way.
In a random environment the elements from L used in successive generations usually form a
stationary sequence; here a branching random walk with a stationary environment sequence
is considered. In this process, the law for the point process Z varies; when that law is η, let
the corresponding expectation be Eη and let mη(θ) = Eη[∫ e−θxZ(dx)]. Let the law used in
generation n be λ(n) ∈ L, where λ = {λ(n)} forms a stationary sequence with the marginal
law P∗; thus, λ is a realization of the random environment. Assume that mη(θ) is finite and that
m′

η(θ) exists P∗-almost surely. Finally, denote the conditional branching law given λ by B. It
should really be something like Bλ, but precision is sacrificed to simplicity.

Suppose that the environment λ is given. Then, again augmenting the type space by the
generation, the function

H(n, s) = e−θs
n−1∏
i=0

1

mλ(i)(θ)
, H(n, ∂) = 0 (7.1)

is mean-harmonic for the branching process. Suppose that the parent has reproduction law η;
then the variable X becomes X = (mη(θ))−1

∫
e−θxZ(dx), where Z has law η.

The next lemma is a straightforward application of definitions.

Lemma 7.1. Given λ, E(n,s)[f (X)] = Eλ(n)[f (X)]. Let Ē be the expectation over λ. Then, by
stationarity, Ē[E(n,s)[f (X)]] = ∫

Eη[f (X)] P∗(dη).

The following theorem extends some of the results in Biggins (1977) and Lyons (1997).
When θ = 0 it covers the Galton–Watson case and when the environment is fixed it covers the
homogeneous branching random walk. It is worth stressing that, since B is a conditional law,
the conclusions are conditional ones, holding almost surely as λ varies over realizations.

Theorem 7.1. Assume that the environment λ is ergodic and that

κ =
∫ (

−θ
m′

η(θ)

mη(θ)
+ log mη(θ)

)
P∗(dη)

exists.

(i) If κ < 0, then EB W = 0.

(ii) If κ > 0 and
∫

Eη[X log X] P∗(dη) < ∞, then EB W = 1.

(iii) If λ is a collection of independent and identically distributed variables, then EB W = 0
when (a) κ = 0 or when (b) 0 < κ < ∞ and

∫
Eη[X log X] P∗(dη) = ∞.

Proof. Let the real random variable Yη have the law with density e−θx/mη(θ) with respect
to µη. In the same way as in Section 4,

− log H(ζn) =
n−1∑
i=0

(θYλ(i) + log mλ(i)(θ)),
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where, given the λ(i), the Yλ(i) are independent variables. Then {(λ(n), Yλ(n))} is stationary
and, by careful use of the pointwise ergodic theorem,

− log H(ζn)

n
→

∫ (
−θ

m′
η(θ)

mη(θ)
+ log mη(θ)

)
P∗(dη) = κ.

When κ is less than 0, Theorem 2.1(iii) applies to show that W is zero, proving (i).
When κ is greater than zero, H(ζn) is eventually contained in an interval of the form (0, dn),

with d < 1. Then (2.1) in Theorem 2.1 is finite when

∞∑
n=1

Eζn [X((dnX) ∧ 1)] < ∞

and, by Lemma 7.1,

Ē

[ ∞∑
n=1

Eζn [X((dnX) ∧ 1)]
]

=
∫

Eη

[ ∞∑
n=1

X((dnX) ∧ 1)

]
P∗(dη),

which is finite when
∫

Eη[X log X] P∗(dη) < ∞. This proves (ii).
When κ = 0 and the {λ(i)} are independent, log H(ζn) is a zero-mean random walk and so

has its lim sup at infinity; thus, Theorem 2.1(iii) again shows that W is zero.
When 0 < κ < ∞, H(ζn) is ultimately contained in an interval of the form (dn, ∞), with

d < 1. Then, using Lemma 7.1, the series in (2.2) in Theorem 2.1 is infinite when

∞∑
n=1

Eλ(n)[X1(dnX ≥ y)] = ∞

and the summands here are bounded above by 1 and are independent. The conditional Borel–
Cantelli lemma now shows that this holds exactly when

∫
Eη[X log X] P∗(dη) = ∞.

In fact, when κ = 0 the conditions can be relaxed. It is enough that (λ(i), Yλ(i)) is a Harris
chain, for then − log H(ζn) is a zero-mean random walk when sampled at visits to the ‘base’
state.

The example can be taken further, allowing reproduction to depend on the node, not just its
generation. Each node ν has a law λ(ν) attached to it, with λ forming an ergodic sequence
down every line of descent. Now, augmenting the type by the node, the function

H(ν, s) = e−θs

|ν|−1∏
i=0

1

mλ(νi)(θ)
, H(ν, ∂) = 0

is mean-harmonic, given λ, and the arguments leading to Theorem 7.1 continue to apply, but
the martingale Wn is probably too complicated to be interesting.

This example is fairly simple because the mean-harmonic function given at (7.1) factorises,
with one factor depending on the original type space and the other depending only on the
environment. Most multitype random-environment branching processes do not have this
property.
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8. Multitype branching random walk

In this process people have labels drawn from � and their reproduction is defined by a point
process on � × R with a distribution depending on the label of the parent. These labels are
usually called types, but, for clarity, we want to reserve the term ‘types’ for members of S. The
first component of the point process determines the distribution of that child’s reproduction
point process and the second component gives the child’s birth position relative to the parent’s.
In the notation here, the type space is S = � × R.

Let Z be a reproduction point process with points {(σi, zi)}, and let P̃σ and Ẽσ be the
probability and expectation associated with reproduction from a parent with label σ ∈ �.
Bearing in mind the reduction described at the end of Section 4, suppose that there is a
nonnegative function H̃ on � such that

Ẽσ

[∑
i

H̃ (σi)e
−zi

]
= H̃ (σ ).

Then H(σ, z) = H̃ (σ )e−z is mean-harmonic and then, when the initial ancestor has label σ ,
X = H̃ (σ )−1 ∑

i H̃ (σi)e−zi .
Write ζn = (ζ̃n, Sn) ∈ � × R to identify the two components of ζ . Then (ζ̃n, Sn − Sn−1) is

also a Markov chain. We assume that this latter Markov chain has a stationary distribution
under which it is ergodic and that this stationary distribution can be written in the form
H(σ)p(σ, dz)ν(dσ), where ν is a suitable reference measure on �. Let π(dσ) = H(σ)ν(dσ)

be the stationary distribution for ζ̃ . Assume that β = ∫∫
zp(σ, dz)π(dσ) is well defined. Let

Y = ∑
i H̃ (σi)e−zi , so that Eσ H̃ (σ )X = Eσ Y .

Proposition 8.1. If β > 0 and

∫
Ẽσ [Y log+ Y ]1(H̃ (σ ) > 0)ν(dσ) < ∞, (8.1)

then Wn converges in mean for a set of initial labels (in �) with probability 1 under π .

Proof. Since H(ζn) = H̃ (ζ̃n)e−Sn , (2.1) becomes

∞∑
i=1

Eζ̃i
[Y ((e−Si Y ) ∧ 1)]

H̃ (ζ̃i)
< ∞.

If ζ0 is drawn from the stationary distribution, then {Sn} is an ergodic sequence and Sn/n → β

almost surely, e−Si can be bounded above by an exponentially decaying sequence, and then
(2.1) holds when (8.1) holds.

If the chain (ζ̃n, Sn − Sn−1) has a stationary distribution with the appropriate properties
except that it is not ergodic, the result will still hold provided that the expectation of S1 − S0
under the stationary measure with respect to the tail σ -algebra is bounded below by a positive
constant almost surely.

Kyprianou and Rahimzadeh Sani (2001) discussed martingale convergence for multitype
branching random walks with finite � using the measure-change argument.
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9. General branching processes

Olofsson (1998) used the change-of-measure argument in the context of the general branch-
ing process; the theory developed on optional lines provides the link between the general results
here and that framework.

Consider a homogeneous branching random walk, as described in Section 4, with
E

∫
e−αtZ(dt) = 1 for some α > 0 and β = E

∫
te−αtZ(dt) ≥ 0; then e−αs is mean-harmonic,

giving the martingale Wn = ∑
ν e−αS(ν)1(|ν| = n, S(ν) 	= ∂) with associated martingale limit

W . Then

C[t](ν) = 1(S(ν) > t but S(νi) ≤ t for i < |ν|)
is the line formed by picking out individuals born to the right of t but with all their antecedents
born to the left of t , which was introduced at the end of Section 5. It is just the line I[αt]
introduced at the end of Section 6 rewritten for this model. The general branching process
arises when Z gives birth times and so is concentrated on (0, ∞); then C[t] is called the
coming generation.

Proposition 9.1. The variables WC[t] form a martingale converging to W .

Proof. Here, ζ is a random walk with mean β ≥ 0; hence, lim infn e−ζn = 0. Therefore
Proposition 6.1 applies.

Let X = ∫
e−αtZ(dt). Theorem 7.1 gives (i) EB W = 1 if β > 0 and E[X log X] < ∞

and (ii) EB W = 0 if β = 0 or both β < ∞ and E[X log X] = ∞. When combined with
Proposition 9.1, this includes the conclusion of Theorem 2.1 of Olofsson (1998), which deals
with the case where Z is concentrated on (0, ∞) and 0 < β < ∞; that paper should be
consulted for references to earlier treatments of this result and more on the context of the
general branching process.

The multitype branching random walk can be tackled in a similar way. All the general
assumptions and notation of Section 8 apply here. In particular, π is the stationary distribution
for ζ̃ , where ζn = (ζ̃n, Sn) ∈ � × R. As previously, let C[t] be the line formed by picking out
individuals born to the right of t but with all their antecedents born to the left of t . Note that
C[t] is no longer the same as the line I[t] introduced in Section 6, since the latter is defined in
terms of H .

Proposition 9.2. If β > 0, then (WC[t]) is a martingale converging to W almost surely for a
set of initial types (in �) with probability 1 under π .

Proof. To use Lemma 6.1 we need to show that lim inf e−Sn = 0; this is so under the
stationary distribution for ζ , for then Sn is ergodic, and hence it is so for a set of initial types
(in �) with probability 1 under π . Lemma 6.2 applies to complete the verification of the
hypotheses of Theorem 6.1.

As in the one-type case, when the random walk is actually on (0, ∞) these positions can
be interpreted as birth times, β > 0 automatically, and then Propositions 8.1 and 9.2 becomes
results about the general branching process on a general type space. Much further discussion
of this process can be found in Jagers (1989). The results here have close connections with
Theorems 6.1 and 6.5 there.
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10. Branching random walk with a barrier

The homogeneous branching random walk based on the point process Z with points at {zi},
described in Section 4, is modified by the removal of lines of descent from the point where
they cross into (−∞, 0], to give a process with an absorbing barrier. This construction couples
the process with a barrier, which is the topic of this section, to the homogeneous process. This
kind of process has been considered before; see Kesten (1978) and Biggins et al. (1991). The
results were developed for use in the study of the derivative martingale, but they may be of
independent interest.

Formally, the branching random walk with a barrier has the type space, corresponding to
position, S = [0, ∞) and has the point process describing the positions of the children of a
person at s distributed like ∑

i

δ(s + zi)1(s + zi > 0);

thus, the relative positions are distributed like Z, except that children with positions in (−∞, 0]
do not appear. The ‘ghost’ state ∂ and the associated details are omitted from the discussion
and sums over |ν| = n are over the nodes not of type ∂ .

Let the intensity measure of Z be µ and assume that (5.1) holds. Now let Yn be independent
and identically distributed variables with their law having density e−x with respect to µ and let
Sn be the random walk with increments {Yn}. For x > 0, let V (x) be the expected number of
visits that Sn makes to (−x, 0] before first hitting (0, ∞), and let V (0) = 1. Some results from
random walk theory are important for the motivation and the formulation; these are recorded in
the following lemma. The first two parts are consequences of V being, essentially, the renewal
function for the weak descending ladder-height process of {Sn}. The condition for the weak
descending ladder variable to have a finite mean was supplied by Doney (1980). The final part
is Lemma 1 of Tanaka (1989). Similar results can be found in Bertoin and Doney (1994). The
relevant material is reviewed at the start of Biggins (2003), which developed the random-walk
results needed to prove Theorem 10.2 below.

Lemma 10.1. (i) As x → ∞, V (x)/x converges to a positive constant, which is finite if

∫
x21(x < 0)e−xµ(dx) < ∞.

(ii) When V (x)/x has a finite limit, a(x + 1) ≤ V (x) ≤ b(x + 1) for suitable a > 0 and
b < ∞.

(iii) We have E[V (Y1 + s)1(Y1 + s > 0)] = V (s).

Lemma 10.2. When (5.1) holds, H(s) = V (s)e−s is mean-harmonic for the branching random
walk with a barrier.

Proof. For any nonnegative g,

Es

[ ∑
|ν|=1

g(S(ν))

]
= E

[∑
i

g(s + zi)1(s + zi > 0)

]

=
∫

g(z + s)1(s + z > 0)µ(dz).
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Hence, using Lemma 10.1(iii) for the final equality,

Es

[ ∑
|ν|=1

V (S(ν))e−S(ν)

]
=

∫
V (z + s)e−z−s1(s + z > 0)µ(dz)

= e−s E[V (Y1 + s)1(Y1 + s > 0)]
= e−sV (s),

as required.

The martingale now being studied is

Wn =
∑
|ν|=n

V (S(ν))e−S(ν),

with its limit being W . The Markov chain ζ associated with this harmonic function is considered
next.

Lemma 10.3. Transitions of the Markov chain ζ from s have the law

V (z + s)

V (z)
1(z + s > 0)e−zµ(dz).

Proof. Substitute for H and the reproduction process in (1.2).

This transition mechanism, which has arisen previously, in, for example, Tanaka (1989) and
Bertoin and Doney (1994), can reasonably be called a random walk conditioned to stay positive,
for reasons explained by Bertoin (1993). Tanaka (1989) gave a sample path construction of
the process that can be used to give rather precise information on the long-term behaviour of
ζ , which will be described in Theorem 10.3, but first the following simple consequence of
his results is recorded. Technically, Tanaka’s construction gives the result when ζ0 = 0; the
extension to other starting states is covered in Biggins (2003).

Lemma 10.4. As n → ∞, ζn → ∞ almost surely.

This is enough for the application of the ideas on optional lines. In the same way as in
Section 9, C[t] is the line formed by picking out individuals born to the right of t but with all
their antecedents born to the left of t .

Theorem 10.1. The collection (WC[t], GC[t]) forms a martingale. It converges to W , which is
the limit of the martingale (Wn, Gn).

Proof. As before, the C[t] are increasing very simple optional lines, and so, in Lemma 6.1,
N is the first time at which ζ exceeds t ; Lemma 10.4 now shows that N(ζ) < ∞ almost surely.
Furthermore, V (S(ν))e−S(ν)1(S(ν) > t) → 0 as t → ∞ and so Lemma 6.2 applies. Hence,
Theorem 6.1 applies to give the result.

The next result is the main one about the martingale Wn.
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Theorem 10.2. Assume that ∫
x2e−xµ(dx) < ∞.

Let φ(x) = log log log x and

L1(x) = (log x)φ(x), L2(x) = (log x)2φ(x),

L3(x) = log x

φ(x)
, L4(x) = (log x)2

φ(x)
.

(i) If both E[X̃1L1(X̃1)] and E[X̃2L2(X̃2)] are finite, then Wn converges in mean.

(ii) If E[X̃1L3(X̃1)] is infinite or, for some s, E[X̃3(s)L4(X̃3(s))] is infinite, then Wn → 0
almost surely.

The proof is an application of Corollary 2.1(ii), Corollary 2.2 and the following series
of results. It is assumed throughout the remainder of this section that, in addition to (5.1),∫

x2e−xµ(dx) < ∞.
First, the simple Lemma 10.4 needs to be supplemented by information on how fast ζ goes

to infinity; the following result, taken from Biggins (2003), provides relevant estimates. It
concerns the growth of D(x) = ∑

n 1(ζn ≤ x).

Theorem 10.3. Let ϕ(x) = log log x for x > 3. For suitable (nonrandom) L and U ,

lim sup
x→∞

D(x)

x2ϕ(x)
≤ U < ∞ and lim inf

x→∞
D(x)

x2/ϕ(x)
≥ L > 0

almost surely.

One consequence of this, or Lemma 10.4, is that in applying the second parts of Theorem 2.2
and Corollary 2.1 it will be enough to consider the reproduction far above the barrier, that is,
F ⊆ S in those results can be taken as [s, ∞) for any large s. The next lemma is also a simple
application of Theorem 10.3, providing another relevant estimate. It would be easy to prove
more, replacing V by a more general function, but the result will only be needed for this case.

Lemma 10.5. Let

D̃(x) =
∑
n

V (ζn)
−11(ζn ≤ x) =

∫ x

0
V (z)−1D(dz)

and, as previously, let ϕ(x) = log log x for x > 3. For suitable (nonrandom) L̃ and Ũ ,

lim sup
x→∞

D̃(x)

xϕ(x)
≤ Ũ < ∞ and lim inf

x→∞
D̃(x)

x/ϕ(x)
≥ L̃ > 0.

Proof. Lemma 10.1(ii) easily yields that D̃(x) ≥ D(x)/(b(x+1)) and then the lower bound
follows immediately from the lower bound in Theorem 10.3.

Let U be the constant in the upper bound in Theorem 10.3 and let ε > 0. Let D∗(x) =
(U + ε)x2ϕ(x) when x > x0 > ee and D∗(x) = D∗(x0) otherwise, with x0, which is random,
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large enough that D(x) ≤ D∗(x) for all x ≥ 0. Then, using Lemma 10.1(ii) and the Fubini
theorem,

D̃(x) =
∫ x

0
V (z)−1D(dz)

≤
∫ x

0

1

a(z + 1)
D(dz)

= 1

a

∫ x

0

(∫ ∞

z

dy

(y + 1)2

)
D(dz) = 1

a

∫ ∞

0
D(x ∧ y)

dy

(y + 1)2

≤ 1

a

∫ ∞

0
D∗(x ∧ y)

dy

(y + 1)2 = 1

a

∫ x

0

1

z + 1
D∗(dz).

Substituting for D∗ and recalling that x0 > ee gives, for x > x0,

D̃(x) ≤ 1

a

∫ x

0

1

z + 1
D∗(dz)

= D∗(x0)

a
+ U + ε

a

∫ x

x0

1

z + 1

(
2z log log z + z

log z

)
dz

≤ D∗(x0)

a
+

(
U + ε

a

)
3x log log x,

which produces the upper bound.

The next result derives suitable bounding variables for use in Corollary 2.1. It is here that
the gap, mentioned in Section 5, between using X̃2 in the upper bound but X̃3(s) as a lower
bound arises.

Lemma 10.6. Under Ps (that is, when the parent is at s), for suitable a and b such that
0 < a < b < ∞,

X ≤ b
X̃1

V (s)
+ b

a
X̃2, X ≥ a

X̃1

V (s)

and, for any fixed s0 and s ≥ 2s0,

X ≥ a

2b
X̃3(s0).

Proof. When the parent is at s, applying Lemma 10.1(ii),

X =
∑

j V (zj + s)e−(zj +s)1(zj + s > 0)

V (s)e−s

=
∑

j V (zj + s)e−zj 1(zj > −s)

V (s)

≤
∑

j b(zj + s + 1)e−zj 1(zj > −s)

V (s)

≤ b

V (s)

∑
j

zj e−zj 1(zj > 0) + b

a

∑
j

e−zj = b
X̃1

V (s)
+ b

a
X̃2,
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as required. Similarly

X ≥
∑

j a(zj + s + 1)e−zj 1(zj > −s)

V (s)
≥ a

∑
j zj e−zj 1(zj > 0)

V (s)
= a

X̃1

V (s)

and, for s > 2s0,

X ≥
∑

j a(zj + s + 1)e−zj 1(zj > −s)

b(s + 1)

≥
∑

j a(zj + s + 1)e−zj 1(zj > −s/2)

b(s + 1)

≥ a

2b

∑
j

e−zj 1(zj > −s0) = a

2b
X̃3(s0).

Translating the first of the bounds in Lemma 10.6 into the language of Theorem 2.3 and
Corollary 2.2, X∗

1 = bX̃1, g1(s) = V (s)−1, X∗
2 = bX̃2/a and g2(s) = 1. Thus, the associated

functions are

A1(x) =
∞∑
i=1

V (ζi)
−11(H(ζi)x ≥ V (ζi)) and A2(x) =

∞∑
i=1

1(H(ζi)x ≥ 1).

Exactly the same functions are needed in applying Corollary 2.1(ii). The next lemma makes
comparisons between A1 and A2 and suitable slowly varying functions.

Lemma 10.7. With the functions A1 and A2 as defined above,

lim sup
x→∞

A1(x)

(log x) log log log x
< ∞ and lim inf

x→∞
A1(x)

(log x)/ log log log x
> 0;

lim sup
x→∞

A2(x)

(log x)2 log log log x
< ∞ and lim inf

x→∞
A2(x)

(log x)2/ log log log x
> 0.

Proof. Since

A1(x) =
∞∑
i=1

V (ζi)
−11(H(ζi)x ≥ V (ζi))

=
∞∑
i=1

V (ζi)
−11(ζi ≤ log x),

the estimates in Lemma 10.5 translate immediately into the stated estimates of A1. For the
second part, note that

A2(x) =
∞∑
i=1

1(H(ζi)x ≥ 1)

=
∞∑
i=1

1(V (ζi)e
−ζi x ≥ 1)

=
∞∑
i=1

1(ζi ≤ log x + log V (ζi)).
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Since 0 ≤ log V (x) ≤ log b(x+1) and, for any ε > 0, there is a γ > 0 such that log b(x+1) ≤
γ + εx, it follows that

∞∑
i=1

1(ζi ≤ log x) ≤ A2(x) ≤
∞∑
i=1

1((1 − ε)ζi ≤ log x + γ ),

that is

D(log x) ≤ A2(x) ≤ D((1 − ε)−1(log x + γ )).

The results in Theorem 10.3 now complete the required estimation of A2.

Proof of Theorem 10.2. The upper bounds in Lemma 10.7, the first bound in Lemma 10.6
and Corollary 2.2 combine to prove Theorem 10.2(i). The lower bounds in Lemma 10.7, the sec-
ond and third bounds in Lemma 10.6 and Corollary 2.1(ii) combine to prove Theorem 10.2(ii).
The estimates for A1 give the moment conditions on X̃1, while those for A2 give conditions on
X̃2 and X̃3(s).

11. Proofs concerning the derivative martingale

The context here is described in Sections 4 and 5. It is a homogeneous branching random
walk, satisfying (5.1) and

∫
x21(x < 0)e−xµ(dx) < ∞, in which

Wn =
∑
|ν|=n

e−S(ν) and ∂Wn =
∑
|ν|=n

S(ν)e−S(ν).

Before starting the main proof, some results concerning Wn are noted for later use.

Lemma 11.1. We have

(i) EB W = 0,

(ii) B(W = 0) = 1 and

(iii) inf{S(ν) : |ν| = n} → ∞ almost surely as n → ∞.

This result is contained in Lemma 5 and the discussion at the end of Section 3 of Biggins
(1977); the second and third assertions are immediate consequences of EB W = 0. Informally,
the last part says that every line of descent goes to infinity. A proof that EB W = 0 without the
side condition that

∫
x21(x < 0)e−xµ(dx) is finite was given by Lyons (1997); it can also be

obtained fairly directly from Theorem 2.1(iii) and is contained in part (a) of Theorem 7.1(iii).

11.1. Proof of Theorem 5.1

Let Eb be the event that no node in the branching random walk has a position to the left of
−b; then, by Lemma 11.1(iii), Eb increases to an event with probability 1 as b → ∞. Use the
homogeneous branching random walk to construct a branching random walk with a barrier at
−b; on Eb the processes with and without a barrier agree. To make the coupling precise, let
Ib(ν) be 1 if the node ν is retained in the process with a barrier at −b and 0 otherwise. Now,
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by Lemma 10.2, V (b)−1 ∑
|ν|=n V (b + S(ν))e−S(ν)Ib(ν) is a positive martingale, which must

converge to a finite limit, denoted by Bb. Hence, using Lemma 10.1(i) and Lemma 11.1,

Bb = 1

V (b)
lim

n→∞
∑
|ν|=n

V (b + S(ν))e−S(ν)Ib(ν)

≤ C

V (b)
lim

n→∞
∑
|ν|=n

(b + S(ν))e−S(ν) 1(b + S(ν) > 0)

= C

V (b)
lim

n→∞(Wnb + ∂Wn) = C

V (b)
lim

n→∞ ∂Wn;

furthermore, equality holds on Eb. Thus, ∂Wn converges to � = C−1V (b)Bb on Eb. Letting
b → ∞ completes the proof that ∂Wn has a finite, nonnegative limit.

Let Sν be the function S on the subtree rooted at ν. Splitting on the first generation shows
that

∂Wn(S) =
∑
|ν|=1

S(ν)e−S(ν)Wn−1(S
ν) +

∑
|ν|=1

e−S(ν)∂Wn−1(S
ν).

Since
∫ |x|e−xµ(dx) < ∞,

∑
|ν|=1

e−S(ν) < ∞ and
∑
|ν|=1

|S(ν)|e−S(ν) < ∞

almost surely. Now, letting n go infinity, straightforward analysis drawing on Lemma 11.1(i)
gives that

�(S) =
∑
|ν|=1

e−S(ν)�(Sν),

which is another way to write (5.2). Hence, B(� = 0) is a fixed point of the generating function
of the family size and so must have the stated property.

11.2. Proof of Theorem 5.2

It has already been shown that V (b)Bb ≤ C� with equality on Eb. When Theorem 10.2(i)
holds, EB Bb = 1 and then V (b) ≤ C EB � for any b; thus EB � = ∞. Similarly, when the
conditions of Theorem 10.2(ii) hold, Bb, and hence �, is zero on Eb for every b.

11.3. Proof of Theorem 5.3

Note first that Proposition 9.1 shows that WC[t] and Wn have the same limit; by Lemma 11.1,
this limit is zero and so inf{S(ν) : ν ∈ C[t]} → ∞ as t → ∞. Now, applying Theorem 10.1
shows that, on Eb,

� = V (b)

C
lim

n→∞
∑
|ν|=n

V (b + S(ν))

V (b)
e−S(ν)

= V (b)

C
lim

t→∞
∑

ν∈C[t]

V (b + S(ν))

V (b)
e−S(ν)

= lim
t→∞(WC[t]b + ∂WC[t]) = lim

t→∞ ∂WC[t].

Letting b → ∞ completes the proof.
It is worth noting explicitly that, unlike (WC[t], GC[t]), (∂WC[t], GC[t]) is not a martingale

(though it is a submartingale).
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12. Measure change and mean convergence

The method used to determine conditions for mean convergence of Wn has been employed
in various special cases of the framework adopted here. It is a natural extension and refinement
of that employed by Lyons et al. (1995), Lyons (1997) and Athreya (2000), and the connections
between this treatment and those are not hard to see. The key idea in all these papers is to
exploit a change of measure to establish moment conditions for the martingale to converge in
mean; the actual measure change has a much longer history, as can be seen from the references
in Lyons (1997). The discussion of Waymire and Williams (1996) also has much in common
with that here but it mostly confines branching to a b-ary tree and so is not directed towards the
classical Kesten–Stigum theorem; moreover, their framework is at first sight rather different
from ours, and so some points of contact are noted later in this section.

Recall that Bn is the projection of the sample space B onto the first n generations. A
branching process is a Markov chain with a state in Bn at time n and transition probabilities
defined by the nth generation nodes producing independent families, with the distribution of the
family of a node of type s being Ps . A realization of this chain can be identified, in the obvious
way, with an element of B, and the measure describing the evolution can then be transferred
to a measure on B; this gives B.

However, to describe the measure change neatly, it is useful to augment the basic space by
picking out a single line of descent. Formally, let ξ = (ξ0, ξ1, ξ2, . . . ) be a sequence drawn
from T with ξ0 = 0, and ξn+1 ∈ c(ξn). Thus, ξ defines a line of descent starting from the
initial ancestor. Let � be the set of possible lines of descent ξ . The new space is T = ST × �

(= B×�), its projection onto the first n generations is Tn and a branching process will now be
a Markov chain with state in Tn at time n. The line of descent ξ will be called the trunk—other
names have also been used. (Informally, the ‘trunk’ is what distinguishes the ‘bushes’ which
make up B, in which every branch is similar, from the ‘trees’ which make up T, in which
the ‘trunk’ has special status.) Let Fn be the σ -algebra generated by the first n steps of the
Markov chain, that is, the information on the development for the first n generations, including
the trunk. Let F ∗

n be the σ -algebra generated by Fn−1 and Gn, so that F ∗
n is generated by the

trunk up to generation n − 1 and the tree up to generation n; hence Fn−1 ⊂ F ∗
n ⊂ Fn.

The new measure depends on H , the particular mean-harmonic function under consideration.
Since we deal with a single such H , it will be convenient for many calculations to let h be the
composition of H and S, a function from nodes to the nonnegative reals.

In producing the measure on this enlarged space, ξ is produced by an extra randomisation.
Thus, the various types reproduce as before and then ξn+1 is picked from the children of ξn, with
probabilities proportional to the children’s values of h when this makes sense. More precisely,

P(ξn+1 = ν | F ∗
n+1) = h(ν)1(ν ∈ c(ξn))∑

σ∈c(ξn) h(σ )
when

∑
σ∈c(ξn)

h(σ ) ∈ (0, ∞), (12.1)

and P(ξn+1 = ν | F ∗
n+1) is some arbitrary, but fixed, probability distribution on c(ξn) otherwise.

This defines a branching process with a trunk; call its probability law P and its expectation EP.
There is no reason at the moment to use h to weight the possibilities in picking the trunk, but
this will emerge. By construction, integrating out ξ maps (T, P) to (B, B). Since the theorems
in Section 2 involve EB W , it is worth noting explicitly that EB W = EP W .

Another approach to the construction starts by doubling the type space, working with S ×
{1, 2}. Types in S1 = S × {1} reproduce as before, producing only types in S1. For s ∈
S2 = S × {2}, use Ps to generate a family from SN; given the family, pick child j with
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probability H(Sj )/
∑

i H(Si) when 0 <
∑

i H(Si) < ∞, and pick a child according to some
fixed, arbitrary distribution otherwise; the chosen child is given its type (as generated in SN) in
S2, every other has its type in S1. Nodes in S2 give ξ .

An auxiliary branching process with a trunk, which will turn out to result from the change
of measure, is described next. To define the development of this Markov chain, assume that the
states for the first n generations are known. Then reproduction from nth generation nodes not
on the trunk, that is, from ν ∈ {σ : |σ | = n, σ 	= ξn}, is exactly the same as in P (or B). On the
trunk, when S(ξn) = s, the types of the children of ξn are given by generating a family from
SN with the law having (Radon–Nikodym) derivative

∑
i H(Si)/H(s) with respect to Ps when

H(s) > 0 and, for completeness, 1 when H(s) = 0. Finally, given the types of the children of
ξn, ξn+1 is chosen exactly as previously, that is as in P; see (12.1). Call the resulting measure
Q. To express the derivative more neatly, and for later developments, let X(ν) be defined as X

for the tree initiated by ν. More precisely, let Sν be the function S on the subtree rooted at ν

and let

X(ν) = X(Sν) = 1(h(ν) > 0)

∑
σ∈c(ν) h(σ )

h(ν)
+ 1(h(ν) = 0).

Then, in constructing Q, the types of the children of ξn are given by generating a family with
the law having derivative X(ξn) with respect to PS(ξn).

It is easy to confirm that under Q the types on the trunk, given by ζn = S(ξn), develop as a
Markov chain on SH with the transition kernel (1.2) when the initial ancestor has a type in SH .

The approach is based on the following theorem which is a corollary of a result given in
Durrett (1996, Theorem 4.3.3); see also Athreya (2000). The notation employed suggests how
the result will be used.

Theorem 12.1. Suppose that P and Q are two probability measures and the Gn are increasing
σ -algebras. Suppose further that, for all n, Q is absolutely continuous with respect to P on Gn,
with density Wn. Let W = lim supn Wn. Then

(i) Wn is a P-martingale and 1/Wn is a Q-martingale;

(ii) EP W = 1 if and only if Q(W < ∞) = 1;
(iii) EP W = 0 if and only if Q(W = ∞) = 1.

Any nonnegative, mean 1, martingale defines a change of probability measure (from P to
Q above) on Gn; clearly, if Q is tractable it can be used to study the mean convergence of the
original martingale through the last two parts of the lemma. Note that this measure change
only concerns P and Q on the σ -algebra generated by {Gn}, leaving some freedom over the
definition of P and hence of Q. In the branching context, the introduction of the trunk exploits
this freedom.

Returning to branching processes, recall that X(ν) = ∑
σ∈c(ν) h(σ )/h(ν) when h(ν) > 0

and is 1 when h(ν) = 0. Therefore, when H(s) > 0,

EP[X(ν) | S(ν) = s] = 1

H(s)
Es

[∑
i

H(Si)

]
= 1

because H is mean-harmonic, and, when H(s) = 0, EP[X(ν) | S(ν) = s] = 1 by definition.
By exploiting the trunk, a simpler martingale than Wn can be constructed by forming a product
(down ξ ) using these adapted positive terms with expectation 1. In fact it is useful to define
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these products for any node. To do this, recall that {νi : i = 0, 1, . . . , |ν|} is the ancestry of ν.
Now (with 0 · ∞ = 0), let

W̄ (ν) =
|ν|−1∏
i=0

X(νi).

It turns out that W̄ (ξn) is a martingale linking, in the sense of Theorem 12.1, P and Q. The
probability laws P and Q are constructed from conditional probabilities (using the theorem of
Ionescu Tulcea) defined on Tn+1 given the state in Tn. The following straightforward lemma
on derivatives, from measure theory, is the key to the relationship between these measures.

Lemma 12.1. Let P be a probability measure on U, p a conditional probability from U to V
and P ∗ the resulting joint probability measure. Let Q, q and Q∗ be defined similarly, with
Q absolutely continuous with respect to P and, for each u ∈ U, q absolutely continuous with
respect to p. Then

dQ∗

dP ∗ = dq

dp

dQ

dP
.

Lemma 12.2. The martingale W̄ (ξn) is the derivative of Q with respect to P on Fn.

Proof. The result is true for n = 0; assume that it also holds for n = r . Let pr+1 and
qr+1 be the conditional probability measures on Tr+1, given the state in Tr , that are used
in the construction of P and Q respectively; both pr+1 and qr+1 are products of the family
distributions appropriate to the types of the nodes. To generate the (r + 1)th generation under
Q, all nodes except ξr use the same law as in P while ξr uses the law which has the derivative
X(ξr) with respect to PS(ξr ). Thus, overall, the derivative dqr+1/dpr+1 is X(ξr). Let Pr and
Qr be P and Q restricted to Fr ; then, applying Lemma 12.1,

dQr+1

dPr+1
= dqr+1

dpr+1

dQr

dPr

= X(ξr)W̄ (ξr ) = W̄ (ξr+1),

as required.

Recall that Gn is the σ -algebra generated by the first n generations without the trunk. The
idea now is to integrate out ξ to get the derivative of Q with respect to P on Gn. For this to
work, using h to choose the trunk in (12.1) turns out to be critical. The next lemma gives the
essential formula for the integration; it computes P(ξn = ν | Gn) on the set {W̄ (ν) > 0}.
Lemma 12.3. For a fixed ν, let n = |ν| ≤ r . Then

W̄ (ν)P(ξn = ν | Gr ) = h(ν)

h(0)
P-almost surely.

Proof. Fix r . The result is true for n = 0. For n > 0, suppose that it is true for n − 1. Let
σ {F ∗

n , Gr} be the σ -algebra generated by the two components; recall that F ∗
n is information

on the first n − 1 generations including the trunk and on the nth generation without the trunk.
Then

P(ξn = ν | σ {F ∗
n , Gr}) = P(ξn = ν | F ∗

n ) = p(ν)1(ξn−1 = νn−1),
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where {p(ν) : ν ∈ c(νn−1)} is a proper probability distribution that is Gn-measurable. Thus,
taking expectations conditional on Gr , multiplying by W̄ (ν) = X(νn−1)W̄ (νn−1) and using the
result for n − 1,

W̄ (ν)P(ξn = ν | Gr ) = X(νn−1)W̄ (νn−1)p(ν)P(ξn−1 = νn−1 | Gr )

= p(ν)
X(νn−1)h(νn−1)

h(0)
.

When h(νn−1)X(νn−1) ∈ (0, ∞),

h(νn−1)X(νn−1) =
∑

σ∈c(νn−1)

h(σ )

and, from (12.1),

p(ν) = h(ν)∑
σ∈c(νn−1)

h(σ )
= h(ν)

h(νn−1)X(νn−1)
;

substitution now shows that the required formula holds. This leaves cases where h(νn−1) ×
X(νn−1) /∈ (0, ∞). If X(νn−1) = 0, then h(ν) = 0. If h(νn−1) = 0, then h(ν) = 0 almost
surely since

E

[ ∑
σ∈c(νn−1)

h(σ )

∣∣∣∣ Gn−1

]
= h(νn−1) = 0.

Hence, the formula holds in both these cases. Finally,

EP[h(νn−1)X(νn−1)] ≤ EP[Wn−1] = h(0) < ∞,

so that 1(h(νn−1)X(νn−1) = ∞) is P-null.

Proposition 12.1. The martingale Wn/h(0) is the derivative of Q with respect to P on Gn.
Hence, Theorem 12.1 applies.

Proof. By Lemma 12.2, the derivative sought equals EP[W̄ (ξn) | Gn]. For a fixed ν with
|ν| = n,

EP[W̄ (ξn)1(ξn = ν) | Gn] = EP[W̄ (ν)1(ξn = ν) | Gn] = h(ν)

h(0)

by Lemma 12.3; thus

EP[W̄ (ξn) | Gn] = EP

[ ∑
|ν|=n

W̄ (ν)1(ξn = ν)

∣∣∣∣ Gn

]
= Wn

h(0)
.

The next theorem underpins all the results given in Section 2, but, unlike them, it requires
knowledge of the measure change that goes beyond defining the Markov chain ζ .

Let c′(ξn) be the children of ξn excluding ξn+1 and, by analogy with X and X(ξi), let

X′ =
∑

ν∈c′(0) h(ν)

h(0)
and X′(ξi) =

∑
ν∈c′(ξi )

h(ν)

h(ξi)
,

so that h(ξi)X(ξi) = h(ξi)X
′(ξi) + h(ξi+1). Then h(ξi) tracks the value of H along the types

in the trunk, while X′ concerns the reproduction along the trunk.
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Theorem 12.2. (i) If

Q

(
lim inf

n
h(ξn) < ∞,

∞∑
i=1

h(ξi)X
′(ξi) < ∞

)
> 0 (12.2)

or

Q

( ∞∑
i=1

h(ξi)X(ξi) < ∞
)

> 0, (12.3)

which implies (12.2), then EP W > 0. Furthermore, EP W = h(0), and so {Wn} converges in
P-mean when the probability in either (12.2) or (12.3) is 1.

(ii) If

Q

(
lim sup

n
h(ξn)X(ξn) = ∞

)
> 0, (12.4)

then EP W < h(0) and so {Wn} does not converge in P-mean. Furthermore, EP W = 0 when
this probability is 1.

Proof. Recall that Sν is the function S on the subtree rooted at ν. By partitioning the sum,
using the subtrees emanating from the siblings of ξ1, ξ2, . . . , ξn−1,

Wn(S) =
∑
|ν|=n

h(ν) = h(ξn) +
n−1∑
i=1

∑
ν∈c′(ξi )

h(ν)
Wn−i (S

ν)

h(ν)
.

Let H be the σ -algebra generated by the reproduction of the members of the trunk. (Technically,
in the language of Jagers (1989), with L the optional line formed by all nontrunk children of the
nodes forming the trunk, H is the pre-L σ -algebra.) The construction of Q means that, away
from the trunk, it looks just like P, and so EQ[Wn−i (S

ν) | H ] is h(ν) when ν ∈ c′(ξi). Since
1/Wn(S) is a positive martingale under Q, Wn(S) converges to W , Q-almost surely. Then, by
Fatou’s lemma,

EQ[W | H ] = EQ[lim
n

Wn(S) | H ]

≤ lim inf
n

(
h(ξn) +

n−1∑
i=1

∑
ν∈c′(ξi )

h(ν)

)

= lim inf
n

h(ξn) +
∞∑
i=1

∑
ν∈c′(ξi )

h(ν)

= lim inf
n

h(ξn) +
∞∑
i=1

h(ξi)X
′(ξi)

≤
∞∑
i=1

h(ξi)X(ξi),

Q-almost surely. Hence (12.3) implies (12.2) and either implies that Q(W < ∞) > 0; in
addition, Q(W < ∞) = 1 when either probability is 1. Theorem 12.1 now gives the conclusion
to the first part.
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For the second part, note that

Wn(S) =
∑
|ν|=n

h(ν) ≥
∑

ν∈c(ξn−1)

h(ν) = h(ξn−1)X(ξn−1)

and so
Q(W = ∞) ≥ Q

(
lim sup

n
h(ξn)X(ξn) = ∞

)
.

A further application of Theorem 12.1 completes the proof.

Waymire and Williams (1996) considered multiplicative cascades, which are described
briefly at the end of Section 4, on the b-ary tree with the b nonzero terms in A being conditionally
independent given the family history of the parent and each having mean 1. Then m(1) = b.
Augmenting the type space with the generation, so that it becomes Z+ × [0, ∞), the function
H(n, s) = s/bn is mean-harmonic for the cascade, corresponding directly to (4.1) with θ = 1.
Now Theorem 12.2 here can be seen to be very closely related to Corollary 2.3 of Waymire and
Williams (1996), with the basic measure change being their Theorem 2.3.

Observe that h(ξn), X′(ξn−1) and X(ξn−1) are all Fn-measurable; therefore, the series∑
h(ξi)X

′(ξi) and
∑

h(ξi)X(ξi) are amenable to the following standard result, proved by
truncation and the conditional Borel–Cantelli lemma. It and the lemma after it translate the
conditions in Theorem 12.2(i) to ones involving {H(ζn), Pζn}, the development of the types of
the trunk and the associated family laws, to give the main theorem, Theorem 2.1.

Lemma 12.4. Suppose that the Yi are nonnegative variables that are adapted to the increasing
σ -algebras Fi . Then

1
(∑

i

Yi < ∞
)

= 1
(∑

i

E[Yi+1 ∧ 1 | Fi] < ∞
)

almost surely.

Lemma 12.5. Let Y be a nonnegative function on B1 and Y (ν) the corresponding function of
the reproduction from node ν. Then

EQ[Y (ξi) | Fi] = ES(ξi )[XY ] = Eζi
[XY ].

In particular, for any nonnegative g, EQ[g(X(ξi)) | Fi] = Eζi
[Xg(X)].

Proof. This is no more than the definitions. Firstly, S(ξi) = ζi . Secondly, under Q, ξi

produces children typed according to the law that has derivative X(ξi) with respect to PS(ξi ).

12.1. Proof of Theorem 2.1

Apply Lemmas 12.4 and 12.5 to the series in (12.3) for the first part; for the second part, the
conditional Borel–Cantelli Lemma and Lemma 12.5 show that (2.2) implies that the probability
in (12.4) is 1. Since H(ζn) = H(S(ξn)) = h(ξn), the final part follows from Theorem 12.2(ii)
and the inequality h(ξi)X(ξi) ≥ h(ξi+1).

12.2. Proof of Proposition 2.1

First, integrate out ξ1 to get, for any nonnegative g,

EQ[g(X′) | G1] = 1∑
|ν|=1 h(ν)

∑
|ν|=1

g

(∑
|σ |=1 h(σ) − h(ν)

h(0)

)
h(ν).
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Then, with this as Y , Lemma 12.5 gives

EQ[g(X′(ξn)) | Fn] = EQ[Y (ξn) | Fn]
= Eζn [XY ]

= Eζn [
∑

i H(fi)g(
∑

j 	=i H(fj )/H(ζn))]
H(ζn)

.

Now apply Lemma 12.4 to the series in (12.2) to give the first part. Since

h(ξi)(X(ξi) − X′(ξi)) = h(ξi+1) = H(ζi+1),

the convergence of
∑

n H(ζn) implies that the series in (12.2) and (12.3), and hence (2.1) and
(2.3), converge together.

12.3. Proof of Proposition 2.2

This is like the proof ofTheorem 2.1, but now translatingTheorem 12.2 when the probabilities
in (12.2), (12.3) and (12.4) are positive, rather than 1.

The collection {W̄ (ν) : ν ∈ T } is, essentially, a positive T -martingale; see Waymire and
Williams (1996) and references therein. Their discussion takes such martingales, also called
multiplicative cascades, as the fundamental object, whereas the discussion here takes multitype
branching processes.

13. Stochastic domination

The conditions in Theorem 2.1 can be simplified to moment conditions in many examples
where there are bounds on Ps(X > x) that are uniform in the type s. The proofs are independent
of the discussion in Section 12. The next two elementary lemmas establish the framework. The
first is well known and proved by integration by parts.

Lemma 13.1. If, for all x, P(X > x) ≤ P(Y > x), then, for any increasing nonnegative
function f , E[f (X)] ≤ E[f (Y )].
Lemma 13.2. Suppose that η is a measure on (0, ∞) and A(x) = η(0, x]. Then∫

((x/y) ∧ 1)η(dy) =
∫ ∞

1

A(wx)

w2 dw.

Proof. We have∫
((x/y) ∧ 1)η(dy) =

∫
(1(x ≥ y) + xy−11(x < y))η(dy)

= A(x) + x

∫ ∞

x

y−1η(dy)

= A(x) + x

∫ ∞

x

(∫ ∞

y

z−2 dz

)
η(dy)

= A(x) + x

∫ ∞

x

z−2(A(z) − A(x)) dz

=
∫ ∞

1
w−2A(wx) dw,

as required.
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13.1. Proof of Theorem 2.2

Since, for h > 0, x((hx) ∧ 1) = x(1(hx ≥ 1) + hx1(hx < 1)) is an increasing function of
x > 0, applying Lemma 13.1 shows that, when ζi ∈ F ,

Eζi
[X((H(ζi)X) ∧ 1)] ≤ E[g(ζi)X

∗((H(ζi)g(ζi)X
∗) ∧ 1)],

where the expectation on the right-hand side is with respect to X∗ only. By assumption, ζi ∈ F

eventually, with probability 1, and so (2.1) in Theorem 2.1 holds when

E

[∑
i

g(ζi)X
∗((H(ζi)g(ζi)X

∗) ∧ 1)

]
< ∞.

Now let η be the measure with atoms g(ζi) at (g(ζi)H(ζi))
−1 and note that

E

[∑
i

g(ζi)X
∗((H(ζi)g(ζi)X

∗) ∧ 1)

]
= E

∫
X∗((X∗/y) ∧ 1)η(dy).

Applying Lemma 13.2 completes the proof of (i).
In a similar way, considering the series in (2.2),

∞∑
i=1

Eζi
[X1(H(ζi)X ≥ y)] ≥

∞∑
i=1

Eζi
[X1(H(ζi)X ≥ y)]1(ζi ∈ F)

≥
∞∑
i=1

E[g(ζi)X∗1(H(ζi)g(ζi)X∗ ≥ y)]1(ζi ∈ F)

= E[X∗A(X∗/y)],
giving (ii).

13.2. Proof of Corollary 2.1

Suppose that A(x)/(xδL(x)) is bounded above by C. Then

∫ ∞

1

A(wx)

w2 dw ≤ C

∫ ∞

1

(wx)δL(wx)

w2 dw = CxδL(x)

∫ ∞

1

wδ

w2

L(wx)

L(x)
dw,

and, using the representation theorem for slowly varying functions, for suitably small ε and
then sufficiently large x,

∫ ∞

1

wδ

w2

L(wx)

L(x)
dw ≤

∫ ∞

1

wδ

w2 (1 + ε)wε dw = (1 + ε)(1 − δ − ε)−1.

Applying these bounds in (2.4) proves (i). For (ii), note first that, since L(xw)/L(x) → 1
as x → ∞, E[(X∗)1+δL(X∗w)] is infinite when E[(X∗)1+δL(X∗)] is. Now, suppose that
A(x)/(xδL(x)) is bounded below by C > 0 for x ≥ y; then

E[X∗A(X∗w)] ≥ Cwδ E[(X∗)1+δL(X∗w)1(X∗w ≥ y)],
which is infinite when E[(X∗)1+δL(X∗w)] is. Now apply (2.5).
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13.3. Proof of Theorem 2.3

For any positive h and xj , crude bounding gives
(∑

j

xj

)((
h

∑
j

xj

)
∧ 1

)
≤ J 2

∑
j

xj ((hxj ) ∧ 1)

and so, for any s ∈ F ,

Es[X((hX) ∧ 1)] ≤ J 2
∑
j

E[gj (s)X
∗
j ((hgj (s)X

∗
j ) ∧ 1)].

Hence, using this and Lemma 13.1, for ζi ∈ F ,

Eζi
[X((H(ζi)X) ∧ 1)] ≤ E

[(∑
j

gj (ζi)X
∗
j

)((
H(ζi)

∑
j

gj (ζi)X
∗
j

)
∧ 1

)]

≤ J 2
∑
j

E[(gj (ζi)X
∗
j )((H(ζi)(gj (ζi)X

∗
j )) ∧ 1)].

Hence (2.1) in Theorem 2.1 holds when the sum over i of each of the terms on the right-hand
side here is finite. These translate to tests on the Aj as in the proof of Theorem 2.2(i).

13.4. Proof of Corollary 2.2

This uses the same method as that used for Corollary 2.1(i).

14. Proofs relating to optional lines

The proof of the first result here, which is the promised generalization of Lemma 6.1, relies
in an important way on the measure change discussed in Section 12; the rest of the discussion
is independent of Section 12 except for the notational convention that h(ν) is H(S(ν)) and the
assumption that the initial type is in SH so that W0, which is also h(0), is positive.

Let N be the generation in which ξ hits the line L; more precisely, define N by L(ξN) = 1,
with N = ∞ when there is no such N . Often it will be easy to see when N is finite under Q.
This definition is consistent with that of N(ζ) used in Lemma 6.1.

It is worth noting that the definition of an optional line used by Kyprianou (2000) to prove
a particular case of Lemma 14.1 is intermediate between those of simple and very simple.

Lemma 14.1. When L is a simple optional line, Q(N < ∞) = EB WL/h(0), and so EB[WL]
= h(0) if and only if Q(N < ∞) = 1.

Proof. The steps in the next calculation are justified by: conditioning on Fn and using
Lemma 12.2 to move from EQ to EP; conditioning on Gn and using the fact that L is a simple
optional line; and, finally, using Lemma 12.3. Thus,

Q(N = n) = EQ

[ ∑
|ν|=n

L(ν)1(ξn = ν)

]
=

∑
|ν|=n

EP[L(ν)W̄ (ν)1(ξn = ν)]

=
∑
|ν|=n

EP[L(ν)W̄ (ν)P(ξn = ν | Gn)] =
∑
|ν|=n

EP

[
L(ν)

h(ν)

h(0)

]
.

Summing over n now gives the result since EB[WL] = EP[WL].
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Recall that Ln is the line formed by members of L in the first n generations and the nth
generation nodes with no ancestor in L.

Lemma 14.2. For any (not necessarily simple) optional line L, EB[Wn | GL] = WLn .

Proof. Recall that Wr(S
ν) is Wr defined on the subtree rooted at ν. Then

Wn =
∑
|ν|≤n

Ln(ν)Wn−|ν|(Sν)

and, when Ln(ν) = 1, EB[Wn−|ν|(Sν) | GL] = h(ν). Hence,

EB[Wn | GL] = EB

[ ∑
|ν|≤n

Ln(ν)Wn−|ν|(Sν)

∣∣∣∣ GL

]

=
∑
|ν|≤n

Ln(ν) EB[Wn−|ν|(Sν) | GL]

=
∑
|ν|≤n

Ln(ν)h(ν)

= WLn .

In general, Ln need not be optional when L is and so WLn need not be Gn-measurable.
However, for simple optional lines it is, and then, as the next two lemmas show, much more
can be said.

Lemma 14.3. Let L be a simple optional line. Then Ln is a simple optional line and (WLn , Gn)

is a positive martingale with a limit at least WL. When EB[WL] = h(0),

(i) WLn = EB[WL | Gn],
(ii) the martingale (WLn , Gn) converges in mean to WL, and

(iii) EB[Wn | GL] = EB[WL | Gn].
Proof. It is immediate from the definitions that Ln is a simple optional line. Hence, WLn is

Gn-measurable. Let AL,n be the line formed by members of the nth generation that are neither
in L nor have an ancestor in L, so that

AL,n(ν) = 1(|ν| = n)

n∏
i=0

(1 − L(νi)).

Then AL,n is a simple optional line when L is a simple optional line. By definition,

WLn+1 =
∑
|ν|≤n

(
L(ν)h(ν) + AL,n(ν)

∑
σ∈c(ν)

h(σ )

)
.

Now, when |ν| = n,

EB

[ ∑
σ∈c(ν)

h(σ )

∣∣∣∣ Gn

]
= h(ν)
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and, because L is simple, everything else in the expression for WLn+1 is Gn-measurable. Thus,

EB[WLn+1 | Gn] =
∑
|ν|≤n

(L(ν) + AL,n(ν))h(ν) = WLn ,

and so is a martingale, and limn WLn ≥ WL. Hence, EB[WLn ] = EB[WL0 ] = h(0) and

WLn = lim
m→∞ EB[WLm | Gn] ≥ EB[WL | Gn];

the fact that EB[WL] = h(0) forces equality here, which in turn implies that WLn converges to
WL. Hence, WLn = EB[WL | Gn] and, by Lemma 14.2, WLn = EB[Wn | GL], proving (iii).

Theorem 6.7 of Jagers (1989) gives similar conclusions to the next lemma, but for general
optional lines.

Lemma 14.4. Let L′ and L be simple optional lines with L′ ≤ L and let EB[WL] = h(0).
Then EB[WL | GL′ ] = WL′ .

Proof. Let N ′ and N be the generations where ξ hits L′ and L respectively. Then N ′ ≤ N

and so, by Lemma 14.1, EB[WL] = h(0) implies that EB[WL′ ] = h(0). Since L′ ≤ L,
GL′ ⊂ GL and so, by Lemma 14.2,

WL′
n

= EB[Wn | GL′ ] = EB[EB[Wn | GL] | GL′ ] = EB[WLn | GL′ ].
Letting n go to infinity and applying Lemma 14.3(ii) completes the proof.

14.1. Proof of Lemma 6.2

Let G∗ be the σ -algebra generated by {GL[t] : t ≥ 0}. Lemma 14.2 implies that (WL[t]n ,
GL[t]) is a positive martingale, and so WL[t]n converges as t → ∞ to EB[Wn | G∗]. Now

WL[t]n ≤
(

Wn +
∑

|ν|≤n−1

L[t](ν)h(ν)

)

and ∑
|ν|≤n−1

h(ν) =
n−1∑
i=0

Wi,

which is finite. Hence, letting t → ∞ and using dominated convergence,

EB[Wn | G∗] = lim
t→∞ WL[t]n ≤ Wn,

which implies that EB[Wn | G∗] = Wn, as required.

14.2. Proof of Theorem 6.1

The martingale property follows immediately from Lemma 14.4. Let W ′ be the limit of
WL[t]. By Lemma 14.3(i), EB[WL[t] | Gn] = WL[t]n ; letting t → ∞, Fatou’s lemma gives
EB[W ′ | Gn] ≤ Wn and then letting n → ∞ gives W ′ ≤ W . Again, let G∗ be the σ -algebra
generated by {GL[t] : t ≥ 0}. By Lemma 14.3(iii), EB[WL[t] | Gn] = EB[Wn | GL[t]]; letting n

and then t go to infinity shows that W ′ ≥ EB[W | G∗]. Hence, EB[W ′ −W ] ≥ 0 but W ′ ≤ W .
Hence, W ′ = W , completing the proof.

The conclusions of Theorem 6.1 are much easier to obtain when Wn converges in mean to
W , as the proof of the next result illustrates.



580 J. D. BIGGINS AND A. E. KYPRIANOU

Theorem 14.1. Suppose that Wn converges in mean to W . Let {L[t] : t ≥ 0} be optional lines
that are increasing with t and satisfy EB[WL[t]] = h(0) for every t . Then (WL[t], GL[t]) is a
positive martingale and WL[t] converges in mean. The martingale’s limit is W if, for each n,
WL[t]n tends to Wn almost surely as t → ∞.

Proof. Lemma 14.2 gives EB[Wn | GL[t]] = WL[t]n . Now, letting n → ∞ shows that
EB[W | GL[t]] ≥ WL[t]; both sides have expectation h(0), forcing equality. Standard martin-
gale theory now gives that WL[t] converges to EB[W | G∗]. When WL[t]n tends to Wn, letting
t → ∞ and then n → ∞ in EB[Wn | GL[t]] = WL[t]n gives EB[W | G∗] = W .
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