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1 Introduction

The classical spin O(n) model is a model on a d-dimensional lattice in which a vector on
the (n − 1)-dimensional sphere is assigned to every lattice site and the vectors at adjacent
sites interact ferromagnetically via their inner product. Special cases include the Ising model
(n = 1), the XY model (n = 2) and the Heisenberg model (n = 3). We discuss questions
of long-range order (spontaneous magnetization) and decay of correlations in the spin O(n)
model for different combinations of the lattice dimension d and the spin dimension n. Among
the topics presented are the Mermin-Wagner theorem, the Berezinskii-Kosterlitz-Thouless
transition, the infra-red bound and Polyakov’s conjecture on the two-dimensional Heisenberg
model.

The loop O(n) model is a model for a random configuration of disjoint loops on the
hexagonal lattice. The model is parameterized by a loop weight n ≥ 0 and an edge weight
x ≥ 0. Special cases include self-avoiding walk (n = 0), the Ising model (n = 1), critical
percolation (n = x = 1), dimer model (n = 1, x =∞), integer-valued (n = 2) and tree-valued
(integer n >= 3) Lipschitz functions and the hard hexagon model (n = ∞). The object of
study in the model is the typical structure of loops. We will review the connection of the
model with the spin O(n) model and discuss its conjectured phase diagram, emphasizing the
many open problems remaining. We then elaborate on recent results for the self-avoiding
walk case and for large values of n.

These notes accompany a series of lectures given at the School and Workshop on Ran-
dom Interacting Systems at Bath, England in June 2016. The authors are grateful to Vladas
Sidoravicius and Alexandre Stauffer for the organization of the school and for the opportu-
nity to present this material there. The notes are not in final state and any comments or
corrections are welcome.

2 The Spin O(n) model

2.1 Definitions

Let n ≥ 1 be an integer and let G = (V (G), E(G)) be a finite graph. A configuration of the
spin O(n) model (also called n-vector model) on G is an assignment σ : V (G) → Sn−1 of
spins to each vertex of G, where Sn−1 ⊆ Rn is the (n − 1)-dimensional unit sphere (simply
{−1, 1} if n = 1). We write

Ω := (Sn−1)V (G)

for the space of configurations. At inverse temperature β ∈ [0,∞), configurations are ran-
domly chosen from the probability measure µG,n,β given by

dµG,n,β(σ) :=
1

Zspin
G,n,β

exp

β ∑
{u,v}∈E(G)

〈σu, σv〉

 dσ, (1)
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where 〈·, ·〉 denotes the inner product in Rn, the partition function Zspin
G,n,β is given by

Zspin
G,n,β :=

∫
Ω

exp

β ∑
{u,v}∈E(G)

〈σu, σv〉

 dσ (2)

and dσ is the uniform probability measure on Ω (i.e., the product measure of the uniform
distributions on Sn−1 for each vertex in G).

Special cases of the model have names of their own:

• When n = 1, spins take values in {−1, 1} and the model becomes the famous Ising
model.

• When n = 2, spins take values in the unit circle and the model is called the XY model
or the plane rotator model.

• When n = 3, spins take values in the two-dimensional sphere S2 and the model is called
the Heisenberg model.

• In a sense, as n tends to infinity the model approaches the Berlin-Kac spherical model
(which will not be discussed in these notes), see [6, 12, 22] and [4, Chapter 5].

We will sometimes discuss a more general model, in which we replace the inner product in
(1) by a function of that inner product. In other words, when the energy of a configuration is
measured with a more general pair interaction term. Precisely, given a measurable function
U : [−1, 1]→ R, termed the potential function, we define the spin O(n) model with potential
U to be the probability measure µG,n,U over configurations σ : V (G)→ Sn−1 given by

dµG,n,U(σ) :=
1

Zspin
G,n,U

exp

− ∑
{u,v}∈E(G)

U(〈σu, σv〉)

 dσ, (3)

where the partition function Zspin
G,n,U is defined analogously to (2). Of course, for this to be

well defined (i.e., to have finite Zspin
G,n,U) some restrictions need to be placed on U but this

will always be the case in the models discussed in these notes (*** reference later remark?
***).

One may also impose boundary conditions on the model, where the values of certain spins
are pre-specified. In addition, one may consider a more general model by adding an external
magnetic field, in which a vector s ∈ Rn is specified and a term of the form

∑
v∈V (G) 〈σv, s〉

is added to the exponent in the definition of the density (1). We will, however, focus on the
version of the models given above.

The graph G is typically taken to be a portion of a d-dimensional lattice (possibly with
periodic boundary conditions). When discussing the spin O(n) model in these notes we
mostly take

G = TdL,
where TdL denotes the d-dimensional discrete torus of side length 2L defined as follows: The
vertex set of TdL is

V (TdL) := {−L+ 1,−L+ 2, . . . , L− 1, L}d (4)
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and a pair u, v ∈ V (TdL) is adjacent, written {u, v} ∈ E(TdL), if u and v are equal in all but
one coordinate and differ by exactly 1 modulo 2L in that coordinate. We write ‖x − y‖1

for the graph distance in TdL of two vertices x, y ∈ V (TdL) (for brevity, we suppress the
dependence on L in this notation).

The results presented below should admit analogues if the graph G is changed to a
different d-dimensional lattice graph with appropriate boundary conditions. However, the
presented proofs sometimes require the presence of symmetries in the graph G.

2.2 Main results and conjectures

We will focus on the questions of existence of long-range order and decay of correlations in
the spin O(n) model. To this end we shall study the correlation

ρx,y := E(〈σx, σy〉)

for a configuration σ randomly chosen from the spin O(n) model at inverse temperature
β and two vertices x, y ∈ V (TdL) with large graph distance ‖x − y‖1. This correlation is
always non-negative (*** ref, also monotonicity in β? ***), but its magnitude behaves
very differently for different combinations of the spatial dimension d, spin dimension n and
inverse temperature β. The following list summarizes the main results and conjectures. We
use the notation cβ, Cβ, cn,β, . . . to denote positive constants whose value depends only on
the parameters given in the subscript (and is always independent of the lattice size L) and
may change from line to line.

High temperatures and spatial dimension d = 1. All the models exhibit exponential
decay of correlations at high temperature. Precisely, there exists a β0(d, n) > 0 such that

d, n ≥ 1, β < β0(d, n) : ρx,y ≤ Cd,n,β exp(−cd,n,β‖x− y‖1) for all x, y ∈ V (TdL).

This is a relatively simple fact and the main interest is in understanding the behavior at low
temperatures. In one spatial dimension (d = 1) the exponential decay persists at all positive
temperatures. That is,

d = 1, n ≥ 1, β ∈ [0,∞) : ρx,y ≤ Cn,β exp(−cn,β‖x− y‖1) for all x, y ∈ V (T1
L).

The Ising model n = 1. The Ising model exhibits a phase transition in all dimensions
d ≥ 2 at some critical temperature βc(d). The transition is from a regime with exponential
decay of correlations,

d ≥ 2, n = 1, β < βc(d) : ρx,y ≤ Cd,β exp(−cd,β‖x− y‖1) for all x, y ∈ V (TdL)

to a regime with long-range order, also called spontaneous magnetization, which is charac-
terized by

d ≥ 2, n = 1, β > βc(d) : ρx,y ≥ cd,β for all x, y ∈ V (TdL).

The behavior of the model at the critical temperature, when β = βc(d), is a rich source of
study with many mathematical features, including a conformally-invariant scaling limit in
two dimensions, but its treatment lies beyond the scope of these notes. We mention only
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that it is proved (see Aizenman, Duminil-Copin, Sidoravicius [2] and references within) that
the model does not exhibit long-range order at its critical point in all dimensions d ≥ 2.
Moreover, in dimension d = 2 it is known that correlations decay polynomially (*** detail
***), as discovered by Onsager [19] in his famous solution of the two-dimensional Ising model.

The Mermin-Wagner theorem: No continuous symmetry breaking in 2d. Perhaps
surprisingly, the behavior of the two-dimensional model when n ≥ 2, so that the spin space
Sn−1 has a continuous symmetry, is quite different from that of the Ising model. The Mermin-
Wagner theorem [18] asserts that in this case there is no phase with long-range order at any
inverse temperature β. Quantifying the rate at which correlations decay has been the focus
of much research along the years (*** ref - Fisher-Jasnow, Pfister, Dobrushin-Shlosman,
Hohenberg, Frohlich-Spencer, Polyakov, Frohlich-Pfister ***) and is still not completely
understood. Improving on earlier bounds, McBryan and Spencer [17] showed in 1977 that
the decay occurs at least at a polynomial rate,

d = 2, n ≥ 2, β ∈ [0,∞) : ρx,y ≤ Cn,β‖x− y‖
−cn,β
1 for all x, y ∈ V (T2

L). (5)

The sharpness of this bound is discussed in the next paragraphs.

The Berezinskii-Kosterlitz-Thouless transition for the 2d XY Model. It was pre-
dicted by Berezinskii [5] and by Kosterlitz and Thouless [13, 14] that the XY model (n = 2)
in two spatial dimensions should indeed exhibit polynomial decay of correlations at low tem-
peratures. Thus the model undergoes a phase transition (of a different nature than that of
the Ising model) from a phase with exponential decay of correlations to a phase with poly-
nomial decay of correlations. This transition is called the Berezinskii-Kosterlitz-Thouless
transition. The existence of the transition has been proved mathematically in the celebrated
work of Fröhlich and Spencer [11], who show that there exists a β1 for which

d = 2, n = 2, β > β1 : ρx,y ≥ cβ‖x− y‖
−Cβ
1 for all x, y ∈ V (T2

L). (6)

(*** check exact statement ***).
A rigorous proof of the bound (6) is beyond the scope of these notes. In Section 2.7 we

present a heuristic discussion of the transition highlighting the role of vortices - cycles of
length 4 in T2

L on which the configuration completes a full rotation. We then proceed to
present a beautiful result of Aizenman [1], following Patrascioiu and Seiler [20], who showed
that correlations decay at most polynomially fast in the spin O(2) model with potential U ,
for certain potentials U for which vortices are deterministically excluded.

Polyakov’s conjecture for the 2d Heisenberg model. Polyakov [21] predicted in 1975
that the spin O(n) model with n ≥ 3 should exhibit exponential decay of correlations in two
dimensions at any temperature. That is, that there is no phase transition of the Berezinskii-
Kosterlitz-Thouless type in the Heisenberg model and the spin O(n) models with larger n.
This prediction may be stated precisely as

d = 2, n ≥ 3, β ∈ [0,∞) : ρx,y ≤ Cn,β exp(−cn,β‖x− y‖1) for all x, y ∈ V (T2
L).

Giving a mathematical proof of this statement remains one of the major challenges of the
subject. The best known results in this direction are by Kupiainen [15] who performed a
1/n-expansion as n tends to infinity.
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The infra-red bound: Long-range order in dimensions d ≥ 3. In three and higher
spatial dimensions, the spin O(n) model exhibits long-range order at sufficiently low temper-
atures for all n. This was first established by Fröhlich, Simon and Spencer [10] in 1976 who
introduced the powerful method of the infra-red bound, and applied it to the analysis of the
spin O(n) and other models (*** check statements there ***). They prove that correlations
do not decay at temperatures below a threshold β1(d, n)−1, at least in the following averaged
sense,

d ≥ 3, n ≥ 1, β > β1(d, n) :
1

|V (TdL)|2
∑

x,y∈V (TdL)

ρx,y ≥ cd,n,β.

The proof uses the reflection symmetries of the underlying lattice, relying on the tool of
reflection positivity.

2.3 High-temperature expansion

At infinite temperature (β = 0) the models are completely disordered as all spins are inde-
pendent of one another. At high-temperature (when β is sufficiently small), the same type
of behavior persists and the models remain in a disordered phase. Specifically, we show that
in this regime the models exhibit exponential decay of correlations as stated in the previous
section.

We begin by expanding the partition function of the model on an arbitrary finite graph
in the following manner. Denoting fβ(s, t) := exp

[
β
(
〈s, t〉+ 1

)]
− 1 for s, t ∈ Sn−1, we have

Zspin
G,n,β =

∫
Ω

∏
{u,v}∈E(G)

exp [β 〈σu, σv〉] dσ = e−β|E(G)|
∫

Ω

∏
{u,v}∈E(G)

exp [β (〈σu, σv〉+ 1)] dσ

= e−β|E(G)|
∫

Ω

∏
{u,v}∈E(G)

(
1 + fβ(σu, σv)

)
dσ = e−β|E(G)|

∑
E⊂E(G)

∫
Ω

∏
{u,v}∈E

fβ(σu, σv)dσ.

Exercise. Verify the last equality in the above expansion by showing that for any (xe)e∈E ,∏
e∈E

(1 + xe) =
∑
E⊂E

∏
e∈E

xe.

Thus, we have

Zspin
G,n,β = e−β|E(G)|

∑
E⊂E(G)

Z(E), (7)

where

Z(E) :=

∫
Ω

∏
{u,v}∈E

fβ(σu, σv)dσ. (8)

Since fβ is non-negative, we may interpret (7) as prescribing a probability measure on (span-
ning) subgraphs of G, where the subgraph (V (G), E) has probability proportional to Z(E).
Furthermore, given such a subgraph, we may interpret (8) as prescribing a probability mea-
sure on spin configurations σ, whose density with respect to dσ is proportional to

Z(E, σ) :=
∏

{u,v}∈E

fβ(σu, σv).
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Remark 2.1. For the Ising model (n = 1), the above joint distribution on the graph
(V (G), E) and spin configuration σ is called the Edwards-Sokal coupling (*** ref ***).
Here, the marginal probability of E is proportional to

qN(E)p|E| (1− p)|E(TdL)|\|E| with q = 2 and p = 1− exp(−2β), (9)

where N(E) stands for the number of connected components in (V (G), E). Moreover, given
E, σ is sampled by independently assigning to the vertices in each connected component of
(V (G), E) the same spin value, picked uniformly from {−1, 1}. The marginal distribution
(9) of E is the famous Fortuin-Kasteleyn (FK) random cluster model, which makes sense
also for other values of p and q (*** ref. Grimmett book? ***). Both the Edwards-Sokal
coupling and the FK model are available also for the more general Potts models.

The Edwards-Sokal coupling immediately implies that, for the Ising model, the correlation
ρx,y = E(σxσy) equals the probability that x is connected to y in the graph (V (G), E). In
particular, ρx,y is non-negative and, as connectivity probabilities in the FK model (with q ≥ 1)
are non-decreasing with p (*** Grimmett random cluster, Theorem 3.21 ***), it follows also
that ρx,y is non-decreasing with the inverse temperature β. A version of the Edwards-Sokal
coupling and FK model for the spin O(n) models with n ≥ 2 will be used in Section *** (***
section on Aizenman’s result ***).

Remark 2.2. Conditioned on E, the spin configuration σ may be seen as a sample from the
spin O(n) model on the graph (V (G), E) with potential U(x) := − log(exp(β(1 + x)) − 1).
That is, conditioned on E, the distribution of σ is given by µ(V (G),E),n,U .

It follows from the last remark that, conditioned on E,

If x ∈ V (G) then σx is distributed uniformly on Sn−1.

If x, y ∈ V (G) are not connected in (V (G), E) then σx and σy are independent.

Hence, we deduce that E(〈σx, σy〉 | E) = 0 when x and y are not connected in (V (G), E).
Since |〈σx, σy〉| ≤ 1, we obtain

|ρx,y| ≤ P(x and y are connected in (V (G), E)),

where E a random subset of E(G) chosen according to the above probability measure.
Thus, to establish the decay of correlations, we must show that long connections in E are
very unlikely. We first show that

For any e ∈ E(G) and E0 ⊂ E(G) \ {e}, P(e ∈ E | E \ {e} = E0) ≤ 1− e−2β. (10)

Indeed,

P(e ∈ E | E \ {e} = E0) =
Z(E0 ∪ {e})

Z(E0 ∪ {e}) + Z(E0)
=

1

1 + Z(E0)
Z(E0∪{e})

,

and denoting e = {u, v} and noting that fβ(s, t) ≤ exp(2β)− 1,

Z(E0 ∪ {e})
Z(E0)

=

∫
Ω
Z(E0 ∪ {e}, σ)dσ∫

Ω
Z(E0, σ)dσ

=

∫
Ω
Z(E0, σ)fβ(σu, σv)dσ∫

Ω
Z(E0, σ)dσ

≤ e2β − 1.
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Repeated applications of (10) now imply that the probability that E contains any fixed k
edges is exponentially small in k. Namely,

For any e1, . . . , ek ∈ E(G), P(e1, . . . , ek ∈ E) ≤
(
1− e−2β

)k
.

We now specialize to the case G = TdL (in fact, the only property of TdL we use is that
its maximum degree is 2d). Since the event that x and y are connected in (V (G), E) implies
the existence of a simple path in E of some length k ≥ ‖x− y‖1 starting at x, and since the
number of such paths is at most 2d(2d− 1)k−1 ≤ 2(2d− 1)k, we obtain

P(x and y are connected in (V (G), E)) ≤
∞∑

k=‖x−y‖1

2(2d− 1)k(1− e−2β)k

≤ Cd,β

(
(2d− 1)(1− e−2β)

)‖x−y‖1
,

when (2d− 1)(1− e−2β) < 1. Thus, we have established that

|ρx,y| ≤ Cd,β exp (−cd,β‖x− y‖1) when β <
1

2
log

(
2d− 1

2d− 2

)
.

Remark 2.3. This gives exponential decay in dimension d ≥ 2 whenever β ≤ d/4 and in
one dimension for all finite β.

2.4 Low-temperature Ising model

One could approach the low-temperature Ising model by expanding the partition function in
a similar manner as before. This would lead to a representation of random even subgraphs
(subgraphs in which the degrees of all vertices are even) (*** reference remark in loop O(n)
section? ***). Here, however, we choose a slightly different approach, partially for variety.

Let G be a finite connected graph and let x, y ∈ V (G) be two vertices. We begin by noting
that in the Ising model, since spins take values in {1,−1}, we may write the correlations in
the following form:

ρx,y = E(σxσy) = P(σx = σy)− P(σx 6= σy) = 1− 2P(σx 6= σy)

Thus, to establish a lower bound on the correlation we must provide an upper bound the
probability that the spins at x and y are different. To this end, we require some definitions.
Given a set of vertices A ⊂ V (G), we denote the edge-boundary of A, the set of edges in
E(G) with precisely one endpoint in A, by ∂A. A contour is a set of edges γ ⊂ E(G) such
that γ = ∂A for some A ⊂ V (G) satisfying that both A and Ac := V (G) \ A are induced
connected (non-empty) subgraphs of G. Thus, a contour can be identified with a partition
of the set of vertices of G into two connected sets. We say that γ separates two vertices x
and y if they belong to different sets of the corresponding partition. The length of a contour
is the number of edges it contains.

Exercise. A set of edges γ is a contour if and only if γ is cutset (i.e., the removal of γ
disconnects the graph) which is minimal with repsect to inclusion (i.e., no proper subset of
γ is also a cutset).

8



Let σ be a spin configuration. We say that γ is an interface (with respect to σ) if γ is a
contour separating x and y such that

σu 6= σv for all {u, v} ∈ γ.

The first step in the proof is the following observation:

If σx 6= σy then there exists an interface.

Indeed, if σx 6= σy then the connected component of {u ∈ V (G) : σu = σx} containing x,
which we denote by B, does not contain y. Hence, if we denote the connected component of
Bc containing y by A, then γ := ∂A is a contour separating x and y. Moreover, it is easy to
check that σu = σx and σv = σy for all {u, v} ∈ γ such that u ∈ Ac and v ∈ A, so that γ is
an interface.

Next, we show that for any fixed contour γ of length k,

P(γ is an interface) ≤ e−2βk.

To see this, let {A,Ac} be the partition corresponding to γ and, given a spin configuration
σ, consider the modified spin configuration σ′ in which the spins in A are flipped, i.e.,

σ′u :=

{
−σu if u ∈ A
σu if u ∈ Ac

.

Observe that if γ is an interface with respect to σ then∑
{u,v}∈E(G)

σ′uσ
′
v −

∑
{u,v}∈E(G)

σuσv =
∑
{u,v}∈γ

(σ′uσ
′
v − σuσv) = 2|γ|.

Thus, denoting F := {σ ∈ Ω : γ is an interface with respect to σ} and noting that σ 7→ σ′

is injective on Ω (in fact, an involution of Ω), we have

P(γ is an interface) =

∑
σ∈F exp

[
β
∑
{u,v}∈E(G) σuσv

]
∑

σ∈Ω exp
[
β
∑
{u,v}∈E(G) σuσv

]
≤

∑
σ∈F exp

[
β
∑
{u,v}∈E(G) σuσv

]
∑

σ∈F exp
[
β
∑
{u,v}∈E(G) σ

′
uσ
′
v

] = e−2β|γ|.

The final ingredient in the proof is an upper bound on the number of contours of a given
length. For this, we henceforth restrict ourselves to the case G = TdL, for which we use the
following fact:

The number of contours of length k separating two given vertices is at most exp(Cdk).

The proof of this fact consists of the following two lemmas.

9



Lemma 2.1. Let γ be a set of edges and consider the graph Gγ on γ in which two edges
e, f ∈ γ are adjacent if the (d − 1)-dimensional faces corresponding to e and f share a
common (d − 2)-dimensional face. If γ is a contour then either Gγ is connected or it has
precisely two connected components, each of which has size at least Ld−1.

Although intuitively clear, the proof of the above lemma is not completely straightfor-
ward. (*** even for Zd this is not straightforward, while for TdL there is an additional
topological complication ***) We refer the reader to *** [23] *** for a proof.

Lemma 2.2. Let G be a graph with maximum degree ∆. The number of connected subsets
of V (G) which have size k and contain a given vertex is at most a(∆)k, where a(∆) is a
positive constant depending only on ∆.

This lemma has several simple proofs. One may for instance use a depth-first-search
algorithm to provide a proof with the constant a(∆) = ∆2. We refer the reader to [7,
Chapter 45] for a proof yielding the constant a(∆) = e(∆ − 1) (which is optimal as can be
seen by considering the case when G is a regular tree).

Exercise. Deduce the fact from the two lemmas.

Finally, putting everything together, when β ≥ Cd, we obtain

P(σx 6= σy) ≤ P(there exists an interface) ≤
∑

γ contour
separating x and y

P(γ is an interface)

≤
∞∑
k=1

eCdke−2βk ≤ Cde
−2β.

Thus, in terms of correlations, we have established that

ρx,y ≥ 1− Cde−2β ≥ cd,β when β ≥ Cd.

Remark 2.4. Specializing Lemma 2.2 to the relevant graph in our situation, one may obtain
an improved and explicit bound of exp(Ck log(d+ 1)/d) on the number of contours of length
k separating two given vertices [16, 3]. This gives that βc(d) ≤ C log(d + 1)/d. In fact, the
correct asymptotic value is βc(d) ∼ 1/2d.

(*** Further discussion on this in long-range order section. ***)

2.5 No long-range order in two dimensional models with contin-
uous symmetry - the Mermin-Wagner theorem

In this section we establish polynomial decay of correlations for the two-dimensional spin
O(n) model with n ≥ 2 at any inverse temperature. The proof applies in the generality
of the spin O(n) model with potential U , where U satisfies certain assumptions, and it is
convenient to present it in this context, to highlight the core parts of the argument. The
fact that there is no long-range order was first established by Mermin and Wagner (*** ref
***), with later works providing upper bounds on the rate of decay of the correlations (***
ref ***). The following theorem was first proved by Dobrushin and Shlosman (*** ref ***),
following a proof by McBryan and Spencer (*** ref ***) for the special case of the standard
XY model (with a technique relying on the density being an analytic function).

10



Theorem 2.3. Let U : [−1, 1]→ R be a C2 function. Let n ≥ 2. Suppose that σ : V (T2
L)→

Sn−1 is randomly sampled from the two-dimensional spin O(n) model with potential U (see
(3)). Then there exist Cn,U , cn,U > 0 such that

|ρx,y| = |E(〈σx, σy〉)| ≤ Cn,U‖x− y‖
−cn,U
1 for all x, y ∈ V (T2

L). (11)

The proof presented below combines elements of the Dobrushin-Shlosman (*** ref ***)
and Pfister (*** ref ***) approaches to the Mermin-Wagner theorem. The idea to combine
the approaches is introduced in a forthcoming paper of Gagnebin, Mi loś and Peled (*** ref
***), where it is pushed further to prove polynomial decay of correlations for any potential
U satisfying only very mild integrability conditions. The work (*** ref GMP ***) relies
further on ideas used by (*** ISV, MP, Richthammer ***).

For simplicity, we will prove Theorem 2.3 in the special case that n = 2, x = (0, 0) and
y = (2m, 0) for some integer m ≥ 0 (assuming, implicitly, that L ≥ 2m). We briefly explain
the necessary modifications for the general case after the proof.

Fix a C2 function U : [−1, 1]→ R satisfying U(x) = U(−x). Suppose that σ : V (T2
L)→

S1 is randomly sampled from the two-dimensional spin O(2) model with potential U . It is
convenient to parametrize configurations differently: Identifying S1 with the unit circle in
the complex plane, we consider the angle θv that each vector σv forms with respect to the
x-axis. Precisely, for the rest of the argument we let θ : V (T2

L) → [−π, π) be randomly
sampled from the probability density

t(φ) :=
1

Z
exp

− ∑
{u,v}∈E(G)

U(cos(φu − φv))

 ∏
v∈V (T2

L)

1(φv∈[−π,π)), (12)

where Z is a normalization constant. One checks simply that then (σv) is equal in distribution
to (exp(iθv)). Thus, with our choice of the vertices x and y, the estimate (11) that we would
like to prove becomes

|ρ(0,0),(2m,0)| = |E(cos(θ(0,0) − θ(2m,0)))| ≤ Cn,U · 2−cn,U ·m. (13)

Step 1: Product of conditional correlations. We start by pointing out a conditional
independence property inherent in the distribution of θ, which is a consequence of the domain
Markov property and the fact that the interaction term in (12) depends only on the difference
of angles in φ (the gradient of φ). This part of the argument is inspired by the technique of
Dobrushin and Shlosman (*** ref ***).

Define a vector-valued function g on RV (T2
L) by

g(φ) = (φu − φv : u, v ∈ V (T2
L), ∃ 0 ≤ k ≤ m− 1, ‖u‖1 = ‖v‖1 = 2k),

so that g(φ) contains, for every 0 ≤ k ≤ m − 1, the information on the difference of angles
in φ for vertices in a given ‘layer’ at radius 2k from the origin.

Proposition 2.4. Conditioned on g(θ), the random variables

θ(0,0) − θ(1,0), θ(1,0) − θ(2,0), θ(2,0) − θ(4,0), . . . , θ(2m−1,0) − θ(2m,0)

are independent.

11



This proposition allows us to reexpress the quantity of interest to us in the following way:

E(cos(θ(0,0) − θ(2m,0))) = <E
(
ei(θ(0,0)−θ(2m,0))

)
= <E

(
ei(θ(0,0)−θ(1,0))

m−1∏
k=0

ei(θ(2k,0)−θ(2k+1,0))

)

= <E

(
E
(
ei(θ(0,0)−θ(1,0)) | g(θ)

)m−1∏
k=0

E
(
ei(θ(2k,0)−θ(2k+1,0)) | g(θ)

))
(14)

which will be the starting point for our next step.
The proposition is somewhat intuitive, though a formal proof seems to necessitate some

technicalities. We proceed to explain the idea of proof but the reader who feels comfortable
with the proposition may wish to skip directly to the next step.

Idea of proof of Proposition 2.4. It suffices to show that for each 0 ≤ ` ≤ m−1, the random
variable θ(2`,0) − θ(2`+1,0) is conditionally independent of the random variables

θ(0,0) − θ(1,0), (θ(2k,0) − θ(2k+1,0))0≤k<`. (15)

given g(θ).
For a subset V ⊆ V (T2

L), we define the random vectors

θ(V ) = (θv : v ∈ V ),

∇θ(V ) = (θu − θv : u, v ∈ V ).

Fix 0 ≤ ` ≤ m− 1 and define the subsets of vertices

A := {v ∈ V (T2
L) : ‖v‖1 ≤ 2`},

B := {v ∈ V (T2
L) : ‖v‖1 = 2`}.

As the random variable θ(2`,0)−θ(2`+1,0) is a function of∇θ(Ac∪B) (we write Ac for V (T2
L)\A)

and the random variables in (15) are functions of θ(A), it suffices to show that

conditioned on g(θ), ∇θ(Ac ∪B) is independent of θ(A). (16)

We will show the stronger statement that

conditioned on ∇θ(B), ∇θ(Ac ∪B) is independent of θ(A). (17)

The fact that (17) implies (16) is a special case of the following exercise.

Exercise. Suppose X, Y, Z are random variables satisfying that X is conditionally inde-
pendent of Y given Z. Then for every two measurable functions f, g, X is conditionally
independent of Y , given (Z, f(X), g(Y )).

In our case, X = ∇θ(Ac ∪B), Y = θ(A), Z = ∇θ(B), each coordinate of g(θ) is either a
function of X or a function of Y and all the coordinates of Z are coordinates of g(θ).

We proceed to prove (17). Fix an event E in the sigma algebra generated by ∇θ(Ac∪B).
We need to show that

P(E | σ(∇θ(B), θ(A))) = P(E | ∇θ(B)), almost surely. (18)
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As ∇θ(B) is a function of θ(A), we have

P(E | σ(∇θ(B), θ(A))) = P(E | θ(A)), almost surely. (19)

The domain Markov property and the definitions of A,B and E now imply that,

P(E | θ(A)) = P(E | θ(B)), almost surely. (20)

Additionally, the fact that the interaction term in the density (12) depends only on the
gradient of φ implies that (θv) has the same distribution as (θv + α (mod 2π)) for any fixed
α ∈ [0, 2π) (the mapping x 7→ x (mod 2π) yields a value in [−π, π) obtained by subtracting
k · 2π from x for some integer k). Together with the fact that the event E depends only on
the gradient of θ this yields that

P(E | θ(B)) = P(E | ∇θ(B)), almost surely. (21)

The formal verification of (20) and (21) is left as a further exercise to the reader. Finally,
(18) is a consequence of (19), (20) and (21).

Step 2: Upper bound on the conditional correlations. In this step we estimate the
individual conditional expectations in (14), proving that there exists an absolute constant
ε > 0 for which

almost surely,
∣∣∣E(ei(θ(2k,0)−θ(2k+1,0)) | g(θ)

)∣∣∣ ≤ 1− ε for all 0 ≤ k ≤ m− 1, (22)

immediately implying the required bound (13) as, from (14),

∣∣E(cos(θ(0,0) − θ(2m,0)))
∣∣ ≤ E

(∣∣∣E(ei(θ(0,0)−θ(1,0)) | g(θ)
)∣∣∣ · m−1∏

k=0

∣∣∣E(ei(θ(2k,0)−θ(2k+1,0)) | g(θ)
)∣∣∣)

≤ E (1 · (1− ε)m) = (1− ε)m.

This part of the argument is inspired by the technique of Pfister (*** ref ***), and the
variants used in (*** MP, Richthammer ***). The idea of introducing a spin wave which
rotates slowly (our function τ below and its property (27)) is at the heart of the Mermin-
Wagner theorem.

Write dmg0 for the lower-dimensional Lebesgue measure supported on the affine subspace
of RV (T2

L) where g(θ) = g0. Standard facts (following from Fubini’s theorem) imply that
conditioned on g(θ) = g0, for almost every value of g0, the density of θ exists with respect
to dmg0 and is of the form (as in (12))

tg0(φ) =
1

Zg0
exp

− ∑
{u,v}∈E(G)

U(cos(φu − φv))

 ∏
v∈V (T2

L)

1(φv∈[−π,π))

=
1

Zg0
exp

− ∑
{u,v}∈E(G)

Ũ(φu − φv)

 ∏
v∈V (T2

L)

1(φv∈[−π,π)),
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where we define
Ũ(α) := U(cos(α))

and note that Ũ : R→ R is a 2π-periodic C2 function. In particular,

Ũ(x+ δ) ≤ Ũ(x) + Ũ ′(x)δ +
supy Ũ

′′(y)

2
δ2 for all x, δ ∈ R. (23)

Fix 0 ≤ k ≤ m− 1. Define a function τ : V (T2
L)→ R by

τv :=


0 ‖v‖1 ≤ 2k

‖v‖1
2k
− 1 2k ≤ ‖v‖1 ≤ 2k+1

1 ‖v‖1 ≥ 2k+1

(24)

and define for each φ : V (T2
L)→ [−π, π) its perturbations φ+, φ− : V (T2

L)→ [−π, π) by

φ+
v := φv + τv (mod 2π), φ−v := φv − τv (mod 2π). (25)

We shall need the following two properties of τ :

g(φ+) = g(φ−) = g(φ) for every φ : V (T2
L)→ R, (26)∑

u,v∈E(T2
L)

(τu − τv)2 ≤ C (27)

for some absolute constant C.
The following is the key calculation of the proof. For every φ : V (T2

L)→ [−π, π), setting
g0 := g(φ),√

tg0(φ
+)tg0(φ

−) =
1

Zg0
exp

[
− 1

2

∑
{u,v}∈E(G)

Ũ(φu − φv + τu − τv) + Ũ(φu − φv − τu + τv))
]

(23)

≥ 1

Zg0
exp

[
−

∑
{u,v}∈E(G)

Ũ(φu − φv)−
supy U

′′(y)

2

∑
{u,v}∈E(G)

(τu − τv)2
] (27)

≥ c · tg0(φ) (28)

for an absolute constant c > 0.
We wish to convert the inequality (28) into an inequality of probabilities rather than

densities. To this end define, for a ∈ R,

Ea :=

{
φ : V (T2

n)→ [−π, π) :
∣∣<ei(φ(2k,0)−φ(2k+1,0)

−a)
∣∣ ≥ 9

10

}
. (29)

and, for almost every g0 with respect to the distribution of g(θ),

Ia,g0 :=

∫
Ea

√
tg0(φ

+)tg0(φ
−)dmg0(φ).

On the one hand, by (28),

Ia,g0 ≥ c

∫
Ea

tg0(φ)dmg0(φ) = c · P (θ ∈ Ea | g(θ) = g0) . (30)
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On the other hand, the Cauchy-Schwartz inequality and a change of variables using (25) and
(26) yields

Ia,g0 ≤
(∫

Ea

tg0(φ
+)dmg0(φ)

∫
Ea

tg0(φ
−)dmg0(φ)

) 1
2

=
(
P(θ − τ ∈ Ea | g(θ) = g0) · P(θ + τ ∈ Ea | g(θ) = g0)

) 1
2 .

(31)

Putting together (30) and (31) and recalling (24) and (29) we obtain that, almost surely,(
P
(∣∣<ei(φ(2k,0)−φ(2k+1,0)

+1−a)
∣∣ ≥ 9

10
| g(θ)

)
· P
(∣∣<ei(φ(2k,0)−φ(2k+1,0)

−1−a)
∣∣ ≥ 9

10
| g(θ))

) 1
2

≥ c · P(
∣∣<ei(φ(2k,0)−φ(2k+1,0)

−a)
∣∣ ≥ 9

10
| g(θ)

)
.

As this inequality holds for any a ∈ R, it implies that, conditioned on g(θ), ei(θ(2k,0)−θ(2k+1,0))

cannot be concentrated around any one value, proving the inequality (22) that we wanted
to show.

(*** add remark about modifications for general n ≥ 2 and other vertices x, y ***)

2.6 Long-range order in dimensions d ≥ 3 - the infra-red bound

In this section we prove that the spin O(n) model in spatial dimensions d ≥ 3 exhibits
long-range order at sufficiently low temperatures. This was first proved by Fröhlich, Simon
and Spencer [10] who introduced the method of the infra-red bound to this end. To our
knowledge, this method remains the only known technique for establishing the result. In our
exposition, we follow closely the excellent ‘Marseille notes’ of Daniel Ueltschi (*** ref, lecture
2, part 2 ***), with some modifications suggested by the chapter on reflection positivity in
the superb book in preparation by Friedli and Velenik (*** ref, Chapter 10 ***). We prove
the following result.

Theorem 2.5. Let d ≥ 3 and n ≥ 1. There exists β1(d, n) <∞ and such that the following
holds. Suppose σ : V (TdL) → Sn−1 is randomly sampled from the d-dimensional spin O(n)
model at inverse temperature β > β1(d, n). Then there exists cd,n,β > 0 for which

1

|V (TdL)|2
∑

x,y∈V (TdL)

E(〈σx, σy〉) ≥ cd,n,β.

Of course, the Ising model case n = 1 has already been discussed in Section 2.4 so that
our main interest is in the case of continuous spins, when n ≥ 2. (*** mention that the
actual bound we get on the critical β is close to 1/2d. Of the same order of magnitude
as the high-temperature expansion for large d, and in fact with the sharp constant (***
find ref ***). The low-temperature Ising section only shows that the critical temperature
βc(d) < c log(d)/d, and this is sharp there up to the value of c as it prohibits also minority
percolation (*** ref? ***) ***).
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Recall that Ω = (Sn−1)
V (TdL)

denotes the space of configurations of the spin O(n) model

on TdL. A key part of the argument is the study of the function Z : (Rn)V (TdL) → R defined
by

Z(τ) :=

∫
Ω

exp

−β
2

∑
{u,v}∈E(TdL)

‖σu + τu − σv − τv‖2
2

 dσ

where ‖ · ‖2 denotes the Euclidean norm of a vector. As ‖σv‖2
2 = 1 at each vertex v since

σ ∈ Ω, the function Z(τ) at the zero function τ = 0 is closely related to the partition function
of the spin O(n) model (see (2)),

Z(0) = e2d|V (TdL)| · Zspin

TdL,n,β
. (32)

The main step in the proof of Theorem 2.5 is the verification of the following Gaussian
domination inequality,

Z(τ) ≤ Z(0) for all τ : V (TdL)→ Rn. (33)

This is achieved using the method of reflection positivity as detailed below.

Step 1: Reflection Positivity. Define a reflection operation (across edges) on the vertices
of TdL by θ : V (TdL)→ V (TdL),

θ((v1, v2, . . . , vd)) = (−v1 + 1, v2, . . . , vd).

Geometrically, the reflection is done across the hyperplane orthogonal to the x-axis which
passes through the edges between x-coordinate 0 and x-coordinate 1 (or equivalently, the
hyperplane passing through the edges between x-coordinate L and x-coordinate−L+1). One
may similarly consider reflections through other planes orthogonal to one of the coordinate
axes, however, for concreteness, we focus on the reflection above. Correspondingly to this
choice, we split the vertices of the torus into the ‘left’ and ‘right’ halves,

V0 := {v = (v1, v2, . . . , vd) ∈ V (TdL) : v1 ≤ 0},
V1 := {v = (v1, v2, . . . , vd) ∈ V (TdL) : v1 ≥ 1},

so that θ(V0) = V1. We may also correspondingly write functions τ : V (TdL) → Rn as
τ = (τ0, τ1) with τi : Vi → Rn for i ∈ {0, 1} (but will write Z(τ0, τ1) instead of Z((τ0,1 ))
for brevity). The operation θ then naturally extends to such functions, mapping (Rn)Vi to
(Rn)V1−i by

θ(τi)(v) := τi(θ(v)), i ∈ {0, 1}.

Proposition 2.6. (Reflection positivity) For all τi : Vi → Rn, i ∈ {0, 1}, we have

Z(τ0, τ1)2 ≤ Z(τ0, θ(τ0)) · Z(θ(τ1), τ1).
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Proof. Similarly to the previous definitions, we let also Ωi = (Sn−1)
Vi , i ∈ {0, 1}, with the

corresponding uniform measures dσi, i ∈ {0, 1}. Then, letting τ = (τ0, τ1),

Z(τ) =

∫
Ω0

∫
Ω1

exp

f0(σ0, τ0) + f1(σ1, τ1)− β

2

∑
{u,v}∈E(TdL)
u∈V0,v∈V1

‖σu + τu − σv − τv‖2
2

 dσ0dσ1

(34)
where f0 and f1 take care of the sum over edges both of whose endpoints are in V0 or V1,
respectively. The main step of the proof is to make the above integrand linear in the (τi) by
introducing certain Gaussian random variables, a trick sometimes known as the Hubbard-
Stratonovich transformation. Recall that if X = (X1, . . . , Xn) is a vector of independent
standard normal random variables and a ∈ Cn (C stands for the complex numbers) then

E(exp(〈a,X〉)) = exp

(
1

2

n∑
j=1

a2
j

)
. (35)

Now introduce for each edge {u, v} ∈ E(TdL), u ∈ V0, v ∈ V1, an independent Gaussian vector
X{u,v} with the distribution of X. The equality (35) along with Fubini’s theorem allow to
rewrite (34) as

Z(τ) = E

(∫
Ω0

∫
Ω1

exp

(
f0(σ0, τ0) + f1(σ1, τ1) + i

√
β

∑
{u,v}∈E(TdL)
u∈V0,v∈V1

〈
σu + τu − σv − τv, X{u,v}

〉)
dσ0dσ1

)

= E

(∫
Ω0

exp

(
f0(σ0, τ0) + i

√
β

∑
{u,v}∈E(TdL)
u∈V0,v∈V1

〈
σu + τu, X{u,v}

〉)
dσ0·

∫
Ω1

exp

(
f1(σ1, τ1) + i

√
β

∑
{u,v}∈E(TdL)
u∈V0,v∈V1

〈
σv + τv, X{u,v}

〉)
dσ1

)
.

Now, using the Cauchy-Schwartz inequality on the outer expectation shows that

Z(τ)2 ≤ E

(∣∣∣∣∣
∫

Ω0

exp

(
f0(σ0, τ0) + i

√
β

∑
{u,v}∈E(TdL)
u∈V0,v∈V1

〈
σu + τu, X{u,v}

〉)
dσ0

∣∣∣∣∣
2)
·

E

(∣∣∣∣∣
∫

Ω1

exp

(
f1(σ1, τ1) + i

√
β

∑
{u,v}∈E(TdL)
u∈V0,v∈V1

〈
σv + τv, X{u,v}

〉)
dσ1

∣∣∣∣∣
2)
.

(36)
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Let us analyze further the first expectation. We have∣∣∣∣∣
∫

Ω0

exp

(
f0(σ0, τ0) + i

√
β

∑
{u,v}∈E(TdL)
u∈V0,v∈V1

〈
σu + τu, X{u,v}

〉)
dσ0

∣∣∣∣∣
2

=

∫
Ω0

∫
Ω0

exp

(
f0(σ0, τ0) + f0(σ′0, τ0) + i

√
β

∑
{u,v}∈E(TdL)
u∈V0,v∈V1

〈
σu + τu − σ′θ(v) − τθ(v), X{u,v}

〉)
dσ0dσ

′
0.

Thus, identifying σ′0 with the configuration θ(σ′0) in Ω1 we conclude that

E

(∣∣∣∣∣
∫

Ω0

exp

(
f0(σ0, τ0) + i

√
β

∑
{u,v}∈E(TdL)
u∈V0,v∈V1

〈
σu + τu, X{u,v}

〉)
dσ0

∣∣∣∣∣
2)

= Z(τ0, θ(τ0)).

Doing a similar analysis for the second expectation in (36) finishes the proof.

Step 2: Gaussian Domination. In this step we prove the Gaussian domination inequality
(33) as a consequence of the reflection positivity Proposition 2.6.

Observe first that the function Z(·) has a maximum. Indeed, this follows simply from its
definition as Z(·) is continuous, Z(τ) = Z(τ + c) for any constant c and Z(τ) tends to zero
when the difference of any two coordinates in τ tends to infinity. For each τ : V (TdL)→ Rn

define k(τ) to be the number of edges {u, v} ∈ E(TdL) for which τu 6= τv. Let k0 be the
minimum of k(τ) over all τ which maximize Z(·). It suffices to show that k0 = 0 as then
there is a maximizer τ of Z(·) with all coordinates equal, whence Z(τ) = Z(0).

The proof is by contradiction. Suppose that k0 > 0 and let τ be a maximizer of Z(τ)
having k(τ) = k0. By rotating and translating the torus TdL if necessary, we may assume
without loss of generality that there exists an edge {u, v} ∈ E(TdL) with u ∈ V0, v ∈ V1 on
which τu 6= τv. Now, by Proposition 2.6,

Z(τ0, τ1)2 ≤ Z(τ0, θ(τ0))Z(θ(τ1), τ1)

from which it follows that both (τ0, θ(τ0)) and (θ(τ1), τ1) are maximizers of Z(·). It is now
straightforward to check that either k((τ0, θ(τ0))) < k(τ) or k((θ(τ1), τ1)) < k(τ), establishing
the required contradiction.

Step 3: Infra-red bound. In this step we prove the following bound on the Fourier
transform of the correlation function. Write (TdL)∗ for the dual torus to TdL, whose vertex set
is π

L
{−L+ 1,−L+ 2, . . . , L}d.

Proposition 2.7. (Infra-red bound) For each k ∈ V ((TdL)∗) \ {0},

1

|V (TdL)|
∑

u,v∈V (TdL)

ei〈k,v−u〉E (〈σu, σv〉) ≤
n

2β
(∑d

j=1(1− cos(kj))
) .
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The name of the bound stems from the fact that we may use translation invariance to
rewrite the left-hand side as ∑

v∈V (TdL)

ei〈k,v〉E (〈σ0, σv〉) ,

where 0 := (0, . . . , 0), whence we recognize the Fourier transform (in the group TdL) of the
correlation function v 7→ E (〈σ0, σv〉). The above bound thus shows that the Fourier spectrum
of the correlation function does not place much mass on non-zero frequencies, corresponding
to our goal of showing that the correlation function correlates with a constant function.

Proof of Proposition 2.7. The Gaussian domination inequality (33) implies that for any τ :
V (TdL)→ Rn, the scalar function α 7→ Z(α · τ) has a maximum at α = 0. In particular, its
second derivative at α = 0 is non-positive, yielding that

d2

dα2
Z(α · τ)|α=0 =

d2

dα2

∫
Ω

exp

−β
2

∑
{u,v}∈E(TdL)

‖σu + α · τu − σv − α · τv‖2
2

 dσ|α=0

=

∫
Ω

((
β

∑
{u,v}∈E(TdL)

〈σu − σv, τu − τv〉
)2

− β
∑

{u,v}∈E(TdL)

‖τu − τv‖2

)
·

exp

(
− β

2

∑
{u,v}∈E(TdL)

‖σu − σv‖2
2

)
dσ ≤ 0.

Suppose now that σ is randomly sampled from the spin O(n) model on the torus TdL. Recall-
ing the density of the spin O(n) model from (1), we may rewrite the last inequality (similarly
to the relation (32)) as

E

(∣∣∣β ∑
{u,v}∈E(TdL)

〈σu − σv, τu − τv〉
∣∣∣2 − β ∑

{u,v}∈E(TdL)

‖τu − τv‖2

)
≤ 0. (37)

This inequality was derived for real-valued τ but remains valid also for complex-valued τ
by applying the inequality to the real and imaginary parts. Now recall the discrete Green
identity. For r, s : V (TdL)→ Rn we have∑

{u,v}∈E(TdL)

〈ru − rv, su − sv〉 =
∑

u∈V (TdL)

〈ru,−(∆s)u〉

where
(∆s)u :=

∑
v : {u,v}∈E(TdL)

(sv − su).

Applying the identity in (37) and rearranging gives

E

(∣∣∣ ∑
u∈V (TdL)

〈σu,−(∆τ)u〉
∣∣∣2) ≤ 1

β

∑
u∈V (TdL)

〈τu,−(∆τ)u〉 . (38)

19



We now make the following choice for τ . Denote by 1 ∈ Rn the vector with all 1 coordinates.
Let k ∈ V ((TdL)∗) \ {0} and take

τu := ei〈k,u〉 · 1.

With this choice,

(∆τ)u =
∑

v : {u,v}∈E(TdL)

(ei〈k,v〉 − ei〈k,u〉) · 1 = 2

(
d∑
j=1

(cos(kj)− 1)

)
ei〈k,u〉 · 1.

Substituting back into (38) shows that

E

(∣∣∣ ∑
u∈V (TdL)

e−i〈k,u〉 〈σu,1〉
∣∣∣2) ≤ n|V (TdL)|

2β
(∑d

j=1(1− cos(kj))
) ,

which implies the infra-red bound upon expanding the square on the left-hand side.

Step 4: Long-range order. Observe that for any a ∈ {−2L+ 1, . . . , 2L− 1}n,

∑
k∈V ((TdL)∗)

ei〈k,a〉 =
n∏
j=1

 L∑
kj=−L+1

eπikjaj/L

 =

{
0 a 6= 0

|V (TdL)| a = 0
.

Thus, the infra-red bound (Proposition 2.7) implies that

n|V (TdL)| = 1

|V (TdL)|
∑

u,v∈V (TdL)

∑
k∈V ((TdL)∗)

ei〈k,v−u〉E (〈σu, σv〉)

≤ 1

|V (TdL)|
∑

u,v∈V (TdL)

E (〈σu, σv〉) +
n

2β

∑
k∈V ((TdL)∗)\{0}

1(∑d
j=1(1− cos(kj))

) .
Rearranging, we finally obtain that

1

|V (TdL)|2
∑

u,v∈V (TdL)

E (〈σu, σv〉) ≥ 1− 1

2β|V (TdL)|
∑

k∈V ((TdL)∗)\{0}

1∑d
j=1(1− cos(kj))

. (39)

It remains to note that, identifying a Riemann sum on the right-hand side,

lim
L→∞

1

|V (TdL)|
∑

k∈V ((TdL)∗)\{0}

1∑d
j=1(1− cos(kj))

=

∫
[−π,π]d

1∑d
j=1(1− cos(xj))

dx,

and the integral is finite in dimensions d ≥ 3 as 1− cos(xj) is of order x2
j when xj is small.

Thus the sum on the right-hand side of (39) is uniformly bounded in L for d ≥ 3, showing
that when β is sufficiently large the right-hand side is positive and proving Theorem 2.5.
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2.7 Slow decay of correlations in spin O(2) models - heuristics for
the Berezinskii-Kosterlitz-Thouless transition and a theorem
of Aizenman

In this section we consider the question of proving a polynomial lower bound on the decay of
correlations in the two-dimensional spin O(2) model. As described in Section 2.2, this was
achieved for the XY model at sufficiently low temperatures in the celebrated work of Fröhlich
and Spencer on the Berezinskii-Kosterlitz-Thouless transition (*** ref ***). The result is too
difficult to present within the scope of our notes and instead we start by giving a heuristic
reason for the existence of the transition. The heuristic suggests that a polynomial lower
bound on correlations will always hold in the spin O(2) model with a potential U of bounded
support (as explained below). We then proceed by presenting a theorem of Aizenman [1],
following earlier predictions by Patrascioiu and Seiler [20], who made rigorous a version of
the last statement.

2.7.1 Heuristic for the Berezinskii-Kosterlitz-Thouless transition and vortices
in the XY model

To motivate the result, let us first give a heuristic argument for the Berezinskii-Kosterlitz-
Thouless phase transition. Let h : V (T2

L)→ R be a randomly sampled discrete Gaussian free
field. By this, we mean that h((0, 0)) := 0 and h is sampled from the probability measure

1

ZDGFF
T2
L,β

exp

−β ∑
{u,v}∈E(G)

(hu − hv)2

 ∏
v∈V (T2

L)
v 6=(0,0)

dm(hv), (40)

with ZDGFF
T2
L,β

a suitable normalization constant and dm standing for the Lebesgue measure on

R. As the expression in the exponential is a quadratic form in h, it follows that h has a multi-
dimensional Gaussian distribution with zero mean. Moreover, the matrix of this quadratic
form is proportional to the graph Laplacian of T2

L, whence the covariance structure of h is
proportional to the Green’s function of T2

L. In particular,

Var(hx) = Var(hx − h0) ≈ a

β
log ‖x− y‖1 (41)

for large ‖x−y‖1, with some specific constant a > 0. Now consider the random configuration
σ : V (T2

L) → S1, with S1 identified with the unit circle in the complex plane, obtained by
setting

σv := exp(ihv). (42)

This configuration has some features in common with a sample of the XY model (normalized
to have σ(0,0) = 1). Although its density is not a product of nearest-neighbor terms, one
may imagine that the main contribution to it does come from nearest-neighbor interactions,
at least for large β when the differences hu − hv of nearest neighbors tend to be small. The
interaction term −β(hu− hv)2 in (40) is then rather akin to an interaction term of the form
β
2
〈σu, σv〉 as in the XY model (as 〈s, y〉 is the cosine of the difference of arguments between
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s and t and one may consider its Taylor expansion around s = t). The main advantage in
this definition of σ is that it allows a precise calculation of correlation. Indeed, as hx has a
centered Gaussian distribution with variance given by (41), it follows that

ρx,(0,0) := E(
〈
σx, σ(0,0)

〉
) = E(cos(hx)) = e−

Var(hx)
2 ≈ ‖x− y‖

− a
β

1 , (43)

and thus σ exhibits polynomial decay of correlations.
There are many reasons why the analogy between the definition (42) and samples of the

XY model should not hold. Of these, the notion of vortices has been highlighted in the
literature. Suppose now that σ : V (T2

L) → S1 is an arbitrary configuration. Associate to
each directed edge (u, v), where {u, v} ∈ E(T2

L), the difference θ(u,v) in the arguments of σu
and σv, with the convention that θ(u,v) ∈ [−π, π). Call a 2 × 2 ‘square’ in the graph T2

L a
plaquette (these are exactly the simple cycles of length 4 in T2

L). For a plaquette P , set sP
to be the sum of θ(u,v) on the edges around the plaquette going in ‘clockwise’ order, say. We
necessarily have that sP ∈ {−2π, 0, 2π} and one says that there is a vortex at P if sP 6= 0,
with charge plus or minus according to the sign of sP . Vortices form an obstruction to
defining a height function h for which (42) holds, as one would naturally like the differences
of this h to be the θ(u,v), but then one must have sP = 0 for all plaquettes. Existence of
vortices means that h needs to be a multi-valued function, with a non-trivial monodromy
around plaquettes with sP 6= 0.

Now take σ to be a sample of the XY model on T2
L at inverse temperature β. When β

is small, the model is disordered as one may deduce from the high-temperature expansion
(Section 2.3) and there are vortices of both charges in a somewhat chaotic fashion (a ‘plasma’
of vortices), making the analogy with the definition (42) rather weak. Indeed, in this case
there is exponential decay of correlations violating (43). However, when β is large, it can be
shown (e.g., by the so-called chessboard estimate) that large differences θ(u,v) in the angles
are rare, whence vortices are rare too. Thus, one may hope vortices to bind together, coming
in structures of small diameter of overall neutral charge (the smallest structure is a dipole,
having one plus and one minus vortex). When this occurs, the height function h can be
defined as a single-valued function at most vertices and one may hope that the analogy (42)
is of relevance so that, in particular, polynomial decay of correlations holds. This gives a
heuristic reason for the Berezinskii-Kosterlitz-Thouless transition (*** ref ***).

2.7.2 Slow decay of correlations for Lipschitz spin O(2) models

The above heuristic suggests the consideration of the spin O(2) model with a potential U
of bounded support. By this we mean a measurable U : [−1, 1] → (−∞,∞] (allowing here
U(r) =∞) which satisfies

U(r) =∞ when r < r0 ∈ (−1, 1).

This property constrains the corresponding O(2) model so that adjacent spins have difference
of arguments at most arccos(r0). Such a spin configuration may naturally be called Lipschitz
(as in a Lipschitz function). If r0 ≥ 0, the maximal difference allowed is at most π

2
which

implies that the spin configuration is free of vortices with probability one. If indeed vortices
are the reason behind the Berezinskii-Kosterlitz-Thouless transition, then one may expect
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such models to always exhibit polynomial decay of correlations. Patrascioiu and Seiler [20]
predicted, based on rigorous mathematical statements and certain yet unproven conjectures,
that a phenomenon of this kind should hold. Aizenman [1] then gave a beautiful proof of a
version of the above statement, which we now proceed to present.

A function U : [−1, 1]→ (−∞,∞] is called non-increasing if

U(r1) ≥ U(r2) when r1 ≤ r2. (44)

This property implies that the spin O(2) model with potential U is ferromagnetic in the sense
that configurations in which the differences of angles between adjacent spins are reduced have
higher density (see (3)).

Theorem 2.8. Let U : [−1, 1]→ (−∞,∞] be non-increasing and satisfy

U(r) =∞ when r <
1√
2
. (45)

Suppose that σ : V (T2
L)→ S1 is randomly sampled from the two-dimensional spin O(2) model

with potential U . Then, for any integer 1 ≤ ` ≤ L,

max
x,y∈V (T2

L)
‖x−y‖1≥`

ρx,y = max
x,y∈V (T2

L)
‖x−y‖1≥`

E(〈σx, σy〉) ≥
1

2`2
. (46)

We make a few remarks regarding the statement. First, one would expect that ρx,y is at
least a power of ‖x−y‖1 for all x, y ∈ V (T2

L). The bound (46) is a little weaker in that it only
shows existence of a pair x, y with this property (the proof actually gives a slightly stronger
statement, see *** below), but is still enough to rule out exponential decay of correlations in
the sense we saw occurs at high temperatures (see Section 2.3. Second, the bound (46) can
be said to hold at all temperatures in that it will continue to hold if we multiply the potential
U by any constant. Third, the constraint (45) is stronger than the constraint discussed above
which would prohibit vortices (U(r) =∞ if r < 0). This stronger assumption is used in the
proof and it remains open to understand the behavior with other versions of the constraint.
(*** polynomial upper bound too in forthcoming work GMP ***)

We proceed to the proof of Theorem 2.8. Let U be a potential as in the theorem and
σ : V (T2

L) → S1 be randomly sampled from the two-dimensional spin O(2) model with
potential U .

Step 1: Passing to {−1, 1}-valued random variables. A main idea in the proof, sug-
gested in the work of Patrascioiu and Seiler [20], is to consider the configuration σ conditioned
on the y coordinate of each spin and identify an Ising-type model which is embedded in the
configuration. Precisely, let us identify S1 with the (real) plane R2 and write the coordinates
explicitly,

σv = (σ1
v , σ

2
v) at each vertex v ∈ V (T2

L).

We write σ1 (σ2) for the function σ1
· (σ2

· ). Then, for every pair of vertices x, y ∈ V (T2
L),

ρx,y = E(〈σx, σy〉) = E(σ1
xσ

1
y + σ2

xσ
2
y) = 2E(σ1

xσ
1
y),
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as the distribution of σ is invariant to global rotations ((σ1, σ2) has the same distribution as
(σ2, σ1) from the choice of density (3)). In particular, conditioning on σ2,

ρx,y = 2E(E(σ1
xσ

1
y | σ2)) = 2E(|σ1

x| · |σ1
y| · E(εxεy | σ2)), (47)

where we write σ1
v = |σ1

v |εv where εv ∈ {−1, 1} and we note that |σ1
v | is determined from σ2

v

as σv ∈ S1.

Step 2: Non-negativity of conditional correlations. Our goal now is to show that

E(εxεy | σ2) ≥ 0 for every x, y ∈ V (T2
L), almost surely. (48)

To this end, we proceed to develop a high-temperature expansion for the signs ε, conditioned
on σ2, similarly to the derivation in Section 2.3. Observe that for almost every value of σ2,
the density of the signs ε conditioned on σ2 (with respect to the uniform product measure
on {−1, 1}V (T2

L)) is

1

Zσ2

exp

− ∑
{u,v}∈E(T2

L)

U(〈σu, σv〉)

 =
1

Zσ2

exp

− ∑
{u,v}∈E(T2

L)

U(|σ1
u| · |σ1

v |εuεv + σ2
uσ

2
v)


where

Zσ2 =
∑

ε∈{−1,1}V (T2
L
)

exp

− ∑
{u,v}∈E(T2

L)

U(|σ1
u| · |σ1

v |εuεv + σ2
uσ

2
v)

 .
Now observe that our assumption that U is non-increasing implies that

U(|σ1
u| · |σ1

v |+ σ2
uσ

2
v) ≤ U(−|σ1

u| · |σ1
v |+ σ2

uσ
2
v) for every u, v ∈ V (T2

L), almost surely.

With this in mind, we write

f{u,v}(ε) := exp
[
− U(|σ1

u| · |σ1
v |εuεv + σ2

uσ
2
v) + U(−|σ1

u| · |σ1
v |+ σ2

uσ
2
v)
]
− 1 ≥ 0, u, v ∈ V (T2

L),

(49)

and

f0 := exp

− ∑
{u,v}∈E(T2

L)

U(−|σ1
u| · |σ1

v |+ σ2
uσ

2
v)


so that

Zσ2 = f0

∑
ε∈{−1,1}V (T2

L
)

∏
{u,v}∈E(T2

L)

(f{u,v}(ε) + 1) = F
∑

E⊂E(T2
L)

∑
ε∈{−1,1}V (T2

L
)

∏
{u,v}∈E

f{u,v}(ε).

Exactly as in Section 2.3, we interpret the last equality as prescribing a probability measure
(as f{u,v}(ε) ≥ 0 from (49)) over pairs (E, ε). Examining the definition (49), we see that
in this probability measure, conditioned on E, the signs ε are obtained by independently
assigning to the vertices in each connected component of (V (T2

L), E) the same spin value,
picked uniformly from {−1, 1}. Thus, for every x, y ∈ V (T2

L), E(εxεy | σ2) equals the
probability that x is connected to y in the graph (V (T2

L), E). The non-negativity statement
(48) is an immediate consequence.
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Remark 2.5. Of course, we may also conclude from (48) and (47) that the correlations
ρx,y themselves are non-negative. In fact, the above derivation may be equally done for the
spin O(n) model with non-increasing potential U on any graph G and for any n ≥ 1 (by
conditioning on all the coordinates of σ but the first) to conclude that such models have
non-negative correlations. This is the case, in particular, for the standard spin O(n) models.
We point out that this need not be the case, however, for completely general potentials.
For instance, suppose σ is a sample from the standard spin O(n) model on TdL at inverse
temperature β and define a new configuration τ by setting τv = σv at even vertices v and
τv = −σv at odd vertices v. Here, a vertex is even if the sum of its coordinates is even and
otherwise odd. As the correlations of σ are non-negative, the correlations ρx,y of τ , between
an even vertex x and an odd vertex y, will be non-positive, and in fact negative (this also
follows from the above derivation of (48)). However, the density of τ is the same as in (1)
with β replaced by −β (τ is a sample of the anti-ferromagnetic spin O(n) model). In other
words, τ is sampled from the spin O(n) model with potential U(r) = βr (which is indeed
increasing).

Step 3: A lower bound on correlations in terms of connectivity. A key idea in the
analysis of Aizenman [1] is the consideration of the following random set of vertices

V0 :=

{
v ∈ V (T2

L) : |σ1
v | ≥

1√
2

}
.

Note that this set is measurable with respect to σ2. Let us consider the relevance of this set
to the conditional correlations E(εxεy | σ2) discussed above.

For reasons that will become clear in the next step, we introduce a second adjacency
relation on the vertices V (T2

L). We say that u, v ∈ V (T2
L) are �-adjacent if {u, v} ∈ E(T2

L)
or u, v are next-nearest-neighbors in T2

L which differ in both coordinates (they are diagonal
neighbors). Now observe that, almost surely,

if u, v are �-adjacent and both u, v ∈ V0 then εu = εv.

This is a consequence of the bounded support constraint (45) and it is here that the number
1√
2

in that constraint is important (as we are allowing next-nearest-neighbors). Together with

the non-negativity property (48), it follows that conditionally on σ2, for every x, y ∈ V (T2
L),

almost surely,
E(εxεy | σ2) ≥ 1(Ex,y)

where we write 1(E) for the indicator function of the event

Ex,y := {x and y are connected in the graph on V0 ⊆ V (T2
L) with the �-adjacency}.

Plugging this relation back into the identity (47) for the correlation ρx,y shows that

ρx,y ≥ 2E(|σ1
x| · |σ1

y|1(E)) ≥ P(Ex,y), (50)

where we used that |σ1
x| · |σ1

y| ≥ 1
2

when x, y ∈ V0. We now proceed to deduce Theorem 2.8
from this lower bound.
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Step 4: Duality for vertex crossings. Fix an integer 1 ≤ ` ≤ L and define the discrete
square R := {1, . . . , `}2 ⊆ V (T2

L).

Geometric fact: For any subset R0 ⊆ R, either there is a top-bottom crossing of R with
vertices of R0 and the �-adjacency or there is a left-right crossing of R with vertices of R\R0

and the standard nearest-neighbor adjacency (that of T2
L).

The fact is intuitive though finding a simple proof requires some ingenuity. We refer the
reader to Timár [23] for this and related statements.

Now consider the two events

E := {there is a top-bottom crossing of R with vertices of V0 and the �-adjacency},
F := {there is a left-right crossing of R with vertices of V (T2

L) \ V0 and the standard adjacency}.

By rotational-symmetry of the configuration σ (its distribution is invariant under applying
a global rotation) we have P(F ) = P(F̃ ) where

F̃ := {there is a left-right crossing of R with vertices of V0 and the standard adjacency}.

In particular, as R is a square and since it easier to be connected in the �-adjacency than
in the nearest-neighbor adjacency, we conclude that

P(E) ≥ P(F ). (51)

Lastly, the geometric fact implies that P(E ∪ F ) = 1, whence

1 = P(E ∪F ) ≤ P(E) +P(F )
(51)

≤ 2P(E) ≤ 2
∑

x=(a,1), 1≤a≤`
y=(b,`), 1≤b≤`

P(Ex,y)
(50)

≤ 2
∑

x=(a,1), 1≤a≤`
y=(b,`), 1≤b≤`

ρx,y, (52)

from which Theorem 2.8 follows.

3 The Loop O(n) model

3.1 Definitions

Let H denote the hexagonal lattice. A loop is a finite subgraph of H which is isomorphic to a
simple cycle. A loop configuration is a spanning subgraph of H in which every vertex has even
degree; see Figure 1. The non-trivial finite connected components of a loop configuration are
necessarily loops, however, a loop configuration may also contain isolated vertices and infinite
simple paths. We shall often identify a loop configuration with its set of edges, disregarding
isolated vertices. A domain H is a non-empty finite connected induced subgraph of H whose
complement V (H) \ V (H) induces a connected subgraph of H (in other words, it does not
have “holes”). Given a domain H, we denote by LoopConf(H) the collection of all loop
configurations ω that are contained in H. Finally, for a loop configuration ω, we denote by
L(ω) the number of loops in ω and by o(ω) the number of edges of ω.
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Figure 1: On the left, a loop configuration. On the right, a proper 3-coloring of the triangular
lattice T (the dual of the hexagonal lattice H), inducing a partition of T into three color
classes T0, T1, and T2. The 0-phase ground state ω0

gnd is the (fully-packed) loop configuration
consisting of trivial loops around each hexagon in T0.

Let H be a domain and let n and x be positive real numbers. The loop O(n) measure
on H with edge weight x is the probability measure PH,n,x on LoopConf(H) defined by

PH,n,x(ω) :=
xo(ω)nL(ω)

Z loop
H,n,x

,

where Z loop
H,n,x, the partition function, is given by

Z loop
H,n,x :=

∑
ω∈LoopConf(H)

xo(ω)nL(ω).

The x =∞Model. We also consider the limit of the loop O(n) model as the edge weight x
tends to infinity. This means restricting the model to ‘optimally packed loop configurations’,
i.e., loop configurations having the maximum possible number of edges.

Let H be a domain and let n > 0. The loop O(n) measure on H with edge weight x =∞
is the probability measure on LoopConf(H) defined by

PH,n,∞(ω) := lim
x→∞

PH,n,x(ω) =

{
nL(ω)

ZH,n,∞
if o(ω) = oH

0 otherwise
,

where oH := max{o(ω) : ω ∈ LoopConf(H)} and ZH,n,∞ is the unique constant making
PH,n,∞ a probability measure. We note that if a loop configuration ω ∈ LoopConf(H) is fully-
packed, i.e., every vertex in V (H) has degree 2, then ω is optimally packed, i.e., o(ω) = oH .
In particular, if such a configuration exists for the domain H then the measure PH,n,∞ is
supported on fully-packed loop configurations.

3.2 Relation to the spin O(n) model

We note that the loop O(n) model is defined for any real n > 0 whereas the spin O(n) model
is only defined for positive integer n (the loop O(n) model may be defined also with n = 0
by taking the limit n→ 0, giving rise to a self-avoiding walk model). For integer n, there is

27



a connection between the loop and the spin O(n) models on a domain H ⊂ H. Rewriting
the partition function Zspin

H,n,β given by (2) using the approximation et ≈ 1 + t gives

Zspin
H,n,β =

∫
Ω

∏
{u,v}∈E(H)

exp [β〈σu, σv〉] dσ

≈
∫
Ω

∏
{u,v}∈E(H)

(1 + β〈σu, σv〉) dσ =
∑

ω⊂E(H)

(β/n)o(ω)

∫
Ω

∏
{u,v}∈E(ω)

〈
√
n · σu,

√
n · σv〉 dσ,

=
∑

ω∈LoopConf(H)

(β/n)o(ω)nL(ω),

where the last equality follows by splitting the integral into a product of integrals on each
connected component of ω and then using the following calculation.

Exercise. Let E ⊂ E(H) be finite and connected. Show that∫
Ω

∏
{u,v}∈E

〈
√
n · σu,

√
n · σv〉 dσ =

{
n if E is a loop

0 otherwise
.

(see [8, Appendix A] for the calculation)

Hence, substituting x for β/n, we obtain

Zspin
H,n,nx ≈ Z loop

H,n,x.

In the same manner, the correlation ρu,v for u, v ∈ V (H) in the spin O(n) model at inverse
temperature β = nx may be approximated as follows.

ρu,v =

∫
Ω

〈σu, σv〉
∏

{w,z}∈E(H)

exp [β〈σw, σz〉]

Zspin
H,n,β

≈ n ·

∑
λ∈LoopConf(H,u,v)

xo(λ)nL
′(λ)J(λ)

Z loop
H,n,x

, (53)

where LoopConf(H, u, v) is the set of spanning subgraphs of H in which the degrees of u and
v are odd and the degrees of all other vertices are even. Here, for λ ∈ LoopConf(H, u, v), o(λ)
is the number of edges of λ, L′(λ) is the number of loops in λ after removing an arbitrary
simple path in λ between u and v, and J(λ) := 3n

n+2
if there are three disjoint paths in λ

between u and v and J(λ) := 1 otherwise (in which case, there is a unique simple path in λ
between u and v).

Exercise. Use the approximation et ≈ 1 + t to obtain the asserted representation in (53)
(see [8, Appendix A] for the calculation).

Unfortunately, the above approximation is not justified for any x > 0. Nevertheless, (53)
provides a heuristic connection between the spin and the loop O(n) models and suggests
that both these models reside in the same universality class. For this reason, it is natural to
ask whether the prediction about the absence of phase transition is valid for the loop O(n)
model.
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Question: Does the quantity on the right-hand side of (53) decay exponentially fast in the
distance between u and v, uniformly in the domain H, whenever n > 2 and x > 0?

This question is partially answered in [8], where it is showed that for all sufficiently large
n and any x > 0, the quantity on the right-hand side of (53) decays exponentially fast for a
large class of domains H. The result is a consequence of a more detailed understanding of
the loop O(n) model with large n which we elaborate on in Section 3.5.

(*** Add section on exact representations of spin O(n) model ***)

3.3 Conjectured phase diagram and equivalent models

It is predicted (*** ref ***) that the loop O(n) model exhibits critical behavior when the
parameter n ∈ [0, 2]. In this regime, the model should have a critical value xc(n) with the
formula

xc(n) :=
1√

2 +
√

2− n
.

The prediction is that for x < xc the model is sub-critical in the sense that the probability
that a loop passing through a given point has length longer than t decays exponentially in
t. When x ≥ xc, the model should be critical, with the same probability decaying only
polynomially in t and with the model exhibiting a conformally invariant scaling limit. Fur-
thermore, there should be two critical regimes: when x = xc and x > xc, each characterized
by its own conformally invariant scaling limit (the same one for all x > xc and a different one
for x = xc). Kager and Nienhuis (*** ref ***) predict that in both cases, the loops should
scale in a proper limit to random Schramm Löwner evolution (SLE) curves with parameter
κ satisfying

n = −2 cos

(
4π

κ

)
,

where, however, we take the solution of the above equation to satisfy κ ∈ [8
3
, 4] when x = xc

and κ ∈ [4, 8] when x > xc. When the parameter n satisfies n > 2 it is predicted that the
model is always subcritical in the sense of exponential decay of loop lengths described above
(*** see also later section ***). These predictions have been mathematically validated only
in very special cases. The Ising model case, when n = 1, x = xc(1) = 1√

3
is known to be

critical with its loops scaling to SLE(3) (*** ref, DCS10? ***). In the percolation case,
n = x = 1, Smirnov proved that the loops scale to SLE(6) (*** ref ***). In the self-avoiding
walk case, n = 0 (*** explain this value? ***), it was proved by Duminil-Copin and Smirnov
that the critical value of x (the inverse of the connective constant of the hexagonal lattice)
is xc(0) = 1√

2+
√

2
(*** see later section? ***), though conformal invariance and convergence

to SLE have not been established. Furthermore, it was shown in the n = 0 case that for
x > xc(0) the self-avoiding path is space filling (*** ref ***). Lastly, it has been shown (***
ref ***) that for large values of n, there is exponential decay of loop lengths for all values of
x (*** see later section? ***).

Like in the spin model, special cases of the loop O(n) model have names of their own:

• When n = 0, one formally obtains the self-avoiding walk (SAW).
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• When n = 1, the model is equivalent to the Ising model on the triangular lattice (the
loops represent the interfaces between spins of different value).

• When n = 1 and x = 1, the model is equivalent to the Ising model on the triangular
lattice at infinite temperature, which in turn is the same as critical site percolation on
the triangular lattice.

• When n = 1 and x =∞, the model is equivalent to the anit-ferromagnetic Ising model
on the triangular lattice at zero temperature, and is also called the dimer model.

• When n ≥ 2 is an integer, the model is a marginal of a discrete random Lipschitz
function on the triangular lattice. When n = 2 this function takes integer values and
when n ≥ 3 it takes values in the n-regular tree. See Section 3.3.1 for more details.

• When n = ∞ (formally, n → ∞ and nx6 → c > 0), the model becomes the hard-
hexagon model.

(*** Also dilute Potts model when n =
√
q, q integer, ref Nienhuis (see Kager and Nienhuis)

***)

3.3.1 Relation to Lipschitz functions

When the parameter n is a positive integer, the loop O(n) model admits a height function
representation, which is a special case of a graph homomorphism. Let T ′n be the n-regular
tree (so that T ′1 = {+,−} and T ′2 = Z) rooted at an arbitrary vertex ρ, and let Tn be the
graph obtained from T ′n by adding a loop at every vertex. Consider a graph homomorphism
ϕ from the triangular lattice T (the dual of the hexagonal lattice) to Tn, and note that the
interfaces arising from the level lines of ϕ define a loop configuration ωϕ. Given a domain H,
we restrict our attention to those homomorphism ϕ satisfying that ϕ(t) = ρ for all hexagons
t ∈ T which are not entirely contained in H (where t is seen as a face of H). Now, if one
samples such a random homomorphism ϕ with probability proportional to xnumber of edges in ωϕ ,
then it is straightforward to check that ωϕ is distributed according to PH,n,x. In this sense, ϕ
is a height function representation of the model. In particular, for n = 1 this representation
is an Ising model (either ferromagnetic or antiferromagnetic, depending on x), and for n = 2
it is a restricted Solid-On-Solid model (a Lipschitz function).

3.4 Self-avoiding walk and the connective constant

When n → 0 and under vacant boundary, the probability of any non-empty loop configu-
ration tends to zero. Thus, under vacant boundary conditions, the n = 0 model is trivial.
However, as can be done for the spin O(n), here too one may impose different boundary con-
ditions on the model, where the states of certain edges are pre-specified. Taking boundary
conditions for which precisely two edges e1 and e2 on the boundary of the domain H are
present, one may force a self-avoiding path between these two edges within the domain in
addition to possible loops. Thus, under such boundary conditions, in the limit as n → 0,
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one obtains a random self-avoiding walk. The probability of such a given self-avoiding walk
γ is proportional to xlength(γ). The partition function, Zsaw

x,e1,e2
, is given by

Zsaw
x,H,e1,e2

:=
∑

γ:e1→e2
γ⊂H

xlength(γ) =
∞∑
k=0

sk,H,e1,e2x
k,

where sk,H,e1,e2 is the number of self-avoiding walks of length k from e1 to e2 in H.
We consider the related partition function, Zsaw

x , of all self-avoiding walks starting at the
origin, given by

Zsaw
x :=

∑
γ: γ0=0

xlength(γ) =
∞∑
k=0

skx
k,

where sk is the number of self-avoiding walks of length k starting at a fixed vertex. The
series defining Zsaw

x has a radius of convergence xc ∈ [0,∞] so that Zsaw
x < ∞ when x < xc

and Zsaw
x =∞ when x > xc. This is the critical point of the model. The critical value xc is

directly related to the exponential rate of growth of sk.
An important and simple observation is that sk is sub-multiplicative. That is,

sk+m ≤ sksm.

It follows that the limit
µ := lim

k→∞
s

1/k
k

exists and is finite. The number µ, called the connective constant of the hexagonal lattice,
clearly relates to the critical value via µ = 1/xc.

Exercise. Show that µ is well-defined and that µ = infk s
1/k
k .

Exercise. Show that 2k/2 ≤ sk ≤ 3 · 2k−1 and deduce that
√

2 ≤ µ ≤ 2.

Recently, Hugo Duminil-Copin and Stanislav Smirnov [9] showed the following.

Theorem 3.1. The connective constant of the hexagonal lattice is

µ =

√
2 +
√

2.

We do not give the proof in these notes and refer the interested reader to [9].

3.5 Large n

It is believed that the loop O(n) model, although only an approximation of the spin O(n)
model, resides in the same universality class as the spin O(n) model. Thus, as in the
case of the spin O(n) model, it has been conjectured that the loop O(n) model exhibits
exponential decay of correlations when n > 2. In a recent work, Hugo Duminil-Copin, Ron
Peled, Wojciech Samotij and Yinon Spinka [8] established this for large n, showing that long
loops are exponentially unlikely to occur, uniformly in the edge weight x. This result is the
content of the following theorem. First, we require some definitions (see Figure 1 for their
illustration).
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We consider the triangular lattice T := (0, 2)Z+(
√

3, 1)Z, and view the hexagonal lattice
H as its dual lattice, obtained by placing a vertex at the center of every face (triangle) of T,
so that each edge e of H corresponds to the unique edge e∗ of T which intersects e. Since
vertices of T are identified with faces of H, they will be called hexagons instead of vertices.
We also say that a vertex or an edge of H borders a hexagon if it borders the corresponding
face of H.

Fix a proper 3-coloring of the triangular lattice T (there is a unique such coloring up to
permutations of the colors), and let T0, T1 and T2 denote the color classes of this coloring.
The 0-phase ground state ω0

gnd is defined to be the (fully-packed) loop configuration consisting
of trivial loops (loops of length 6) around each hexagon in T0. A domain H ⊂ H is said to be
of type 0 if no edge on its boundary belongs to ω0

gnd, or equivalently, if every edge bordering
a hexagon in T0 has either both or neither of its endpoints in V (H). Finally, we say that
a loop surrounds a vertex u of H if any infinite simple path in H starting at u intersects a
vertex of this loop. In particular, if a loop passes through a vertex then it surrounds it as
well.

Theorem 3.2. There exist n0, c > 0 such that for any n ≥ n0, any x ∈ (0,∞] and any
domain H of type 0 the following holds. Suppose ω is sampled from the loop O(n) model in
domain H with edge-weight x. Then, for any vertex u ∈ V (H) and any integer k > 6,

P(there exists a loop of length k surrounding u) ≤ n−ck.

The reasons behind this exponential decay are quite different when x is small or large.
While there is no transition to slow decay of loop lengths as x increases, there is a differ-
ent kind of transition in terms of the structure of the random loop configuration and, in
particular, in how the loops pack in the domain. When x is small, the model is dilute and
disordered, whereas, when x is large, the model is dense and ordered; these behaviors are
depicted in Figure 2. The proof for small x is very similar in nature to the high-temperature
case of the spin O(n) model, as described in Section 2.3, while the proof for large x is more
intricate.

Given a loop configuration ω, we say that u and v are loop-connected if there exists a
path between u and v consisting only of vertices which belong to loops in ω, and we say
that u and v are ground-connected if there exists a path between u and v consisting only of
vertices which belong to loops in ω ∩ ω0

gnd.

Theorem 3.3. There exists C, c > 0 such that for any n ≥ C, any x ∈ (0,∞], any domain
H of type 0 and any u ∈ V (H) the following holds. Suppose ω is sampled from the loop O(n)
model in domain H with edge-weight x. Then on the one hand,

P(u is loop-connected to distance k) ≤ C(nx6)ck,

and on the other hand,

P(u is ground-connected to ∂V (H)) ≥ 1− C(nmin{x6, 1})−c.

Thus, when n is large, the theorem establishes a change in behavior as nx6 transitions
from small to large values. In particular, when nx6 is large, the hexagons in T0 are very likely
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(a) n = 8 and x = 0.5. When x is small, the lim-
iting measure is unique for domains with vacant
boundary conditions, and the model is in a dilute,
disordered phase.

(b) n = 8 and x = 2. When n and x are large, the
model is in an ordered phase where typical con-
figurations are small perturbations of the ground
state.

Figure 2: Two samples of random loop configurations with large n. Configurations are on a
60 × 45 domain of type 0 and are sampled via Glauber dynamics for 100 million iterations
started from the empty configuration.

to be surrounded by trivial loops. In fact, as the proof shows, in this regime of parameters,
the model is in a dense, ordered phase which is a small perturbation of the 0-phase ground
state ω0

gnd. On the other hand, when nx6 is small, every hexagon is unlikely to be surrounded
by a loop.

3.5.1 Proof of results for large n

In these notes, we give an extended overview of the proof of Theorem 3.2 and Theorem 3.3,
omitting many of the details. The techniques of the proof are combinatorial in nature and
rely on a general principle captured by the following simple lemma.

Lemma 3.4. Let p, q > 0 and let E and F be two events in a discrete probability space. If
there exists a map T : E → F such that P(T(e)) ≥ p ·P(e) for every e ∈ E, and |T−1(f)| ≤ q
for every f ∈ F , then

P(E) ≤ q

p
· P(F ).

Proof. We have

p · P(E) ≤
∑
e∈E

P(T(e)) =
∑
e∈E

∑
f∈F

P(f)1{T(e)=f} =
∑
f∈F

|T−1(f)| · P(f) ≤ q · P(F ).
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The results for small x are obtained via a fairly standard, and short, Peierls argument,
by applying the above lemma to a map which removes loops (see Lemma 3.8 below). Thus,
the main focus here lies in the study of the loop O(n) model for large x.

In the large x regime, the main idea is to identify the region having an atypical structure
(which is called the breakup) and apply the above lemma to a suitably defined ‘repair map’.
This map takes a configuration ω sampled in a domain of type 0 and having a large breakup
and returns a ‘repaired’ configuration in which the breakup is significantly reduced (see
Figure 4). In order to use Lemma 3.4, it is important that the number of preimages of a
given loop configuration is exponentially smaller than the probability gain. This yields the
main lemma, Lemma 3.7, from which the results for large x are later deduced.

Basic definitions. A circuit is a simple closed path in T of length at least 3. We may
view a circuit γ as a sequence of hexagons (γ0, . . . , γm) with γ0 = γm. Define γ∗ to be the
set of edges {γi, γi+1}∗ ∈ E(H) for 0 ≤ i < m. We now state two standard geometric facts
regarding circuits and domains, which may be seen as a discrete version of the Jordan curve
theorem. Proofs of these facts can be found in [8, Appendix B].

Fact 3.5. If γ is a circuit then the removal of γ∗ splits H into exactly two connected com-
ponents, one of which is infinite, denoted by Ext(γ), and one of which is finite, denoted by
Int(γ). Moreover, each of these are induced subgraphs of H.

Fact 3.6. Circuits are in one-to-one correspondence with domains via γ ↔ Int(γ).

Hence, every domainH may be written asH = Int(γ) for some circuit γ. Note also thatH
is of type 0 if and only if γ ⊂ T\T0. We denote the vertex sets and edge sets of Int(γ),Ext(γ)
by IntV(γ),ExtV(γ) and IntE(γ),ExtE(γ), respectively. Note that {IntV(γ),ExtV(γ)} is a
partition of V (H) and that {IntE(γ),ExtE(γ), γ∗} is a partition of E(H). We also define
Inthex(γ) to be the set of faces of Int(γ), i.e., the set of hexagons z ∈ T having all their six
bordering vertices in IntV(γ). Since Int(γ) is induced, this is equivalent to having all six
bordering edges in IntE(γ).

Definition 3.1 (c-flower, c-garden, c-cluster, vacant circuit; see Figure 3). Let c ∈ {0, 1, 2}
and let ω be a loop configuration. A hexagon z ∈ Tc is a c-flower of ω if it is surrounded by
a trivial loop in ω. A subset E ⊂ E(H) is a c-garden of ω if there exists a circuit σ ⊂ T \Tc

such that E = IntE(σ) ∪ σ∗ and every z ∈ Tc ∩ ∂Inthex(σ) is a c-flower of ω. In this case,
we denote σ(E) := σ. A garden of ω is a c-garden of ω for some c ∈ {0, 1, 2}. A subset
C ⊂ E(H) is a c-cluster of ω if it is a c-garden of ω and it is not contained in any other
garden of ω. A cluster of ω is a c-cluster of ω for some c ∈ {0, 1, 2}. A circuit σ is vacant
in ω if ω ∩ σ∗ = ∅.

We stress the fact that a garden/cluster is a subset of the edges of H. We remark that
distinct clusters of ω are edge disjoint and that, moreover, distinct c-clusters (for some c)
are slightly separated from one another. Here and below, when A is a subset of vertices of
a graph G, we use ∂A to denote the (vertex) boundary of A, i.e.,

∂A :=
{
u ∈ A : {u, v} ∈ E(G) for some v 6∈ A

}
.
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Figure 3: A garden. The dashed line denotes a vacant circuit σ ⊂ T\Tc, where c ∈ {0, 1, 2}.
The edges inside σ, along with the edges crossing σ, then comprise a c-garden of ω, since
every hexagon in Tc ∩ ∂Inthex(σ) is surrounded by a trivial loop.

Statement of the main lemma. For a loop configuration ω and a vacant circuit γ in ω,
denote by V (ω, γ) the set of vertices v ∈ IntV(γ) such that the three edges of H incident
to v are not all contained in the same cluster of ω ∩ IntE(γ). One may check that a vertex
v ∈ IntV(γ) satisfies v ∈ V (ω, γ) if and only if v is incident to an edge which is not in any
cluster or each of its incident edges lies in a different cluster. The set V (ω, γ) specifies the
deviation in ω from the 0-phase ground state along the interior boundary of γ. The main
lemma shows that having a large deviation is exponentially unlikely.

Lemma 3.7. There exists c > 0 such that for any n > 0, any x ∈ (0,∞] and any circuit
γ ⊂ T \ T0 the following holds. Suppose ω is sampled from the loop O(n) model in domain
Int(γ) with edge-weight x. Then, for any positive integer k,

P
(
∂IntV(γ) ⊂ V (ω, γ) and |V (ω, γ)| ≥ k

)
≤ (cn ·min{x6, 1})−k/15.

Definition of the repair map. Fix a circuit γ ⊂ T \ T0 and set H := Int(γ). Consider a
loop configuration ω such that γ is vacant in ω. The idea of the repair map is to modify ω
as follows (see Figure 4 for an illustration):

• Edges in 1-clusters inside γ are shifted down “into the 0-phase”.

• Edges in 2-clusters inside γ are shifted up “into the 0-phase”.

• Edges in 0-clusters inside γ are left untouched.

• The remaining edges which are not inside (the shifted) clusters, but are in the interior
of γ (these edges will be called bad), are overwritten to “match” the 0-phase ground
state, ω0

gnd.

In order to formalize this idea, we need a few definitions. A shift is a graph automorphism
of T which maps every hexagon to one of its neighbors. We henceforth fix a shift ↑ which
maps T0 to T1 (and hence, maps T1 to T2 and T2 to T0), and denote its inverse by ↓ . A
shift naturally induces mappings on the set of vertices and the set of edges of H. We shall
use the same symbols, ↑ and ↓ , to denote these mappings. Recall that T has a coordinate
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system given by (0, 2)Z+ (
√

3, 1)Z and that (T0,T1,T2) are the color classes of an arbitrary
proper 3-coloring of T. In the figures we make the choice that (0, 0) ∈ T0 and (0, 2) ∈ T1 so
that ↑ is the map (a, b) 7→ (a, b+ 2).

For a loop configuration ω ∈ LoopConf(H) and c ∈ {0, 1, 2}, let Ec(ω) ⊂ E(H) be the
union of all c-clusters of ω, and define

Ebad(ω) := (IntE(γ) ∪ γ∗) \
(
E0(ω) ∪ E1(ω) ↓ ∪ E2(ω) ↑

)
, (54)

E(ω) := (IntE(γ) ∪ γ∗) \
(
E0(ω) ∪ E1(ω) ∪ E2(ω)

)
. (55)

One may check that {E0(ω), E1(ω), E2(ω), E(ω)} is a partition of IntE(γ) ∪ γ∗ so that ω ∩
E0(ω), ω∩E1(ω), ω∩E2(ω) and ω∩E(ω) are pairwise disjoint loop configurations. Finally,
we define the repair map

R : LoopConf(H)→ LoopConf(H)

by

R(ω) :=
(
ω ∩ E0(ω)

)
∪
(
ω ∩ E1(ω)

) ↓ ∪ (ω ∩ E2(ω)
) ↑ ∪ (ω0

gnd ∩ Ebad(ω)
)
.

The fact that the mapping is well-defined, i.e., that R(ω) is indeed in LoopConf(H), is not
completely straightforward. However, it is indeed well-defined and, moreover,

ω ∩ E0(ω), (ω ∩ E1(ω)) ↓ ∪ (ω ∩ E2(ω)) ↑ and ω0
gnd ∩ Ebad(ω)

are pairwise disjoint loop configurations in LoopConf(H).

Proof of the main lemma. Let V be such that ∂IntV(γ) ⊂ V ⊂ IntV(γ). We first bound
the probability of the event

EV := {ω ∈ LoopConf(H) : V (ω, γ) = V }.

To do so, we wish to apply Lemma 3.4 to the repair map. To this end, we must estimate
the gain in probability (parameter p in Lemma 3.4) and the number of preimages of a given
configuration (parameter q in Lemma 3.4). Let n ≥ 1 and x ∈ (0,∞] satisfy nx6 ≥ 1. Then

PH,n,x(R(ω))

PH,n,x(ω)
≥ (n ·min{x6, 1})|V |/15 for ω ∈ EV , (56)

|EV ∩R−1(ω′)| ≤ (2
√

2)|V | for ω′ ∈ LoopConf(H). (57)

The proof of (56) is based on a precise understanding of the change in the number of
edges ∆o := o(R(ω)) − o(ω) and in the number of loops ∆L := L(R(ω)) − L(ω). Indeed,
one may show (see Figure 4) that

∆o = |V | − |ω ∩ E(ω)| and ∆L = |V |/6− L(ω ∩ E(ω)).

Using this, one deduces that

0 ≤ ∆o ≤ |V | and ∆L ≥ |V |
15

+ |∆o|
10
,
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(a) The breakup is found by exploring 0-flowers
from the boundary.

(b) The clusters are found within the breakup
(with 0/1/2-clusters shown in green/red/blue).

(c) Bad edges are discarded. (d) The clusters are shifted into the 0-phase.

(e) The empty area outside the shifted clusters is
now compatible with the 0-phase ground state.

(f) Trivial loops are packed in the empty area out-
side the shifted clusters.

Figure 4: An illustration of finding the breakup and applying the repair map in it. The initial
loop configuration is modified step-by-step, resulting in a loop configuration with many more
loops and at least as many edges.



from which (56) easily follows.
The proof of (57) relies on the fact that the only loss of information incurred by the repair

map is in the bad edges (see Figure 4c). More precisely, the mapping ω 7→ (R(ω), ω∩E(V ))
is injective on EV . Thus, the size of EV ∩R−1(ω′) is at most the number of subsets of E(V ).
Since |E(V )| ≤ 3|V |/2, (57) follows.

Now, using (56) and (57), Lemma 3.4 implies that

P(EV ) ≤ (2
√

2)|V | · (n ·min{x6, 1})−|V |/15.

To complete the proof, we must sum over the possible choices for V . For this, we use a
connectivity property of V (ω, γ). Let H× be the graph obtained from H by adding an edge
between each pair of opposite vertices of every hexagon, so that H× is a 6-regular non-planar
graph. One may show that V (ω, γ) is connected in H× whenever ∂IntV(γ) ⊂ V (ω, γ). Thus,
recalling Lemma 2.2, when n ·min{x6, 1} is sufficiently large, we have

P
(
∂IntV(γ) ⊂ V (ω, γ) and |V (ω, γ)| ≥ k

)
≤

∑
V : |V |≥k

V connected in H×
∂IntV(γ)⊂V⊂IntV(γ)

P(EV )

≤
∞∑
`=k

C` · (2
√

2)` · (n ·min{x6, 1})−`/15

≤ (cn ·min{x6, 1})−k/15.

Proofs of main theorems. The proofs of the main theorems for large x mostly rely on the
main lemma, Lemma 3.7. The results for small x follow via a Peierls argument, the basis of
which is given by the following lemma which gives an upper bound on the probability that
a given collection of loops appears in a random loop configuration.

Lemma 3.8. For any domain H, any n, x > 0 and any A ∈ LoopConf(H), we have

PH,n,x(A ⊂ ω) ≤ nL(A)xo(A).

Proof. Consider the map

T : {ω ∈ LoopConf(H) : A ⊂ ω} → LoopConf(H)

defined by
T(ω) := ω \ A.

Clearly, T is well-defined and injective. Moreover, since L(T(ω)) = L(ω) − L(A) and
o(T(ω)) = o(ω)− o(A), we have

PH,n,x(T(ω)) = PH,n,x(ω) · n−L(A)x−o(A).

Hence, the statement follows from Lemma 3.4.

Recall the notion of a loop surrounding a vertex given prior to Theorem 3.2.
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Corollary 3.9. Let n, x > 0 and let H be a domain. Then, for any vertex u ∈ V (H) and
any positive integer k, we have

PH,n,x(there exists a loop of length k surrounding u) ≤ kn(2x)k.

Moreover, for any u1, . . . , um ∈ V (H) and k1, . . . , km ≥ 1 with k = k1 + · · ·+ km, we have

PH,n,x(∀i there exists a distinct loop of length ki passing through ui) ≤ nm(2x)k,

Proof. Denote by ak the number of simple paths of length k in H starting at a given vertex.
Clearly, ak ≤ 3 ·2k−1. It is then easy to see that the number of loops of length k surrounding
u is at most kak−1 ≤ k2k. Thus, the result follows by the union bound and Lemma 3.8.

The moreover part follows similarly.

The main lemma, Lemma 3.7, shows that for a given circuit γ (with a type) it is unlikely
that the set V (ω, γ) is large. The set V (ω, γ) specifies deviations from the ground states
which are ‘visible’ from γ, i.e., deviations which are not ‘hidden’ inside clusters. In Theo-
rem 3.2, we claim that it is unlikely to see long loops surrounding a given vertex. Any such
long loop constitutes a deviation from all ground states. Thus, the theorem would follow
from the main lemma (in the main case, when x is large) if the long loop was captured in
V (ω, γ). The next lemma (whose proof we omit) bridges the gap between the main lemma
and the theorem, by showing that even when a deviation is not captured by V (ω, γ), there
is necessarily a smaller circuit σ which captures it in V (ω, σ).

Lemma 3.10. Let ω be a loop configuration, let γ ⊂ T \ T0 be a vacant circuit in ω and let
L ⊂ Int(γ) be a non-trivial loop. Then there exists c ∈ {0, 1, 2} and a circuit σ ⊂ T \ Tc

such that Int(σ) ⊂ Int(γ), σ is vacant in ω and V (L) ∪ ∂IntV(σ) ⊂ V (ω, σ).

Proof of Theorem 3.2. Suppose that n0 is a sufficiently large constant, let n ≥ n0 and
let x ∈ (0,∞] be arbitrary. Let H be a domain of type 0 and let u ∈ V (H). We shall
estimate the probability that, in a random loop configuration drawn from PH,n,x, the vertex
u is surrounded by a non-trivial loop of length k. We consider two cases, depending on the
relative values of n and x.

Suppose first that nx6 < n1/50. Since n ≥ n0, we may assume that 2x ≤ n−4/25 and that
kn−k/120 ≤ 1 for all k > 0. By Corollary 3.9, for every k ≥ 7,

PH,n,x(there exists a loop of length k surrounding u) ≤ kn(2x)k ≤ kn1−4k/25

≤ kn−k/60 ≤ n−k/120.

Suppose now that nx6 ≥ n1/50. Since n ≥ n0, we may assume that n · min{x6, 1} is
sufficiently large for our arguments to hold. Let L ⊂ H be a non-trivial loop of length k
surrounding u. Note that, if ω ∈ LoopConf(H) has L ⊂ ω then, by Lemma 3.10, for some
c ∈ {0, 1, 2}, there exists a circuit σ ⊂ T \ Tc such that Int(σ) ⊂ H, σ is vacant in ω and
V (L)∪∂IntV(σ) ⊂ V (ω, σ). Using the fact that H is of type 0, the domain Markov property
and Lemma 3.7 imply that for every fixed circuit σ ⊂ T \ Tc with Int(σ) ⊂ H,

PH,n,x(σ vacant and V (L) ∪ ∂IntV(σ) ⊂ V (ω, σ)) ≤ (cn ·min{x6, 1})−|V (L)∪∂IntV(σ)|/15.
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(a) n = 0.8 and x = 0.55. (b) n = 0.8 and x = 0.6.

(c) n = 2 and x = 1/
√

2 ≈ 0.707. (d) n = 8 and x = 1.

Figure 5: A few samples of random loop configurations. Configurations are on a 60 × 45
domain of type 0 and are sampled via Glauber dynamics for 100 million iterations started
from the empty configuration. The conjectured phase transition point for n = 0.8 is xc =

1/
√

2 +
√

2− 0.8 ≈ 0.568 and for n = 2 is xc = 1/
√

2 ≈ 0.707.
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Thus, denoting by G(u) the set of circuits σ contained in T \ Tc for some c ∈ {0, 1, 2} and
having u ∈ IntV(σ), we obtain

PH,n,x(L ⊂ ω) ≤
∑
σ∈G(u)

(cn ·min{x6, 1})−|V (L)∪∂IntV(σ)|/15

≤
∞∑
`=1

D`(cn ·min{x6, 1})−max{`,k}/15

≤ (c′n ·min{x6, 1})−k/15,

where we used the facts that the length of a circuit σ such that |∂IntV(σ)| = ` is at most 3`,
that the number of circuits σ of length at most 3` with u ∈ IntV(σ) is bounded by D` for
some sufficiently large constant D, and in the last inequality we used the assumption that
n ·min{x6, 1} is sufficiently large. Since the number of loops of length k surrounding a given
vertex is smaller than k2k, our assumptions that nx6 ≥ n1/50 and n ≥ n0 yield

PH,n,x(there exists a loop of length k surrounding u) ≤ k2k(c′n1/50)−k/15 ≤ n−k/800.

Proof of Theorem 3.3. Let n > 0, let x ∈ (0,∞] and let H be a domain of type 0.
Suppose first that nx6 is sufficiently small. Observe that if u is loop-connected to distance

k, then there exist m ≥ 1, `1, . . . , `m ≥ 6 and u0, u1, . . . , um ∈ V (H) such that ` := `1 + · · ·+
`m ≥ k, u0 = u and, for all 1 ≤ i ≤ m, dist(ui, ui−1) ≤ `i and ui belongs to a distinct loop of
length `i. Thus, summing over the possible choices and applying Corollary 3.9, we obtain

P(u is loop-connected to distance k) ≤
∑
`≥k

`≥m≥1

∑
`1,...,`m
u1,...,um

P(∀i ui belongs to a distinct loop of length `i)

≤
∑
`≥k

` · 2` · 3` · nm(2x)` ≤
∑
`≥k

(Cnx6)`/6 ≤ C(Cnx6)k/6.

Suppose now that both n and nx6 are sufficiently large. Let ω be a loop configuration
in LoopConf(H) and assume that u is not ground-connected to the boundary ∂V (H). Let
A(ω) be the set of vertices of H belonging to loops in ω ∩ ω0

gnd and let B(ω) be the unique
infinite connected component of A(ω) ∪ (V (H) \ V (H)). Define C (the breakup) to be the
connected component of H \B(ω) containing u (note that u /∈ B(ω) by assumption).

One may check that the subgraph induced by C is a domain of type 0, and that the
enclosing circuit Γ (i.e., the circuit satisfying C = IntV(Γ) which exists by Fact 3.6) is vacant
in ω and is contained in T \ T0. Furthermore, ∂IntV(Γ) ⊂ V (ω,Γ). This follows as Γ is
vacant in ω and, by the definition of B(ω), no vertex of ∂IntV(Γ) belongs to a trivial loop
surrounding a hexagon in T0.

Thus, denoting by G the set of circuits γ ⊂ T\T0 having u ∈ IntV(γ), Lemma 3.7 implies
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that

P(u is not ground-connected to ∂V (H))

≤ P(there exists a breakup)

=
∑
γ∈G

P(Γ = γ)

≤
∑
γ∈G

P(γ vacant and ∂IntV(γ) ⊂ V (ω, γ))

≤
∑
γ∈G

(cn ·min{x6, 1})−|∂IntV(γ)|/15

≤
∑
k≥1

Dk(cn ·min{x6, 1})−k/15 ≤ C(cn ·min{x6, 1})−c.

In the final inequality, we used the facts that the length of a circuit γ such that |∂IntV(γ)| = k
is at most 3k, and that the number of circuits of length at most 3k surrounding u is bounded
by Dk for some sufficiently large constant D.
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