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Abstract

These notes accompany courses given in University of Bath and Northwestern Uni-
versity during their summer schools in 2016. The main topic is geodesics in first-passage
percolation, specifically recent developments by Hoffman and by Damron-Hanson, on
directional properties of infinite geodesics. As is done in our recent survey [6], we out-
line how many of the results from Damron-Hanson ’14 [10] can be extended from two
dimensions to general dimensions.
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1 Introduction

We will speak about geodesics in first-passage percolation (FPP), specifically directions
and existence. All of this material is contained in the recent survey [6] by Auffinger-
Damron-Hanson. Main outline:

1. Intro and Hoffman ’05

2. Newman’s conjectures and curvature

3. Busemann functions

4. Busemann gradient fields: Damron-Hanson ’13

5. Bigeodesics: Damron-Hanson ’15

Consider Zd with nearest neighbor edges Ed. We begin with a list of definitions.
FPP consists of:

• (te), a collection of nonnegative weights assigned to the edges,

• T (γ) =
∑

e∈γ te, where γ is a lattice path,

• T (x, y) = infγ:x→y T (γ) for x, y ∈ Zd, T (A,B) = inf{T (x, y) : x ∈ A, y ∈ B} for
A,B ⊂ Zd, and

• for x, y ∈ Rd, T (x, y) = T ([x], [y]), where x ∈ [x] + [0, 1)d, y ∈ [y] + [0, 1)d.

• a geodesic from x to y is a lattice path γ from x to y with T (γ) = T (x, y). [Might
not exist.]

Note the triangle inequality of T :

T (x, y) ≤ T (x, z) + T (z, y).

• So a subpath of a geodesic is a geodesic: if γ is a geodesic from x to y and γ′ is
the section from w to z, if it is not a geodesic, replace γ′ by the geodesic to get
a path of lower weight.

• A geodesics can be taken to be (vertex) self-avoiding.

1.1 Existence of finite geodesics

Definition 1.1 (Zhang [36]). Let ρ be the random variable

ρ(x) = lim
n
T (x, ∂B(n)),

where B(n) = [−n, n]d and ∂B(n) = {x ∈ B(n) : ∃y ∈ B(n)c s.t. x ∼ y}.

(Exercise.) Show that

ρ(x) = inf {T (γ) : γ is an infinite self-avoiding path from x} .
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Lemma 1.2. 1. If ρ(0) = ∞ then geodesics exist: for all x, y, there is a geodesic
from x to y.

2. If (te) are i.i.d. with P(te = 0) < pc, then a.s., geodesics exist (between all
vertices).

3. (Exercise.) if (te) are i.i.d. and continuous, then a.s., geodesics are unique.

In item 2, we are using

pc = sup{p : Pp(∃ infinite path of 0-edges) = 0)},

in a model where Pp(te = 0) = p = 1− Pp(te = 1). (It is known that pc(d) ∈ (0, 1) for
all d and pc(d) ∼ 1/(2d).)

Proof. 1. If ρ(0) =∞, also ρ(x) =∞ for all x, since

|T (x, ∂B(n))− T (0, ∂B(n))| ≤ T (0, x) <∞.

So pick γ any deterministic path from x to y and choose n large enough so that
x ∈ B(n) and T (x, ∂B(n)) > T (γ). Then if γ′ is a path from x to y touching
B(n)c, one has

T (γ′) ≥ T (x, ∂B(n)) > T (γ),

so it cannot be a geodesic, and the infimum is over a finite set.

2. Choose δ > 0 such that P(te < δ) < pc, and there is no infinite path of edges with
weight < δ. Thus ρ(0) = ∞ almost surely since every infinite path has infinite
passage time.

In fact, (follows from Kesten [24, Prop. 5.8]) a stronger version of item 2 holds. If
(te) are i.i.d. with P(te = 0) < pc, then

P
(

lim inf
x→∞

T (0, x)

‖x‖1
> 0

)
= 1. (1.1)

(Exercise.) Show this for P(te = 0) = 0.

Open question. Do geodesics exist in the i.i.d. case when P(te = 0) = pc? True
in 2d by Wierman-Reh [31, Cor. 1.3]. In general dimensions if > pc by Zhang [37,
Theorem 2].

Under which conditions is ρ(0) < ∞? In 2d, Damron-Lam-Wang ’15 [14, Cor. 1.3]
showed that ρ(0) < ∞ a.s. if and only if

∑
n F
−1(pc + 1/2n) < ∞. Here F is the

distribution function of a single te, and F−1 is the generalized inverse:

F−1(t) = inf{x : F (x) ≥ t} for t > 0.

For general dimensions, I don’t know better conditions for ρ(0) =∞ than P(te = 0) <
pc. (But see also [36, Theorem 8.1.7] for ρ(0) = ∞ in high dimensions for Bernoulli
distributions.)
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2 Infinite geodesics: Hoffman

Definition 2.1. An infinite path γ is an infinite geodesic if each segment is a finite
geodesic. Let N = N (ω) be the maximal k such that there are k disjoint infinite
geodesics.

Note: we may remove loops from γ to ensure it is self-avoiding and still an infinite
geodesic.

Proposition 2.2. The variable N is translation-invariant, so if the distribution of (te)
is ergodic, N is almost surely constant. If geodesics exist in ω, then N (ω) ≥ 1.

Proof. You can check N is measurable, so the first statement is clear. Infinite geodesics
exist by a subsequence argument. Let γn be a geodesic from 0 to ne1 and take a
subsequential limit as follows. All γn’s must take one of the 2d edges incident to 0
first. Choose f1 such that it is the first edge of infinitely many γn’s (say γnk ’s). Then
f2 which is the second edge of infinitely many of the γnk ’s, and so on. If γ is the path
following edges f1, f2, . . ., then each segment of γ is a segment of a finite geodesic, so
is a geodesic.

2.1 Properties of Busemann functions

The main question today: what is the value of N ? For this we need Busemann func-
tions.

Definition 2.3. Let γ be an infinite geodesic with starting point x0 and vertices
x1, x2, . . .. The Busemann function for γ is defined as

Bγ(x) = lim
n

[T (x, xn)− T (x0, xn)] .

This limit exists by monotonicity:

T (x, xn)−T (x0, xn) = T (x, xn)+T (xn, xn+1)−T (x0, xn+1) ≥ T (x, xn+1)−T (x0, xn+1)

and the bound due to the triangle inequality:

|T (x, xn)− T (x0, xn)| ≤ T (x, x0).

Sometimes we write
Bγ(x, y) = Bγ(x)−Bγ(y).

Here are some properties.

1. For m < n, Bγ(xm)−Bγ(xn) = T (xm, xn).

2. (Exercise.) If γ1, γ2 are infinite geodesics that coalesce (they have finite sym-
metric difference) and have initial points x0, y0, then

Bγ1(x) = Bγ2(x)−Bγ2(x0) for all x.

So
Bγ1(x, y) = Bγ2(x, y) for all x, y.
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3. Bγ(x, y) = Bγ(x, z) +Bγ(z, y) for all x, y, z.

4. Let θ be a translation of the lattice by an integer vector. Then

Bγ(x, y)(ω) = Bθγ(θ(x), θ(y))(θ(ω)),

where the translated weight configuration θ(ω) is defined as te(θ(ω)) = tθ−1e(ω).
Furthermore θγ is the translated geodesic ray.

2.2 Hoffman’s argument

The following was shown also by Garet-Marchand [15] (and Haggstrom-Pemantle [20]
for exponential).

Theorem 2.4 (Hoffman ’05 [21]). Let (te) be i.i.d., continuous, with finite mean. Then
N ≥ 2.

Holds under much more general assumptions.

Proof. We know N ≥ 1. Suppose for a contradiction that N = 1. Then if γ, γ′ are
infinite geodesics, they must touch infinitely many times. By unique geodesics, they
must coalesce. So we can define the function

f(x, y) = Bγ(x, y),

where γ = γ(ω) is any infinite geodesic.

(Exercise.) Show this equals limn[T (x, ne1)− T (y, ne1)] when we assume N = 1, so
it is measurable.

Also it has finite mean and is translation covariant:

f(x, y)(ω) = f(θ(x), θ(y))(θ(ω))

for any integer translation. Additivity and the ergodic theorem give for any x,

1

n
f(0, nx) =

1

n

n∑
k=1

f((k − 1)x, kx) =
1

n

n∑
k=1

f(0, x)(θk−1ω)→ Ef(0, x) a.s. and in L1,

where θ is translation by −x.
What is this limit? By translation invariance, x 7→ Ef(0, x) is additive for x ∈ Zd:

Ef(0, x+ y) = Ef(0, x) + Ef(x, x+ y) = Ef(0, x) + Ef(0, y),

so it is determined by its values for x = ±ei. By symmetry for all i, j,

Ef(0,±ei) = Ef(0,±ej),

and
0 = Ef(0, e1) + Ef(e1, 0) = Ef(0, e1) + Ef(0,−e1) = 2Ef(0, e1),
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giving Ef(0, x) = 0 for all x. Thus for all x,

1

n
f(0, nx)→ 0 a.s. and in L1.

In fact one can show a stronger statement (by an argument similar that given in
the next section for the Shape Theorem): for each ε > 0,

P(|f(0, x)| ≥ ε‖x‖1 for infinitely many x ∈ Zd) = 0,

so that if γ is the limit of geodesics from 0 to ne1, with vertices 0 = x0, x1, x2, . . ., then

Bγ(0, xn)

‖xn‖1
=
f(0, xn)

‖xn‖1
→ 0 almost surely.

On the other hand, since 0, xn ∈ γ, B(0, xn) = T (0, xn), so this implies

T (0, xn)

‖xn‖1
→ 0 almost surely ,

which contradicts (1.1).

What else is known?

• (Hoffman ’08 [22, Theorem 1.3]) N ≥ 4 in 2d.

• (Damron-Hochman ’13 [13, Theorem 1.4]) Given K, there exist continuous dis-
tributions in 2d with N ≥ K.

• In the discrete case (no unique geodesics), one considers the graph of infection
of the origin. T is the union of all geodesics from 0 to all other vertices. Let
K be the number of ends. (A graph has ≥ k ends if removing a finite set splits
it into ≥ k components.) Then: (Auffinger-Damron ’14 [4, Theorem 2.3]) if
I = inf supp te > 0 and P(te = I) is large enough (with the distribution of te not
purely atomic), then K =∞ almost surely.

3 Interlude: the shape theorem

(This section is adapted from tutorial lectures of Jack Hanson from the Bath summer
school.)

We will need the shape theorem for all the results beyond, and particularly for
Newman’s results. It is a type of law of large numbers for the set

B(t) = {x ∈ Rd : T (0, x) ≤ t}.

Theorem 3.1 (Richardson [32], Cox-Durrett [9], Kesten [24]). Assume Emin{t1, . . . , t2d}d <
∞, where ti are i.i.d. copies of te and P(te = 0) < pc. There exists a deterministic,
convex set in Rd, symmetric about the axes and with nonempty interior, such that for
any ε > 0,

P ((1− ε)B ⊂ B(t)/t ⊂ (1 + ε)B for all large t) = 1.
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There is also a version for ergodic distributions by Boivin [8].
(Exercise.) Show that B is the unit ball of a norm, called g, and

lim sup
x→∞

|T (0, x)− g(x)|
‖x‖1

= 0 almost surely.

This can be thought of as

T (0, x) = g(x) + o(‖x‖1) as x ∈ Rd →∞.

Proof of shape theorem. The idea of the proof is to first show “radial” convergence;
that is, for a fixed x ∈ Zd, to show that

g(x) := lim
n

T (0, nx)

n
exists.

To do this, we appeal to the subadditive ergodic theorem. Then we “patch” together
convergence in many different directions x to get a uniform convergence.

Liggett’s version [28, Theorem 1.10] of Kingman’s subadditive ergodic theorem
states:

Theorem 3.2. Let {Xm,n : 0 ≤ m < n} is an array of random variables satisfying the
following assumptions:

1. for each n, E|X0,n| <∞ and EX0,n ≥ −cn for some constant c > 0,

2. X0,n ≤ X0,m +Xm,n for 0 < m < n,

3. for each m ≥ 0, the sequence {Xm+1,m+k+1 : k ≥ 1} is equal in distribution to
the sequence {Xm,m+k : k ≥ 1}, and

4. for each k ≥ 1, {Xnk,(n+1)k : n ≥ 1} is a stationary ergodic process.

Then

g := lim
n

1

n
EX0,n = inf

n

1

n
EX0,n exists,

and

lim
n

1

n
X0,n = g a.s. and in L1.

We apply this theorem for a fixed x ∈ Zd to the sequence

Xm,n = T (mx, nx).

Item 2 holds by the triangle inequality, whereas 3 and 4 hold by stationarity of the
environment under integer translations. In item 1 we can take any c > 0, since T ≥ 0
a.s. The only thing to check is that ET (0, nx) < ∞ for each n. By subadditivity,
and symmetry, it suffices to check that ET (0, e1) < ∞. To do this, we construct 2d
edge-disjoint deterministic paths γ1, . . . , γ2d from 0 to e1 and note

ET (0, e1) ≤ Emin{T (γ1), . . . , T (γ2d)}.

Now you can check:
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(Exercise.) If Emin{t1, . . . , t2d} < ∞ for i.i.d. edge-weights ti, then the right side
above is finite.

By the theorem, then, we define

g(x) = lim
n

T (0, nx)

n
,

which is a.s. constant. We next extend g to Qd by taking such a rational x and letting
m ∈ N be such that mx is an integer point. Then set

g(x) = lim
n

T (0,mnx)

mn
=

1

m
lim
n

T (0, n(mx))

n
=

1

m
g(mx).

g thus defined on Qd satisfies the following properties: for x, y ∈ Qd,

1. g(x+ y) ≤ g(x) + g(y),

2. g is uniformly continuous on bounded sets,

3. for q ∈ Q, g(qx) = |q|g(x),

4. g is symmetric about the axes.

Item 1 follows from the triangle inequality for T , and 4 follows from symmetries of the
edge weights. Item 3 is an easy exercise, and 2 follows from 1: for h = (h1, . . . , hd),

|g(z)−g(z+h)| ≤ g(h) = g(h1e1 + · · ·+hded) ≤ g(e1)(|h1|+ · · ·+ |hd|) ≤ ‖h‖1ET (0, e1).

Then g has a continuous extension to Rd. The above properties extend to real argu-
ments, so g is a seminorm. (A norm, except it could have g(x) = 0 for some x 6= 0.) It
is a result of Kesten [25, Theorem 6.1] that g is a norm when P(te = 0) < pc.

Now that we have “radial” convergence to a norm g, we need to patch together
convergence in every direction to a type of uniform convergence. Here we do this
under the assumption:

P(te ∈ [a, b]) = 1, where 0 < a < b <∞.

This implies
T (0, x), g(x) ∈ [a‖x‖1, b‖x‖1] for x ∈ Zd.

So define the event

Ω′ = {te ∈ [a, b] for all e} ∩
{

lim
n

T (0, nx)

n
= g(x) for all x ∈ Zd

}
.

(Exercise.) Show that on the above event we actually have

lim
α→∞

T (0, αx)

α
= g(x) for all x ∈ Zd.

(Here α is real instead of just being an integer.)
Fix ω ∈ Ω′, a set which has probability one, for the rest of the argument. We will

show the equivalent statement

lim sup
x→∞

|T (0, x)− g(x)|
‖x‖1

= 0,
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so suppose it fails: for some ε > 0, there is a sequence (xn) going to infinity such that

|T (0, xn)− g(xn)| ≥ ε‖xn‖1 for all n.

We may assume by compactness that xn/‖xn‖1 → z for some z with ‖z‖1 = 1. We will
show that for some x in a nearby direction to z, one cannot have T (0, nx)/n → g(x).
Fix

δ ∈
(

0,
ε

4b+ 1

)
and choose x ∈ Zd such that ∥∥∥∥ x

‖x‖1
− z
∥∥∥∥

1

< δ,

so that for n large, ∥∥∥∥ xn
‖xn‖1

− x

‖x‖1

∥∥∥∥
1

< 2δ.

We will compare the passage time from 0 to xn to the passage time to the “nearby”
point ‖xn‖1x/‖x‖1. Then

|T (0, xn)− g(xn)| ≤
∣∣∣∣T (0, xn)− T

(
0, ‖xn‖1

x

‖x‖1

)∣∣∣∣+

∣∣∣∣T (0, ‖xn‖1
x

‖x‖1

)
− g

(
‖xn‖1

x

‖x‖1

)∣∣∣∣
+

∣∣∣∣g(‖xn‖1 x

‖x‖1

)
− g(xn)

∣∣∣∣ .
The first and last terms are bounded by

b

∥∥∥∥‖xn‖1 x

‖x‖1
− xn

∥∥∥∥
1

= b‖xn‖1
∥∥∥∥ x

‖x‖1
− xn
‖xn‖1

∥∥∥∥
1

< 2bδ‖xn‖1.

However since we have radial convergence in direction x, the above exercise gives

T

(
0, ‖xn‖1

x

‖x‖1

)
= g

(
‖xn‖1

x

‖x‖1

)
+ o(‖xn‖1),

so for n large, the second term is bounded by δ‖xn‖1. In total,

ε‖xn‖1 ≤ |T (0, xn)− g(xn)| ≤ (4b+ 1)δ‖xn‖1 < ε‖xn‖1,

a contradiction.

Remarks.

1. Boivin [8] showed a shape theorem in the ergodic case (first done for bounded
marginals by Derriennic, reported in [24, (9.25)]). He assumed (a) the weight
distribution is ergodic under integer translations and (b) Etd+ε

e < ∞ for some
ε > 0. (Actually this moment condition is slightly weaker in his paper.)
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2. The key to extending the above argument to the non-bounded cases (and ergodic
cases) is to see that the relevant property used here is that

P

(
sup
x 6=0

T (0, x)

‖x‖1
<∞

)
> 0.

Our boundedness condition allowed us to say this supremum is at most b a.s., but
this weaker condition is enough. It is implied by Emin{t1, . . . , t2d}d < ∞ in the
i.i.d. case or Etd+ε

e <∞ in the ergodic case.

4 Newman and curvature

4.1 Newman’s theorems and conjectures

For this section, we will assume:

1. Eeαte <∞ for some α > 0,

2. (te) is i.i.d., continuous, so there is a unique geodesic G(x, y) from each x to each
y.

Our aim is to show that there are infinite geodesics with asymptotic directions.

Definition 4.1. We say that γ (with vertices x0, x1, x2, . . .) has asymptotic direction
θ (where θ ∈ Rd has Euclidean norm 1) if

arg xn :=
xn
‖xn‖

→ θ.

Newman also makes the “uniform curvature” assumption. For illustration, we will
give a slightly more transparent condition, which is stronger, but has the same flavor.

Let us assume:

A. ∂B is differentiable (meaning each x ∈ ∂B has a unique supporting hyperplane –
a hyperplane Hx such that (a) x ∈ Hx and B does not intersect both components
of Hc

x) and

B. there are uniform constants C, δ > 0 such that for all x ∈ ∂B,

g(x+ u)− g(x) ≥ C‖u‖2 for u with x+ u ∈ Hx and ‖u‖ < δ.

This assumption is a type of curvature of the boundary of B. Generally it is believed
that the limit shape has differentiable boundary and is strictly convex (even with
positive curvature). However it is not even known that it is not a polygon. For a
certain class of distributions in 2d (mentioned above in the remark about K = ∞),
Auffinger-Damron ’14 [4, Cor. 2.1] showed the limit shape is not a polygon.

Open problem. Show that if (te) are i.i.d., continuous, and Emin{t1, . . . , t2d}d <∞,
then the limit shape cannot be a polygon.

The following is a version of [29, Theorem 2.1].

Theorem 4.2 (∼Newman). Assuming 1, 2, A, B,
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1. a.s., for all θ, there is an infinite geodesic starting from 0 with direction θ.

2. a.s., all infinite geodesics have asymptotic directions.

Remarks.

1. This result says in particular that N =∞.

2. One way to state it is to use the tree of infection T of the origin. Each infinite
path in T has a direction and there is an infinite path in T in each direction.

4.2 Proofs

So let’s get to the main question: how does curvature help to control geodesics? Ac-
tually differentiability is not needed at all for this method. (See Newman’s curvature
condition in his ICM paper [29].)

Lemma 4.3 (Geodesic wandering bound – Newman-Piza argument). Assume 1, 2,
and B for x = e1 and Hx ⊥ e1. Then for each ε > 0, there are C1, C2 > 0 such that

P(D(0, ne1) ≥ n
3
4

+ε) ≤ C1e
−nC2

for all n.

Here, D(0, ne1) is the maximal distance from any point in G(0, ne1) to the e1-axis.

Proof. For z of distance n3/4+ε to the e1-axis, note

P(D(0, ne1) ≥ n3/4+ε) ≤
∑
z

P(T (0, ne1) = T (0, z) + T (z, ne1)).

We claim that for C1, C2 > 0,

P(T (0, ne1) = T (0, z) + T (z, ne1)) ≤ C1e
−nC2

,

where z = (n/2)e1 + n3/4+εe2.

(Exercise.) A similar statement holds for other z. Prove one and sum over z to get
the lemma.

If it were up to the g function, this event would never occur:

g(z) + g(ne1 − z)− g(ne1) = [g(z)− g((n/2)e1)] + [g(ne1 − z)− g((n/2)e1)] ,

and for n large,

g(n/2e1 + n3/4+εe2)− g(n/2e1) = (n/2)

(
g

(
e1 +

2

n1/4−ε e2

)
− g(e1)

)
≥ C(n/2)

(
2

n1/4−ε

)2

≥ Cn1/2+2ε.

(By symmetry this holds for g(n− z)− g((n/2)e1) as well.) So we get

g(z) + g(ne1 − z)− g(ne1) ≥ Cn1/2+2ε.
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In the approximation of T by g, we have some random (and nonrandom) error, which
we must control. Namely, on the above event, one has

0 = T (0, z) + T (z, ne1)− T (0, ne1)

≥ [T (0, z)− g(z)] + [T (z, ne1)− g(ne1 − z)]− [T (0, ne1)− g(ne1)] + Cn1/2+2ε,

meaning at least one of the three bracketed terms is in absolute value bigger than
(C/3)n1/2+2ε.

The following lemma is a combination of a concentration inequality of Kesten [25,
Eq. (1.15)] and nonrandom fluctuation bounds of Alexander [1, Theorem 3.2].

Lemma 4.4. Assume Eeαte <∞ for some α > 0. There exist c1, c2 such that

P
(
|T (0, x)− g(x)| ≥ λ

√
‖x‖
)
≤ c1e

−c2λ

for C1 log ‖x‖ ≤ λ ≤ C1‖x‖.

(Improvements have been made by Talagrand [33, Prop.8.3], Benäım-Rossignol [7,
Theorem 5.4], Damron-Hanson-Sosoe [12].)

Applying this to x = ne1, we obtain

P(|T (0, ne1)− g(ne1)| ≥ (C/3)n1/2+2ε) ≤ c1e
−c′2n2ε

,

and similarly for |T (0, z)− g(z)| and |T (z, ne1)− g(ne1 − z)|.

A similar proof gives the following useful (for us) result from Newman. First some
definitions.

Definition 4.5. 1. For a vertex x 6= 0 and ε > 0, let Cx be the annulus portion:

Cx =
{
z ∈ Rd : ‖z‖ ∈ [‖x‖/2, 2‖x‖], ‖ arg z − arg x‖ ≤ ‖x‖−1/4+ε

}
.

2. ∂′Cx is the boundary of Cx minus the “forward” boundary of Cx:

∂′Cx = ∂Cx \ {z ∈ Rd : ‖z‖ = 2‖x‖}.

3. out(x) is the set of vertices z such that T (0, z) = T (0, x)+T (x, z) (vertices whose
geodesic from 0 goes through x).

4. Define Gx as the event that

out(x) ∩ ∂′Cx 6= ∅,

Theorem 4.6. Assume 1, 2, A, and B. Given ε > 0 there exist C1, C2 > 0 such that

P(Gx) ≤ C1e
−‖x‖C2

for all x.

To derive this bound for Gx, one needs uniform curvature for directions in a small
interval near the argument of x. So B suffices.
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Proof of item 2 in ∼Newman’s. Let γ = (0, x1, x2, . . .) be an infinite geodesic (self-
avoiding) and choose M > 0 such that if ‖x‖ ≥ M , then Gx occurs. Now pick any k
such that ‖xk‖ ≥M and define inductively

y1 = xk and yi+1 = first exit of γ from Cyi after hitting yi.

Then the portion of γ after xk is contained in the union of the Cyi ’s, so any z ∈ γ after
xk is in some CyI and thus satisfies

‖ arg z − arg xk‖ ≤
I−1∑
i=1

‖ arg yi+1 − arg yi‖+ ‖ arg z − arg yI‖ ≤
I∑
i=1

‖yi‖−1/4+ε

=

I∑
i=1

(2i−1‖y1‖)−1/4+ε

≤ C‖xk‖−1/4+ε.

This suffices to show that (arg xn) is a Cauchy sequence.

(Exercise.) Use this method to show that not only is every infinite geodesic directed,
but for each direction, there is an infinite geodesic from 0 with this direction. That is,
prove item 1 of ∼Newman’s.

5 Weakening assumptions: back to the present

day

We aim to improve ∼Newman’s in two directions. First, we want to include all
translation-ergodic passage times. Next, we want to not assume curvature! It is pretty
reasonable not to want to assume curvature because:

Theorem 5.1 (Häggstrom-Meester ’95 [19]). Given any compact, convex subset C of
Rd with nonempty interior and which is symmetric about the axes, there is a translation
invariant measure on passage times with C as its limit shape.

In particular, there are limit shapes for translation invariant FPP which are poly-
gons! These shapes do not satisfy uniform curvature, so we should not assume it. But
in that case, should we really expect geodesics still to have asymptotic directions? Well
maybe not in directions that are interiors of “sides” of the limit shape, but perhaps in
exposed directions. So let us assume for now:

Assumptions of Hoffman.

1. P is ergodic under lattice translations and has the symmetries of Zd,

2. P has unique passage times: a.s., any two distinct paths have different passage
times,

3. Etd+δ
e <∞ for some δ > 0,

4. the limit shape for P is bounded.

13



(These suffice for Boivin’s shape theorem, but can be weakened in the i.i.d. case.) Here
we will try to work in the direction of:

Open problem. Show that if (te) are i.i.d. and continuous, almost surely there is an
infinite geodesic with an asymptotic direction.

5.1 In direction e1

To improve the Newman results, we continue where Hoffman left off, analyzing Buse-
mann functions. In ’08, he considered some Busemann-type limits, and with these,
was able to show existence of at least 4 disjoint infinite geodesics. We present here a
version of a combination of arguments from that paper and from Damron-Hanson ’14
[10], in an ideal scenario (Assumption C below). Put Hn = {x ∈ Zd : x · e1 = n} and

Bn(x, y) = T (x,Hn)− T (y,Hn) for x, y ∈ Zd.

(Exercise.) Show the above conditions imply existence of a unique minimizing path
from x to Hn for each x and n. (Actually we only need existence of this geodesic for
what follows.)

Assumption C. (Unjustified!!) Almost surely, for x, y ∈ Zd,

B(x, y) := lim
n
Bn(x, y) exists a.s.

Why should this assumption be true? Based on existing results, from each vertex
x, there should be a limiting geodesic Γx for the sequence G(x,Hn) and for x, y, the
geodesics Γx,Γy should coalesce. If their coalescence point is z, then you can verify:

B(x, y) = T (x, z)− T (y, z).

Let’s first find the mean of B.

Proposition 5.2. One has

EB(x, y) = (y − x) · ρ for all x, y ∈ Zd,

where ρ = g(e1)e1.

Proof. First, x 7→ EB(0, x) is additive:

EB(0, x+ y) = EB(0, x) + EB(x, x+ y) = EB(0, x) + EB(0, y).

Also EB(0,−x) = −EB(0, x), so there is a vector ρ ∈ Rd such that

EB(x, y) = EB(0, y − x) = (y − x) · ρ.

The vector ρ is determined by its dot product with elements of the basis {e1, . . . , ed}.
First take x = 0, y = e1. Then we use an averaging trick that was in Hoffman

[22] and Garet-Marchand [15] and goes back to Kingman [26, Eq. (26)]. We use the
following fact:
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(Exercise.)

lim
n

ET (0, Hn)

n
= g(e1).

Now compute

1

n
ET (0, Hn) =

1

n

n∑
k=1

(ET ((k − 1)e1, Hn)− ET (ke1, Hn))

=
1

n

n∑
k=1

(ET (0, Hn−k+1)− ET (e1, Hn−k+1))

=
1

n

n∑
k=1

E (T (0, Hk)− T (e1, Hk)) .

The term inside converges a.s. to B(0, e1). Since it is bounded by T (0, e1) in absolute
value, DCT implies that it converges to EB(0, e1). So

EB(0, e1) = lim
n

1

n
ET (0, Hn) = g(e1).

If i > 1, then

0 = EB(0, ei) + EB(ei, 0) = EB(0, ei) + EB(0,−ei),

and these are equal by reflection symmetry, giving EB(0, ei) = 0. Last, ρ = g(e1)e1 is
the unique vector with ρ · e1 = g(e1) and ρ · ei = 0 for i > 1.

Further remarks:

1. By the ergodic theorem, as before, for x ∈ Zd,

lim
n

1

n
B(0, nx) = lim

n

1

n

n∑
k=1

B((k − 1)x, kx) = EB(0, x) = x · ρ a.s.

2. From here we can replicate the proof of the shape theorem, using |B(x, y)| ≤
T (x, y), to show:

Theorem 5.3 (Busemann shape theorem). For each ε > 0,

P
(
|B(0, x)− x · ρ| ≥ ε‖x‖ for infinitely many x ∈ Zd

)
= 0.

This means uniformly B(0, x) = x · ρ+ o(‖x‖) as x ∈ Rd →∞.

3. Note that the set
BB = {z ∈ Rd : z · ρ ≤ 1}

is a half-space. Thus the Busemann “limit shape” is a half-space.

4. The boundary
HB = {z ∈ Rd : z · ρ = 1}

is a supporting hyperplane for B in direction e1 (at the point e1/g(e1)).
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Proof. First e1/g(e1) ∈ HB ∩ ∂B. It is in HB since

e1/g(e1) · ρ =
g(e1)

g(e1)
e1 · e1 = 1,

and it is on the boundary of the limit shape in direction e1 since g(e1/g(e1)) = 1.

Since HB is perpendicular to e1 and contains the point e1/g(e1), on the boundary
of the limit shape, it must be a supporting line.

5. (Exercise.) Let γ = (0 = x0, x1, x2, . . .) be a subsequential limit of geodesics
from 0 to Hn. Then

B(0, xj) = T (0, xj) for all j.

Define the set of points
S = HB ∩ ∂B

of contact between the supporting line HB and the limit shape.

Theorem 5.4. Assume C and Hoffman’s conditions. Any subsequential limit γ of
geodesics from 0 to Hn is asymptotically directed in S. This means any limit point of
{x/g(x) : x ∈ γ} is contained in S.

Proof. Let γ = (0, x1, x2, . . .) be such a subsequential limit and pick a convergent
subsequence of (xn/g(xn)), so that, say,

xnk/g(xnk)→ z.

We must show z ∈ S, but since z ∈ ∂B, we must show z ∈ HB, or z · ρ = 1.
Since g is a norm, the Busemann shape theorem gives

B(0, xnk)− xnk · ρ
g(xnk)

→ 0,

meaning
B(0, xnk)

g(xnk)
→ lim

k

xnk
g(xnk)

· ρ = z · ρ.

But also this equals
T (0,xnk )

g(xnk ) =
g(xnk )+o(‖xnk‖)

g(xnk ) = 1. Thus z ∈ HB. However g(z) = 1,

so z ∈ ∂B.

Corollary 5.5 (Existence of directed geodesics). Assume C and Hoffman’s conditions.
If e1g(e1) is an exposed point of B, then any subsequential limit of geodesics from 0 to
Hn is asymptotically directed in direction e1.

Note that we do not need curvature here, only a local condition on the boundary.
However, we need existence of Busemann limits.

Open problem. Prove existence of the limit of T (0, Hn)− T (x,Hn).
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5.2 In other directions and what is known about limits

A similar proof to that in the last section gives the following. Suppose that H is some
supporting hyper-plane for B and set Hn = {w : w · ρH = n}, where ρH is such that
H = {w : w · ρH = 1}. Assume that

BH(x, y) := lim
n

[T (x,Hn)− T (y,Hn)] exists a.s.

Theorem 5.6. Under the above assumption (and Hoffman’s conditions), one has:

1. for any ε > 0,

P
(
|BH(0, x)− ρH · x| ≥ ε‖x‖ for infinitely many x ∈ Zd

)
= 0.

2. a.s., each subsequential limit of G(0, Hn) is directed in the set H ∩ ∂B.

What is known about these “Busemann limits?”

1. Under an assumption of uniform curvature and finite exponential moments, New-
man [29, Theorem 1.1] showed that in 2d, there is a set D ⊂ [0, 2π) of countable
complement such that if θ ∈ D, then a.s., if (xn) is any sequence with arg xn → θ,
then for all x, y, the following limit exists:

lim
n

[T (x, xn)− T (y, xn)].

2. Howard-Newman [23, Theorem 1.13] showed this for all directions in a rotationally-
invariant model, called Euclidean FPP, in 2d. They also predicted [23, p. 589]
the value of the mean and fluctuations.

3. Damron-Hanson ’15 [11, Theorem 2] showed that this limit exists for any fixed
θ in 2d if the limit shape boundary is differentiable. They also showed existence
of limiting geodesics for the sequence G(0, xn). (And uniqueness statements.)

4. Auffinger-Damron-Hanson ’14 [5, Theorem 1.1] showed existence of these limits
on a half-plane (going toward the boundary). That is, if we consider FPP in the
upper half-plane H, and let xn be the point ne1, then the above limit exists surely
(!) for x, y ∈ H. Furthermore limiting geodesics exist. This was actually proved
in [5] for general subsets of Z2 with boundary.

It is not hard to show this for x, y on the boundary of the half-plane by the
“paths crossing” trick of Alm [2] and Alm-Wierman [3]. Indeed, note that if x
lies to the left of y on the boundary, then for large n, the geodesics G(x, ne1) and
G(y, (n+ 1)e1) must cross at some point w. Thus

T (x, ne1) + T (y, (n+ 1)e1) = T (x,w) + T (w, ne1) + T (y, w) + T (w, (n+ 1)e1)

≤ T (x, (n+ 1)e1) + T (y, ne1).

Rearranging,

T (x, ne1)− T (y, ne1) ≤ T (x, (n+ 1)e1)− T (y, (n+ 1)e1),

meaning that B(x, y) := limn[T (x, ne1) − T (y, ne1)] exists. One can extend this
argument to the case that geodesics do not exist, and it holds surely. For x, y in
the interior of the half-plane, more arguments are needed.
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5. As an aside, the first use of the paths crossing trick appears to have been in
Alm’s paper [2], where it was shown that in 2D, ET (0, e1) ≤ ET (0, e1 + e2). The
argument, as before, is that the geodesics G(0, e1 + e2) and G(e2, e1) must cross,
and so

T (0, e1 + e2) + T (e2, e1) ≥ T (0, e1) + T (e2, e1 + e2).

Taking expectation on both sides gives

2ET (0, e1 + e2) ≥ 2ET (0, e1).

6 Busemann gradient fields

In this section, we will sketch the proof of the following result from Damron-Hanson
[10]. It was proved in 2d there, but the ideas work for all dimensions as outlined below.

The main difficulty with making the results of the previous section unconditional
is that we do not know that Busemann limits exist. One possible solution to this is to
note that Bn(x, y) is bounded in n (a.s.) and so has a convergent subsequence. How
do we select a subsequence? If we were to define B(x, y) to be a subsequential limit, we
would like B to have a translation-covariance property (to apply the ergodic theorem
as in last section). It is not very clear how to do this, as we would need to choose
compatible subsequences for a configuration and all its translates.

This same issue appears in the study of short-range disordered systems by Aizenman-
Wehr and Newman-Stein, and was dealt with by introducing “metastates.” The ap-
proach below is roughly modeled off of that. The main idea is to look one level up, at
the level of distributions, and to take a subsequential limit of the joint distribution of
all Busemann increments. We will need an averaging procedure so that the resulting
distribution is translation invariant. The advantage will be that Busemann limits will
always be able to be extracted (in a distributional sense), but we will obtain somewhat
weaker results.

6.1 Existence of geodesics directed in sectors

Our general assumptions are:

1. P is ergodic under lattice translations,

2. Etd+δ
e <∞ for some δ > 0,

3. the limit shape for P is bounded.

Theorem 6.1 (Damron-Hanson). Let z0 ∈ ∂B be a point with a unique supporting
hyperplane H for B. Letting

S = H ∩ ∂B,

a.s., there is an infinite geodesic starting from 0 that is directed in S. This means that
if the vertices of the geodesic are 0, x1, x2, . . ., then (xn/g(xn)) has all limit points in
S.

Note that if z0 is exposed and differentiable, then a.s. there is an infinite geodesic
from 0 that is asymptotically directed in {z0}.
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Corollary 6.2. In 2d, under the above assumptions, and unique geodesics from point
to hyperplanes, assume that B is strictly convex. The following hold a.s.:

1. for all z0, there is an infinite geodesic directed in {z0} and

2. all infinite geodesics have directions.

This should be compared to ∼Newman’s. It is the same result except: we do not
need curvature or i.i.d.

Remarks.

• In the main theorem, we removed the limit assumption, but now the result only
holds in directions of differentiability.

• For even the main theorem (a geodesic in one direction), ∼Newman’s needed
curvature in an interval around z0 to obtain existence of a directed geodesic.
Here this is replace by exposed differentiability at z0.

• Note here that we cannot get infinite geodesics with true asymptotic directions,
since we cannot take z0 to be an exposed point necessarily. There are always
exposed points (found by shrinking a Euclidean ball to make contact with B),
but we do not know that these are directions of differentiability. In only one
i.i.d. case do we know that there is an exposed point of differentiability of B,
due to Auffinger-Damron ’13 [4]. In 2D, if P(te < I) = 0 for some I > 0 and
P(te = I) = ~pc, the oriented percolation threshold, then the direction π/4 is
exposed and differentiable. (This implies in particular that B is not a polygon.)

• In 2D, statements were also proved about coalescence of geodesics and nonexis-
tence of certain doubly-infinite geodesics. (This is covered in the next section.)

• A similar theorem has been proved by Georgiou-Rassoul-Agha-Seppäläinen [16]
in a related model: directed last-passage percolation in two dimensions. To con-
struct limits of Busemann fields, they appealed to a relation to queueing systems.

6.2 Sketch of proof

Proof sketch. For most of the proof, we take z0 ∈ ∂B, and H any supporting hyper-
plane to B at z0. (That is, we do not assume differentiability until the end.) Write
ρ ∈ Rd for the unique vector with H = {w : w · ρ = 1}.

The trick will be to enlarge the probability space and take distributional limits
there. We consider Ω̃ = Ω1 × Ω2 × Ω3, where

Ω1 = [0,∞)E
d
,

Ω2 = RZd×Zd

Ω3 = {0, 1}
~Ed .

Here, ~Ed is the set of directed edges of Zd. A typical element of Ω̃ is

ω̃ = ((te)e∈Ed , (B(x, y))x,y∈Zd , (η(e))
e∈ ~Ed) = ((te), B, η).
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For an element of our original probability space Ω, we can define elements in each of
the Ωi’s. Of course, the element of Ω1 will be (te(ω)). Next, for the hyper-plane H
and ρ the unique vector with H = {w : w · ρ = 1}, set Hα = {w : w · ρ = α} and put

Bα = Bα(ω) = (T (x,Hα)− T (y,Hα))x,y∈Zd .

This is our element of Ω2. For e = (x, y) ∈ ~Ed, define

ηα(e) =

{
1 if T (x,Hα) = T (y,Hα) + te

0 otherwise
.

This means that the directed edge e gets a value of 1 if it is in a geodesic from some
point to Hα (and it is traversed in the correct direction). Finally set

ηα = ηα(ω) = (ηα(e))
e∈ ~Ed

and
Φα : Ω→ Ω̃

by
Φα(ω) = ((te), Bα, ηα), µα = P ◦ Φα.

This is the joint distribution of the edge weights, Busemann gradients, and geodesic
graph configurations. Note that if θ is a translation by the integer vector x, which acts
as:

θ((te), (B(x, y)), (η(e))) = ((tθ−1e), (B(θ−1x, θ−1y)), (η(θ−1e))),

then
µα ◦ θ−1 = µα+ρ·x.

For instance,

(µα ◦ θ−1)(B(w, z) ∈ [a, b]) = µα(B(θ−1w, θ−1z) ∈ [a, b])

= P(T (θ−1w,Hα)− T (θ−1z,Hα) ∈ [a, b])

= P(T (w,Hα+x·ρ)− T (z,Hα+x·ρ) ∈ [a, b])

= µα+x·ρ(B(w, z) ∈ [a, b]).

From the second to third line, we applied the translation θ, used the fact that P is
translation invariant, and the fact that the image of Hα under the map θ is Hα+x·ρ.

Here are some basic properties of the measures µα, which follow from the definitions.
Given the configuration η in Ω3, we can define a directed graph G = G(η) induced by
the edges with value 1. Write x→ y if there is a directed path from x to y.

Lemma 6.3. Let α ∈ R. The following properties hold µα-a.s. for all x, y ∈ Zd.

1. B is additive and |B(x, y)| ≤ T (x, y),

2. from each x /∈ Hα, there is a directed path to Hα in G,

3. (Exercise.) each directed path in G is a geodesic for (te). If x→ y then B(x, y) =
T (x, y).
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We want to take a subsequential limit of the µα’s, but we need it to be translation
invariant, so we average. Set

µ∗n =
1

n

∫ n

0
µα dα.

(Need to know that for a generating class of events A, α 7→ µα(A) is Lebesgue mea-
surable.) The way to think of µ∗n is that we select a random hyperplane Hα uniformly
from α ∈ [0, n] and then sample our variables. Note now that for an integer translation
θ, and A an event in Ω̃,

(µ∗n ◦ θ−1)(A) = µ∗n(θ−1A) =
1

n

∫ n

0
µα(θ−1A) dα =

1

n

∫ n

0
µα ◦ θ−1(A) dα

=
1

n

∫ n

0
µα+x·ρ(A) dα.

Changing variables, this becomes

(µ∗n ◦ θ−1)(A) =
1

n

∫ n+x·ρ

x·ρ
µα(A) dα,

and so∣∣(µ∗n ◦ θ−1)(A)− µ∗n(A)
∣∣ ≤ 1

n

∣∣∣∣∫ x·ρ

0
µα(A) dα

∣∣∣∣+
1

n

∣∣∣∣∫ n+x·ρ

n
µα(A) dα

∣∣∣∣ . (6.1)

(Exercise.) Show the following.

1. the sequence (µ∗n) is tight, so it has a subsequential limit µ. Furthermore, The
above lemma also holds for µ (the three properties above), except item 2 would
say that from each x ∈ Zd, there is an infinite directed path in G.

2. µ is invariant under lattice translations. (Use (6.1) above.)

We now want to try to redo last section.

Proposition 6.4. The mean of the Busemann function B is given by

EµB(x, y) = (y − x) · ρ.

Proof. The following is an integrated version of the averaging argument (inspired by
Gouéré [18, Lemma 2.6]) from last section. For any x ∈ Zd,

Eµ∗nB(−x, 0) =
1

n

∫ n

0
EµαB(−x, 0) dα

=
1

n

∫ n

0
EBα(−x, 0) dα

=
1

n

[∫ n

0
ET (−x,Hα) dα−

∫ n

0
ET (0, Hα) dα

]
.

21



By shifting by x, ET (−x,Hα) = ET (0, Hα+x·ρ), and by changing variables, we get

1

n

[∫ n+x·ρ

x·ρ
ET (0, Hα) dα−

∫ n

0
ET (0, Hα) dα

]
=

1

n

[∫ n+x·ρ

n
ET (0, Hα) dα−

∫ x·ρ

0
ET (0, Hα) dα

]
∼
∫ n+x·ρ

n

ET (0, Hα)

n
dα

=

∫ x·ρ

0

ET (0, Hn+α)

n+ α
· n+ α

n
dα.

A similar result to an earlier exercise here gives

ET (0, Hα)/α→ 1 as α→∞.

So we obtain as a limit x · ρ. Now we simply need to know that Eµ∗nB(−x, 0) →
EµB(−x, 0). This follows from:

(Exercise.) Show that supn Eµ∗nB(x, y)d+δ < ∞ for all x, y, and conclude that the
above convergence holds.

We conclude that EµB(−x, 0) = ρ · x, and for x, y ∈ Zd, by translation invariance,

EµB(x, y) = EµB(−(y − x), 0) = (y − x) · ρ.

As usual, we can try to upgrade to a shape theorem, but in the current case, we do
not necessarily have ergodicity. Nonetheless, we can prove a random shape theorem
by breaking µ into ergodic components. We would have ergodicity if the coordinates
B and η we simply functions of (te), since the te’s are ergodic. But although this
holds µα-a.s. for each α, it does not have to be true in the limit (that is, using the
measure µ). This is in fact the main issue why we must choose z0 to be a point of
differentiability for the main theorem.

Indeed, in a simpler context, one can find random variables Xn and functions fn
such that the vectors (Xn, fn(Xn)) converge (jointly) in distribution to a vector (X,Y ),
but Y is not a function of X.

Theorem 6.5 (Busemann shape theorem). There exists a random vector ρ̂ with Eµρ̂ =
ρ such that for all ε > 0,

Pµ
(
|B(0, x)− ρ̂ · x| > ε‖x‖ for infinitely many x ∈ Zd

)
= 0.

Proposition 6.6. µ-a.s., the hyperplane Ĥ = {w : ρ̂·w = 1} is a supporting hyperplane
for B at z0.

Proof. We will show that (a) for z ∈ B, one has µ-a.s. that ρ̂·z ≤ 1 and (b) Eµρ̂·z0 = 1.
These two statements imply that ρ̂ · z0 = 1 a.s. (meaning z0 ∈ Ĥ ∩ ∂B) and B lies on
one side of Ĥ.
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For the first, since |B(x, y)| ≤ T (x, y) for all x, y, if z ∈ B, µ-almost surely

ρ̂ · z = lim
n

B(0, nz)

n
≤ lim

n

T (0, nz)

n
= g(z) ≤ 1.

For the second since z0 ∈ H,

Eµρ̂ · z0 = ρ · z0 = 1.

If H is a veritable tangent plane to B, then we can determine ρ̂ = ρ almost surely.

Corollary 6.7. If H is the unique supporting hyperplane for B at z0, then µ-a.s.
Ĥ = H and ρ̂ = ρ.

From here, we can basically repeat everything from the last section, to obtain the
main result:

Theorem 6.8. Let Ŝ = ∂B ∩ Ĥ. µ-almost surely, every infinite directed path in G is
directed in Ŝ.

Proof. Identical to the last section. If γ = 0, x1, x2, . . . is an infinite directed path from
0, then B(0, xn) = ρ̂ · xn + o(‖xn‖) but also equals T (0, xn) = g(xn) + o(‖xn‖). Thus
if xnk/g(xnk)→ z,

B(0, xnk)

g(xnk)
= ρ̂ ·

(
xnk + o(‖xnk‖)

g(xnk)

)
→ ρ̂ · z

and also equals
T (0, xnk)

g(xnk)
→ 1.

This means z ∈ ∂B ∩ Ĥ.

In the differentiable case, let

A = {every infinite directed path in G is directed in S}.

Then µ(A) = 1 and so
µ [µ(A | (te)) = 1] = 1.

(The inside is the regular conditional probability measure.) On the event {µ(A | (te)) =
1, there are geodesic graph configurations for (te) in which 0 has an infinite directed
path in S. This edge-weight event has probability one in µ and thus in our original P,
and this completes the proof.
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7 Bigeodesics

We have talked for the whole course about infinite geodesics, but we have not yet
mentioned that they can come in two versions.

Definition 7.1. An infinite geodesic indexed by N is a unigeodesic. One indexed by Z
is a bigeodesic.

A bigeodesic has both ends which are themselves unigeodesics. Although we have
seen that there are always unigeodesics (and often many of them), the opposite is
expected to be true for bigeodesics (at least in low dimensions). The following question
is attributed to Furstenberg by Kesten [24, (9.22)]:

Question. Do bigeodesics exist with positive probability?

It is believed that for d = 2 (and suitably low dimension), with probability one,
there are no bigeodesics. This is based on nonrigorous physics arguments and heuris-
tic arguments from values of scaling exponents. (Such an argument appears in [6,
Sec. 4.5.1].)

The main result we want to sketch in this section is in the recent paper of Damron-
Hanson [11]. It is a consequence of uniqueness statements we give later. Here we take
i.i.d. continuous weights with finite mean, although their results apply to translation
invariant weights as well.

Theorem 7.2 (Nonexistence of bigeodesics in fixed directions.). Suppose (te) is i.i.d.
with continuous marginals and Ete < ∞ and assume that ∂B is differentiable. In
dimension d = 2, let z0 ∈ ∂B and Sz0 = ∂B ∩Hz0, where Hz0 is the unique supporting
line for B at z0. A.s., there is no bigeodesic with an end directed in Sz0.

Since z0 ∈ Sz0 , the result gives nonexistence of bigeodesics with an end directed
in {z0}, for any deterministic z0. This result was proved earlier in a related model,
directed last-passage percolation, by Georgiou-Rassoul-Agha-Seppäläinen [16, 17].

7.1 Previous results

Work on bigeodesics started with Wehr, Licea-Newman, and Wehr-Woo in the ’90s.

• Let N̂ be the (a.s. constant) number of bigeodesics. Then Wehr [34] showed in
’97 that under the above assumptions, N̂ ∈ {0,∞} (for any dimension).

• Wehr-Woo [35] showed in ’98 that a.s. there are no bigeodesics in first-passage
percolation on a 2d half-plane.

• Licea-Newman [27] showed in ’96 that in 2d if the (te)’s are i.i.d. and continuous,
there exists a deterministic set D ⊂ [0, 2π) with Dc of measure zero such that for
θ1, θ2 ∈ D,

P (∃ bigeodesic with ends directed in θ1, θ2) = 0.

Note that for this result, no curvature assumption is needed. However, as we have
seen, to know that infinite geodesics have directions at all, we need to assume
curvature. So without curvature, this statement could in principle be vacuously
true.
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The main difficulty with the Licea-Newman result is that D is not specified. (How-
ever, Zerner [30, Theorem 1.5] showed that Dc is at most countable, improving the
above result.) For instance, it was not known if 0 ∈ D. Theorem 7.2 takes care of this,
showing that D = [0, 2π). However, it is still far from the bigeodesic conjecture, since
we would want to show that there is no bigeodesic with an end directed in {z0} for
all z0 simultaneously, and we cannot conclude this from the theorem, since there are
uncountably many z0’s.

The route to studying bigeodesics with deterministic directions goes through unique-
ness of infinite geodesics with certain directions. The main result of Licea-Newman is:

Theorem 7.3. Given θ ∈ D, a.s. any two infinite geodesics with direction θ coalesce.

Why does this suffice to prove nonexistence of bigeodesics with fixed directions?

Sketch of Licea-Newman given Theorem 7.3. Given θ1, θ2 ∈ D, one can strengthen the
Wehr result on the number of bigeodesics to ones with these directions. That is,
letting N ′ be the (a.s. constant) number of bigeodesics with directions θ1, θ2, one has
N ′ ∈ {0,∞}. So supposing it is ∞, we can a.s. find two points x, y ∈ Z2 such that x
is in a bigeodesic Px and y is in a bigeodesic Py, and further x /∈ Py, y /∈ Px. However
since these bigeodesics have directions θ1, θ2, the uniqueness theorem above implies
that their ends need to coalesce. So we can find points v, w ∈ Px ∩ Py such that the
portion of Px from v to w is not equal to the portion of Py from v to w. But both
of these portions are finite geodesics, and this means there are two distinct geodesics
from v to w, a contradiction, since the weights (te) are continuous.

7.2 Sketch of proof of Theorem 7.2

By the last section, we need only show:

Theorem 7.4. Let (te) be i.i.d. with continuous marginals, and finite mean and as-
sume ∂B is differentiable. Given z0 ∈ ∂B, a.s. all infinite geodesics that are directed
in Sz0 coalesce.

To be honest, a slightly different argument is needed to show that this theorem
suffices to prove nonexistence of bigeodesics. The reason is that Theorem 7.2 concerns
bigeodesics which have at least one end directed in Sz0 , whereas the bigeodesics in
Licea-Newman were forced to have both ends directed in deterministic directions in D
(and so is more restrictive). We will overlook this detail, though.

For the rest of the notes, we sketch the proof of Theorem 7.4.

Proof. For simplicity, we take z0 = e2/g(e2), the point on the boundary of the limit
shape in direction e2. By our differentiability assumptions, one can show that Sz0 does
not touch the e1-axis, and therefore each Sz0-directed geodesic intersects the lower
half-plane only finitely often. This allows us to reduce the problem to upper half-plane
geodesics. (This is actually the biggest step in the paper but in a sense it is the least
interesting, so we omit it.)
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So for the remainder, we show that a.s., all infinite upper half-plane geodesics that
are directed in Sz0 coalesce. Upper half-plane geodesics are defined relative to the
first-passage model in the upper half-plane. That is, we set

VH = {x ∈ Zd : x · e2 ≥ 0}

and for x, y ∈ VH , TH(x, y) is the minimal passage time of all paths from x to y
that take only vertices in VH . An infinite geodesic is defined similarly to a full-plane
one. We will content ourselves with showing the similar statement that a.s., for each
x, y ∈ L0 = {z : z ·e2 = 0}, any infinite geodesics from x and y directed in Sz0 coalesce.

Step 1. Definition of left- and right-most geodesics. Note that all infinite geodesics
from 0 that are directed in Sz0 are ordered from left to right. This is a consequence
of uniqueness of geodesics. (That is, if an infinite geodesic moves to the “left” of
another one, it cannot move back to the “right.”) Thus we can define from each
x ∈ L0 = {z : z · e1 = 0} a left-most and right-most infinite geodesic directed in Sz0 :
we simply take the right or left boundary of the union of all infinite geodesics from x
directed in Sz0 . In the full-plane, this is significantly more complicated, but in both
cases, if we write these geodesics as

ΓLx and ΓRx respectively,

then one can show that for each x, a.s., both of these geodesics are also directed in
Sz0 . This requires the differentiability assumption, as the endpoints of Sz0 are points
of differentiability of ∂B, so using the results of the last section, we can find infinitely
many infinite geodesics from x directed in sectors near these endpoints. These geodesics
trap all the ones directed in Sz0 from both sides. One can furthermore show that a.s.,

ΓLx and ΓLy coalesce for x, y ∈ L0,

and similarly for rightmost geodesics. (This uses an argument from Licea-Newman.)
The goal now is to show that

ΓL0 = ΓR0 a.s.

By extremality, then, any infinite geodesics from x, y must coalesce with these.

Step 2. Left- and right-most Busemann functions. By coalescence, we can define for
x, y ∈ L0,

B∗(x, y) = BΓ∗0
(x, y) for ∗ = L,R.

As before, one can show that
EB∗(0, x) = x · ρ∗

for ρ∗ ∈ R2 such that {z : z ·ρ∗ = 1} is a supporting line for B at z0. By differentiability,
then, one has ρL = ρR and so

EBL(0, x) = EBR(0, x) for all x.

(This step requires us to relate to left- and right-most geodesics in the full-plane.)
Therefore

∆(0, x) = EBL(0, x)− EBR(0, x) = 0.
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Step 3. Paths crossing argument. However we claim that

BL(0, e1) ≤ BR(0, e1) a.s.

To see why, note that ΓLe1 must intersect ΓR0 at some vertex w. Taking (xn) and (yn)
to be sequences on ΓL0 and ΓR0 going to infinity, for n large,

T (0, yn) +T (e1, xn) = T (0, w) +T (w, yn) +T (e1, w) +T (w, xn) ≥ T (0, xn) +T (e1, yn),

or
T (0, yn)− T (e1, yn) ≥ T (0, xn)− T (e1, xn).

Taking n→∞, gives BL(0, e1) ≤ BR(0, e1). Combining with the previous step gives

∆(0, e1) = 0 a.s.

Step 4. The contradiction. Suppose that with positive probability, ΓL0 6= ΓR0 . Then by
coalescence, on this event, there is a k large enough so that ΓL0 and ΓLke1 coalesce at a

different point than that at which ΓR0 and ΓRke1 do. By uniqueness of geodesics (using
that the Busemann function is just the difference of passage time to the coalescence
point), ∆(0, k1) 6= 0 with positive probability. But by stationarity and the last step,

∆(0, ke1) =

k∑
j=1

∆((j − 1)e1, je1) = 0,

a contradiction.

Remarks.

1. As in Licea-Newman, we should ask if infinite geodesics must be directed in sectors
under our assumptions. Using the existence results from the last section along
with trapping, one can show that if ∂B is differentiable then a.s.

(a) for each z0, there is an infinite geodesic from 0 directed in Sz0 and

(b) each infinite geodesic is directed in Sz0 for some z0.

2. The results from [16, 17] in directed LPP are nearly the same as those presented
here. Due to directedness of the model, there is no need to reduce to a half-plane,
but in Step 1, one must appeal to results analogous to those in the last section
(existence of directed geodesics) in LPP, established in [16].
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