Scaling limit of a layer of unstable phase

Yvan Velenik

based on joint work with Dima loffe and Senya Shlosman
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Motivating example

Critical prewetting in the Ising model

» 2d Ising model in a square box
» Boundary conditions: + + +—

» Magnetic field: A >0

As h | 0, the thickness of the layer of unstable — phase increases as
h=1/3+(1) (as long as N > h=2/3) [V., PTRF 2004]
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Motivating example

1 + 1-dimensional effective model

MM

—-N N

Probability of a nonnegative trajectory X = (X_p,..., Xn):

N
Pr.a(X) = zo— exp{ =3 3° X} pea(¥),
o i=—N

where A > 0.
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Motivating example

1 + 1-dimensional effective model

Unstable phase

—-N N

Probability of a nonnegative trajectory X = (X_p,..., Xn):

“area”

—_—
1 N
IPNHr,)\(X) = I T exp{_)‘ Z Xz} pr(X),
P 1=—N

where A > 0.
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Motivating example

Behavior as A | O:
» Free energy ~ \%/°

» Thickness ~ \~1/3
» Correlation length ~ \~2/3

[Hryniv and V., PTRF 2004] (see also [Abraham& Smith, JSP 1986])
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Motivating example

Behavior as A | 0:
» Free energy ~ \?/°

» Thickness ~ \~1/3
» Correlation length ~ \~2/3

[Hryniv and V., PTRF 2004] (see also [Abraham& Smith, JSP 1986])

What is the scaling limit of z,(t) = AY3X[5-2/347?
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Motivating example

Behavior as A | 0:
» Free energy ~ \?/°

» Thickness ~ \~1/3
» Correlation length ~ \~2/3

[Hryniv and V., PTRF 2004] (see also [Abraham& Smith, JSP 1986])

What is the scaling limit of z,(t) = AY3X[5-2/347?

Useful to consider a more general situation...
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General effective model

1. The underlying random walk

(pz)zez: trans. probab. of an aperiodic, irreducible RW on Z such that

Zpa: =0, Zet’”pz < oo for small ¢
x

x
Let 02 = z%p, and, for X = (X_n,..., Xn),

N-1
pRW(X) = H pX,'+1—X1'
1=—N
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General effective model

2. The potentials (V3)x~0

Let V3 : N — R be such that

V»(0) =0, V4 increasing, lim V4(z) =+

T—00
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General effective model

2. The potentials (V3)x~0

Let V3 : N — R be such that

V»(0) =0, V4 increasing, lim V4(z) =+

T— 00
Let H, be the unique solution to
H?*V\(H) =1

(measures the thickness of the layer)
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General effective model

2. The potentials (V3)x~0

Let V3 : N — R be such that

V»(0) =0, V4 increasing, lim V4(z) =+

T—00

Let H, be the unique solution to
H?*V\(H) =1
(measures the thickness of the layer)

Additional assumptions (on (V3)x>0):

. _ . 2 _
1}5101H>\—+oo, l)fﬁle)\V;\(rH)\)—q(r),

with ¢ € C%(R4) such that lim, o g(r) = +oo0.
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General effective model

2. The potentials (V3)x~0

Let V3 : N — R be such that

V»(0) =0, V4 increasing, lim V4(z) =+

T—00

Let H, be the unique solution to
H?*V\(H) =1
(measures the thickness of the layer)

Additional assumptions (on (V3)x>0):

. _ . 2 _
1}5101H>\—+oo, l)fﬁle)\V;\(rH)\)—q(r),

with ¢ € C%(R4) such that lim, o g(r) = +oo0.
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General effective model

3. The effective model

Probability of a nonnegative trajectory X = (X_p,..., Xx) with
X,N = u, XN =V

IP;]V"\,I—&-,}\(X) Z]uvv+ CXP{ Z V)\ } pRW(X)
A 1=—N
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General effective model

3. The effective model

Probability of a nonnegative trajectory X = (X_p,..., Xx) with
X,N = u, XN =V

Py (X)) =

exp{ Z (X }pRW(X)

Zuv
N,+,A i=—N

Goal: Determine the scaling limit of z,(¢) = H;lX{Hit] asAlo0
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Limiting objects

Singular Sturm-Liouville problem on R

o2 d2
L=Log= S dre g(r)

with zero boundary condition: ¢(0) = 0.
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Limiting objects

Singular Sturm-Liouville problem on R

o2 d2

L=Log= S dre g(r)

with zero boundary condition: ¢(0) = 0.

Well-known: 3 orthonormal basis {¢;};>o of simple eigenfunctions in
Lz (R ) with eigenvalues

0> —e>—e;>—e>..., lim e; = +00

1— 00

Vi > 0, ; is smooth and possesses exactly ¢ zeroes in (0, c0)

In particular ¢ can be taken positive.
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Limiting objects

Ferrari-Spohn diffusions on (0, o)

Generators:

7
d
_«sz@_w

Go gt = (L+eo )(Yeo) = % ar 0o dr
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Limiting objects

Ferrari-Spohn diffusions on (0, o)

Generators:

7
d
_f+az@_¢

Gog¥ = (L+eo)(¢¢o)_%dr @o dr

The corresponding diffusions are ergodic and reversible w.r.t.

to(dr) = <pg (r)dr
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Limiting objects

Ferrari-Spohn diffusions on (0, o)

Generators:

7
d
_f+az@_¢

Gog¥ = (L+eo)(¢¢o)_%dr @o dr

The corresponding diffusions are ergodic and reversible w.r.t.
po(dr) = @5 (r)dr

Stationary path measure: P, 4
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» Scaled process: z,(t) = X[H2t] (with linear interpolation)

Theorem (loffe, Shlosman, V., 2014)
Let (Ay)n>1 be such that Ay | 0 and H; /N — 0. Then,

u,v N—oo
Law of zy, under Py", =~ "= Pog,

uniformly in 0 < u,v < CH,.
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Main result

Example: V) (z) = Az
In this case:

Hy =13 po(r) = Ai(xr — wi), e =

x| 8

where —w; is the first zero of the Airy function Ai and x = ¥/2/02.

Scaling limit: diffusion in log-Airy potential
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Main result

Example: V) (z) = Az
In this case:

) w
Hy =13 po(r) = Ai(xr — wi), e = —,

where —w; is the first zero of the Airy function Ai and x = ¥/2/02.

Scaling limit: diffusion in log-Airy potential

The corresponding diffusion was already derived in
[Ferrari&Spohn, AoP 2005] in the context of a
Brownian bridge conditioned to stay above a circular
barrier.
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Transfer operator

(To simplify, | assume here that p, = p_,)

~ 1
V:Z:,y € IN, T)\(m’y) = pyia: e_E(VA(X)'i‘V)\(Y))
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Transfer operator

(To simplify, | assume here that p, = p_,)

~ 1
V.’I:,y € ]N, T)\(m’y) = pyia: e_E(VA(X)'i‘V)\(Y))

1 ~
Note that e2 (W HAW) Zy' s =T (u,v)
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Transfer operator

(To simplify, | assume here that p, = p_,)
~ 1
V.’I:,y € ]N, T)\(m’y) = pyiz e_E(V)\(X)'i‘V)\(Y))

1 ~
Note that e2 (W HAW) Zy' s =T (u,v)

Krein-Rutman — :I:A possesses a leading e.f. ¢ > 0 of ev. E,

Normalized version: Ty = E%TA
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Transfer operator

(To simplify, | assume here that p, = p_,)

~ 1
V.’E,y € ]N, TA(m,y) = pyix e_E(VA(X)'i‘V)\(Y))

1 ~
Note that e2 (W) Zy'y s = T3 (u,v)

Krein-Rutman — :I:A possesses a leading e.f. ¢ > 0 of ev. E,
Normalized version: Ty = E%'T'A

Ground-state chain:

(6 y) = ¢+(X)TA(X, Y)éa()

~ Pos. recurrent Markov chain, with inv. meas. py(x) = caéa(x)?
Stationary path-measure: Py
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Convergence of fdds

Let Ny = H; 'N.
Ex{uo(er())ur(er(E)} = S pa(Har) mo > (Har, Has) o(r)us (s)

r,seNy
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Convergence of fdds

Let Ny = H; 'N.

Ex{uo(er())ur(er(E)} = S pa(Har) mo > (Har, Has) o(r)us (s)
r,s€Ny

Assume one can show that, as A | 0,

Hyx =1, éa(H) = eo(n),  TENf](H) — T
where Tt = e(Zteolt gnd fA(HA') - f()
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Convergence of fdds

Let Ny = H; 'N.

Ex{uo(z2(0))u(2r(6)} = > wa(Har) Ty (Har, Hs) uo(r)us(5)

r,seNy

Assume one can show that, as A | 0,

Haer =1, a(Har) o oo(r),  TeAIANE) = T
where Tt = e(Z+e0lt and £, (Hx-) — F(-).

ZpA(Hﬂ). _C)\Z¢)‘(H)\r . _)/dr% ...:/#o(dr)...

reNy reNy
and
D s (M) = s T (B3] (Han)
seNy
. %#(,)Tt[wom](r) = eSoatlug](r)
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Convergence of fdds

Let Ny = H; 'N.

Ex{uo(z2(0))u(2r(6)} = > wa(Har) Ty (Har, Hs) uo(r)us(5)

r,s€Ny
Assume one can show that, as A | 0,

Hje) — 1, r(Har) = @o(r), [H ‘ [

where Tt = e(Fteol)t 3pd (Hx) = ()

ZpA(Hﬂ). _c;‘qu)\(H)\r . _)/dr% ...:/#o(dr)...

AA(HAT) = TF1()

reNy reNy
and
5 [ (HT ) (Har) =~ T s (B )] (Har)
sENy ¢>‘(H)‘r)
- %#(r)ﬁ[woul](r) = e%eatuy](r)
Thus,
]E)\{’U,Q((E)\(O))ul ((E)\(t))} — Ea,q{‘U.o(iE(O))ul ((E(t))} UNIVERSITE
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Three main probabilistic inputs

1. The free energy is of order H;*
Setting ex = —HZlog E,, this implies that

0 < liminfey <limsupey < co.
Alo AL0

~+ compactness of (ex)a>o
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Three main probabilistic inputs

1. The free energy is of order H;*
Setting ex = —HZlog E,, this implies that

0 < liminfey <limsupey < co.
Alo AL0

~+ compactness of (ex)a>o

2. Tail estimate:

P%\,’+,>\N(Xo > KH,) <exp{-vK(\q(K)AH)}
uniformly in K > 0 and A < Ag.

~ tightness of (z,P)) and compactness of (¢x(Hx-))a>o0
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Three main probabilistic inputs

1. The free energy is of order H;*
Setting ex = —HZlog E,, this implies that

0 < liminfey <limsupey < co.
Alo AL0

~+ compactness of (ex)a>o

2. Tail estimate:

P%\,’+,>\N(Xo > KH,) <exp{-vK(\q(K)AH)}
uniformly in K > 0 and A < Ag.
~ tightness of (z,,P») and compactness of (¢x(Hx-))r>0

3. Approximation by stationary distribution
Suppose N > HfN and uy,vy < cHj,,. Then, for any local event A,
Jim [P, (4) = Ba, (4)] = o0.
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Convergence of semigroup

Let Laf(r) = 22 f(r)

—2
H)\

2
“Fact”: limy o TkH"tJ fr = et f follows from lim o Laua = (L + el)u
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Convergence of semigroup

Let L)\f(r) = 11—;‘;72If(r)

2
“Fact” limx o TkH"tJ fr = et £ follows from limy o Laux = (L +el)u

» Computation:
Bre L un(r) =

VA(HA)— Vi (Hys)
2

EDBEACAROIC u(s) - u(?))

SENy

1 — EyeVa(Fan

+ u(r)
h3
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Convergence of semigroup

Let Ly f(r) = I};Z'f(r)

2
“Fact”: limy o TkH"tJ fr = et f follows from lim o Laua = (L + el)u

» Computation: Assume that lginex —e
0

Ere I Lus(r) =
—1

VA(HA)— Vi (Hys)
2

EDBEACAROIC u(s) - u(?))

SENy

2
= 2o’ (r)
1 — EyeVa(Fan

h3
— (e—q(r)u(r)

+ u(r)
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|dentification of the limit

One then easily deduce:

e =lime,, po(r) = Iﬁg éx (Hxr)
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|dentification of the limit

One then easily deduce:

e =lime,, po(r) = Iﬁg éx (Hxr)

Indeed, w.l.o.g., consider a subsequence (Ag)x>o such that ey, — e and
¢>\k (H>\k) - (P()
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|dentification of the limit

One then easily deduce:

e =lime,, po(r) = Iﬁg éx (Hxr)

Indeed, w.l.o.g., consider a subsequence (Ag)x>o such that ey, — e and
¢>\k (H>\k) - (P()

Tagr = = eV =0
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|dentification of the limit

One then easily deduce:

Proposition

e = limey, po(r) ;fg‘ﬁx( AT)

Indeed, w.l.o.g., consider a subsequence (Ag)x>o such that ey, — e and
¢>\k (H>\k) - (P()

Tagr = = eV =0

= ¢ is a non-negative (normalized) eigenfunction of L with
eigenvalue —e.
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|dentification of the limit

One then easily deduce:

Proposition

e = limey, po(r) ;fg‘ﬁx( AT)

Indeed, w.l.o.g., consider a subsequence (Ag)x>o such that ey, — e and
¢>\k (H>\k) - (P()

Tagr = = eV =0

= ¢ is a non-negative (normalized) eigenfunction of L with
eigenvalue —e.

— @p=¢gand e=¢gg
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Thanks

for your attention!
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