Scaling limit of a layer of unstable phase

Yvan Velenik

based on joint work with Dima loffe and Senya Shlosman

Structure of the talk

- Motivating example
- @ General effective model
- Result
- Sketch of proof

Critical prewetting in the Ising model

- ▶ 2d Ising model in a square box
- ▶ Boundary conditions: + + + -
- ightharpoonup Magnetic field: h>0

As $h\downarrow 0$, the thickness of the layer of unstable — phase increases as $h^{-1/3+o(1)}$ (as long as $N\gg h^{-2/3}$) [V., PTRF 2004]

1 + 1-dimensional effective model

Probability of a nonnegative trajectory $X = (X_{-N}, \dots, X_N)$:

$$\mathbb{P}_{N,+,\lambda}(\mathbb{X}) = rac{1}{Z_{N,+,\lambda}} \, \exp\Bigl\{ -\lambda \, \sum_{i=-N}^N X_i \Bigr\} \, \mathsf{p}_{\scriptscriptstyle \mathrm{RW}}(\mathbb{X}),$$

where $\lambda > 0$.

1 + 1-dimensional effective model

Probability of a nonnegative trajectory $\mathbb{X} = (X_{-N}, \dots, X_N)$:

$$\mathbb{P}_{N,+,\lambda}(\mathbb{X}) = rac{1}{Z_{N,+,\lambda}} \, \exp\Bigl\{-\lambda \sum_{i=-N}^{N} X_i\Bigr\} \, \mathsf{p}_{\scriptscriptstyle \mathrm{RW}}(\mathbb{X}),$$

where $\lambda > 0$.

Motivating example

Behavior as $\lambda \downarrow 0$:

- ► Free energy $\sim \lambda^{2/3}$
- ► Thickness $\sim \lambda^{-1/3}$
- ► Correlation length $\sim \lambda^{-2/3}$

[Hryniv and V., PTRF 2004] (see also [Abraham& Smith, JSP 1986])

Motivating example

Behavior as $\lambda \downarrow 0$:

- ► Free energy $\sim \lambda^{2/3}$
- ► Thickness $\sim \lambda^{-1/3}$
- ► Correlation length $\sim \lambda^{-2/3}$

[Hryniv and V., PTRF 2004] (see also [Abraham& Smith, JSP 1986])

What is the scaling limit of $x_{\lambda}(t)=\lambda^{1/3}X_{[\lambda^{-2/3}t]}$?

Motivating example

Behavior as $\lambda \downarrow 0$:

- ► Free energy $\sim \lambda^{2/3}$
- ► Thickness $\sim \lambda^{-1/3}$
- ► Correlation length $\sim \lambda^{-2/3}$

[Hryniv and V., PTRF 2004] (see also [Abraham& Smith, JSP 1986])

What is the scaling limit of
$$x_\lambda(t)=\lambda^{1/3}X_{[\lambda^{-2/3}t]}$$
?

Useful to consider a more general situation...

1. The underlying random walk

 $(p_x)_{x\in\mathbb{Z}}$: trans. probab. of an aperiodic, irreducible RW on \mathbb{Z} such that

$$\sum_x p_x = 0$$
 , $\sum_x e^{tx} p_x < \infty$ for small t

Let
$$\sigma^2 = \sum_x x^2 p_x$$
 and, for $\mathbb{X} = (X_{-N}, \dots, X_N)$,

$$\mathsf{p}_{\scriptscriptstyle{\mathrm{RW}}}(\mathbb{X}) = \prod_{i=-N}^{N-1} p_{X_{i+1}-X_i}$$

2. The potentials $(V_{\lambda})_{\lambda>0}$

Let $V_{\lambda}: \mathbb{N}
ightarrow \mathbb{R}_{+}$ be such that

$$V_{\lambda}(0)=0\,, \qquad V_{\lambda} \ ext{increasing}, \qquad \lim_{x o\infty}V_{\lambda}(x)=+\infty$$

2. The potentials $(V_{\lambda})_{\lambda>0}$

Let $V_{\lambda}: \mathbb{N} \to \mathbb{R}_+$ be such that

$$V_{\lambda}(0)=0\,,\qquad V_{\lambda} \ ext{increasing},\qquad \lim_{x o\infty}V_{\lambda}(x)=+\infty$$

Let H_{λ} be the unique solution to

$$H^2V_{\lambda}(H)=1$$

(measures the thickness of the layer)

2. The potentials $(V_{\lambda})_{\lambda>0}$

Let $V_{\lambda}: \mathbb{N} \to \mathbb{R}_+$ be such that

$$V_{\lambda}(0)=0$$
 , $\qquad V_{\lambda}$ increasing, $\qquad \lim_{x o \infty} V_{\lambda}(x)=+\infty$

Let H_{λ} be the unique solution to

$$H^2V_{\lambda}(H)=1$$

(measures the thickness of the layer)

Additional assumptions (on $(V_{\lambda})_{\lambda>0}$):

$$\lim_{\lambda\downarrow 0} H_\lambda = +\infty\,, \qquad \lim_{\lambda\downarrow 0} H_\lambda^2 V_\lambda(rH_\lambda) = q(r)\,,$$

with $q \in \mathsf{C}^2(\mathbb{R}_+)$ such that $\lim_{r \to \infty} q(r) = +\infty$.

2. The potentials $(V_{\lambda})_{\lambda>0}$

Let $V_{\lambda}: \mathbb{N} \to \mathbb{R}_+$ be such that

$$V_{\lambda}(0)=0$$
 , V_{λ} increasing, $\lim_{x o \infty} V_{\lambda}(x)=+\infty$

Let H_{λ} be the unique solution to

$$H^2V_{\lambda}(H)=1$$

(measures the thickness of the layer)

Additional assumptions (on $(V_{\lambda})_{\lambda>0}$):

$$\lim_{\lambda\downarrow 0} H_\lambda = +\infty\,, \qquad \lim_{\lambda\downarrow 0} H_\lambda^2 V_\lambda(rH_\lambda) = q(r)\,,$$

with $q \in \mathsf{C}^2(\mathbb{R}_+)$ such that $\lim_{r \to \infty} q(r) = +\infty$.

Example:
$$V_{\lambda}(x) = \lambda x^{\alpha}$$
, $\alpha > 0$, $H_{\lambda} = \lambda^{-1/(2+\alpha)}$, $q(r) = r^{\alpha}$

3. The effective model

Probability of a nonnegative trajectory $\mathbb{X}=(X_{-N},\dots,X_N)$ with $X_{-N}=\mathsf{u},\ X_N=\mathsf{v}$:

$$\mathbb{P}_{N,+,\lambda}^{\mathsf{u},\mathsf{v}}(\mathbb{X}) = \frac{1}{Z_{N,+,\lambda}^{\mathsf{u},\mathsf{v}}} \, \exp\Bigl\{-\sum_{i=-N}^N V_\lambda(X_i)\Bigr\} \, \mathsf{p}_{\scriptscriptstyle \mathrm{RW}}(\mathbb{X})$$

3. The effective model

Probability of a nonnegative trajectory $\mathbb{X}=(X_{-N},\dots,X_N)$ with $X_{-N}=\mathsf{u},\ X_N=\mathsf{v}$:

$$\mathbb{P}_{N,+,\lambda}^{\mathsf{u},\mathsf{v}}(\mathbb{X}) = rac{1}{Z_{N,+,\lambda}^{\mathsf{u},\mathsf{v}}} \, \exp\Bigl\{-\sum_{i=-N}^N V_\lambda(X_i)\Bigr\} \, \mathsf{p}_{\scriptscriptstyle \mathrm{RW}}(\mathbb{X})$$

Goal: Determine the scaling limit of $x_{\lambda}(t) = H_{\lambda}^{-1} X_{[H_{\lambda}^2 t]}$ as $\lambda \downarrow 0$

Singular Sturm-Liouville problem on \mathbb{R}_+

$$\mathsf{L} = \mathsf{L}_{\sigma,q} = rac{\sigma^2}{2} rac{\mathsf{d}^2}{\mathsf{d} r^2} - q(r)$$

with zero boundary condition: $\varphi(0) = 0$.

Singular Sturm-Liouville problem on \mathbb{R}_+

$$\mathsf{L} = \mathsf{L}_{\sigma,q} = rac{\sigma^2}{2} rac{\mathsf{d}^2}{\mathsf{d} r^2} - q(r)$$

with zero boundary condition: $\varphi(0) = 0$.

Well-known: \exists orthonormal basis $\{\varphi_i\}_{i\geq 0}$ of simple eigenfunctions in $\mathbb{L}_2(\mathbb{R}_+)$ with eigenvalues

$$0>-e_0>-e_1>-e_2>\dots,\qquad \lim_{i\to\infty}e_i=+\infty$$

 $\forall i \geq 0$, φ_i is smooth and possesses exactly i zeroes in $(0, \infty)$ In particular φ_0 can be taken positive.

Ferrari-Spohn diffusions on $(0, \infty)$

Generators:

$$\mathsf{G}_{\sigma,q}\psi = rac{1}{arphi_0}(\mathsf{L} + \mathsf{e}_0\mathsf{I})(\psiarphi_0) = rac{\sigma^2}{2}rac{\mathsf{d}^2\psi}{\mathsf{d}r^2} + \sigma^2rac{arphi_0'}{arphi_0}rac{\mathsf{d}\psi}{\mathsf{d}r}$$

Ferrari-Spohn diffusions on $(0, \infty)$

Generators:

$$\mathsf{G}_{\sigma,q}\psi = rac{1}{arphi_0}(\mathsf{L} + \mathsf{e}_0\mathsf{I})(\psiarphi_0) = rac{\sigma^2}{2}rac{\mathsf{d}^2\psi}{\mathsf{d}r^2} + \sigma^2rac{arphi_0'}{arphi_0}rac{\mathsf{d}\psi}{\mathsf{d}r}$$

The corresponding diffusions are ergodic and reversible w.r.t.

$$\mu_0(\mathrm{d} r) = arphi_0^2(r) \mathrm{d} r$$

Ferrari-Spohn diffusions on $(0, \infty)$

Generators:

$$\mathsf{G}_{\sigma,q}\psi = \frac{1}{\varphi_0}(\mathsf{L} + \mathsf{e}_0\mathsf{I})(\psi\varphi_0) = \frac{\sigma^2}{2}\frac{\mathsf{d}^2\psi}{\mathsf{d}r^2} + \sigma^2\frac{\varphi_0'}{\varphi_0}\frac{\mathsf{d}\psi}{\mathsf{d}r}$$

The corresponding diffusions are ergodic and reversible w.r.t.

$$\mu_0(\mathrm{d} r)=arphi_0^2(r)\mathrm{d} r$$

Stationary path measure: $\mathbb{P}_{\sigma,q}$

lacktriangle Scaled process: $x_\lambda(t) = rac{1}{H_\lambda} X_{[H_\lambda^2 t]}$

(with linear interpolation)

Theorem (loffe, Shlosman, V., 2014)

Let $(\lambda_N)_{N\geq 1}$ be such that $\lambda_N\downarrow 0$ and $H^2_{\lambda_N}/N\to 0$. Then,

Law of
$$x_{\lambda_N}$$
 under $\mathbb{P}_{N,+,\lambda_N}^{\mathsf{u},\mathsf{v}} \overset{N\to\infty}{\Longrightarrow} \mathbb{P}_{\sigma,q}$,

uniformly in $0 \le u, v \le CH_{\lambda}$.

Main result

Example: $V_{\lambda}(x) = \lambda x$

In this case:

$$H_{\lambda}=\lambda^{-1/3}, \qquad arphi_0(r)=\mathrm{Ai}(\chi r-\omega_1), \qquad e_0=rac{\omega_1}{\chi},$$

where $-\omega_1$ is the first zero of the Airy function Ai and $\chi=\sqrt[3]{2/\sigma^2}$.

Scaling limit: diffusion in log-Airy potential

Main result

Example: $V_{\lambda}(x) = \lambda x$ In this case:

$$H_{\lambda}=\lambda^{-1/3}, \qquad arphi_0(r)=\mathrm{Ai}(\chi r-\omega_1), \qquad e_0=rac{\omega_1}{\chi},$$

where $-\omega_1$ is the first zero of the Airy function Ai and $\chi=\sqrt[3]{2/\sigma^2}$.

Scaling limit: diffusion in log-Airy potential

The corresponding diffusion was already derived in [Ferrari&Spohn, AoP 2005] in the context of a Brownian bridge conditioned to stay above a circular barrier.

(To simplify, I assume here that $p_x = p_{-x}$)

$$\forall x,y \in \mathbb{N}, \qquad \widetilde{\mathsf{T}}_{\lambda}\big(x,y\big) = p_{y-x}\,e^{-\frac{1}{2}(V_{\lambda}(\mathsf{x}) + V_{\lambda}(\mathsf{y}))}$$

(To simplify, I assume here that $p_x = p_{-x}$)

$$\forall x,y \in \mathbb{N}, \qquad \widetilde{\mathsf{T}}_{\lambda}(x,y) = p_{y-x} \, e^{-\frac{1}{2}(V_{\lambda}(\mathsf{x}) + V_{\lambda}(\mathsf{y}))}$$

Note that
$$e^{rac{1}{2}(V_{\lambda}(\mathsf{u})+V_{\lambda}(\mathsf{v}))}\,Z_{N,+,\lambda}^{\mathsf{u},\mathsf{v}}=\widetilde{\mathsf{T}}_{\lambda}^{2N}(\mathsf{u},\mathsf{v})$$

(To simplify, I assume here that $p_x=p_{-x}$)

$$orall x,y \in \mathbb{N}, \qquad \widetilde{\mathsf{T}}_{\lambda}(x,y) = p_{y-x} \, e^{-rac{1}{2}(V_{\lambda}(\mathsf{x}) + V_{\lambda}(\mathsf{y}))}$$

Note that
$$e^{rac{1}{2}(V_{\lambda}(\mathsf{u})+V_{\lambda}(\mathsf{v}))}Z_{N,+,\lambda}^{\mathsf{u},\mathsf{v}}=\widetilde{\mathsf{T}}_{\lambda}^{2N}(\mathsf{u},\mathsf{v})$$

Krein-Rutman $\implies \widetilde{\mathsf{T}}_{\lambda}$ possesses a leading e.f. $\phi_{\lambda} > 0$ of e.v. E_{λ}

Normalized version: $\mathsf{T}_{\lambda} = \frac{1}{E_{\lambda}} \widetilde{\mathsf{T}}_{\lambda}$

(To simplify, I assume here that $p_x = p_{-x}$)

$$\forall x, y \in \mathbb{N}, \qquad \widetilde{\mathsf{T}}_{\lambda}(x, y) = p_{y-x} e^{-\frac{1}{2}(V_{\lambda}(\mathsf{x}) + V_{\lambda}(\mathsf{y}))}$$

Note that
$$e^{rac{1}{2}(V_{\lambda}(\mathsf{u})+V_{\lambda}(\mathsf{v}))}\,Z^{\mathsf{u},\mathsf{v}}_{N,+,\lambda}=\widetilde{\mathsf{T}}^{2N}_{\lambda}(\mathsf{u},\mathsf{v})$$

Krein-Rutman \implies $\tilde{\mathsf{T}}_{\lambda}$ possesses a leading e.f. $\phi_{\lambda} > 0$ of e.v. E_{λ}

Normalized version: $T_{\lambda} = \frac{1}{E_{\lambda}} \tilde{T}_{\lambda}$

Ground-state chain:

$$\pi_{\lambda}(\mathsf{x},\mathsf{y}) = rac{1}{\phi_{\lambda}(\mathsf{x})}\mathsf{T}_{\lambda}(\mathsf{x},\mathsf{y})\phi_{\lambda}(\mathsf{y})$$

ightharpoonup Pos. recurrent Markov chain, with inv. meas. $\mu_{\lambda}(\mathbf{x}) = c_{\lambda}\phi_{\lambda}(\mathbf{x})^2$ Stationary path-measure: \mathbb{P}_{λ}

Convergence of fdds

Let $\mathbb{N}_{\lambda} = H_{\lambda}^{-1} \mathbb{N}$.

$$\mathbb{E}_{\lambda}\{u_0(x_{\lambda}(0))u_1(x_{\lambda}(t))\} = \sum_{\mathsf{r},\mathsf{s}\in\mathbb{N}_{\lambda}} \mu_{\lambda}(H_{\lambda}\mathsf{r})\,\pi_{\lambda}^{[H_{\lambda}^2t]}(H_{\lambda}\mathsf{r},H_{\lambda}\mathsf{s})\,u_0(\mathsf{r})u_1(\mathsf{s})$$

Convergence of fdds

Let
$$\mathbb{N}_{\lambda} = H_{\lambda}^{-1} \mathbb{N}$$
.

$$\mathbb{E}_{\lambda}\{u_0(x_{\lambda}(0))u_1(x_{\lambda}(t))\} = \sum_{\mathsf{r},\mathsf{s}\in\mathbb{N}_{\lambda}} \mu_{\lambda}(H_{\lambda}\mathsf{r})\,\pi_{\lambda}^{[H_{\lambda}^2t]}(H_{\lambda}\mathsf{r},H_{\lambda}\mathsf{s})\,u_0(\mathsf{r})u_1(\mathsf{s})$$

Assume one can show that, as $\lambda \downarrow 0$,

$$H_{\lambda}c_{\lambda} o 1, \qquad \phi_{\lambda}(H_{\lambda}\mathsf{r}) o \varphi_{0}(\mathsf{r}), \qquad \mathsf{T}_{\lambda}^{[H_{\lambda}^{2}t]}[f_{\lambda}](H_{\lambda}\mathsf{r}) o \mathsf{T}^{t}[f](\mathsf{r})$$
 where $\mathsf{T}^{t} = e^{(L+\mathsf{e}_{0}\mathsf{I})t}$ and $f_{\lambda}(H_{\lambda}\cdot) o f(\cdot)$.

Let $\mathbb{N}_{\lambda} = H_{\lambda}^{-1} \mathbb{N}$.

$$\mathbb{E}_{\lambda}\{u_0(x_{\lambda}(0))u_1(x_{\lambda}(t))\} = \sum_{\mathsf{r},\mathsf{s}\in\mathbb{N}_{\lambda}} \mu_{\lambda}(H_{\lambda}\mathsf{r})\,\pi_{\lambda}^{[H_{\lambda}^2t]}(H_{\lambda}\mathsf{r},H_{\lambda}\mathsf{s})\,u_0(\mathsf{r})u_1(\mathsf{s})$$

Assume one can show that, as $\lambda \downarrow 0$,

$$H_\lambda c_\lambda o 1, \qquad \phi_\lambda(H_\lambda \mathsf{r}) o arphi_0(\mathsf{r}), \qquad \mathsf{T}_\lambda^{[H_\lambda^2 t]}[f_\lambda](H_\lambda \mathsf{r}) o \mathsf{T}^t[f](\mathsf{r})$$

where $\mathsf{T}^t = e^{(L + \mathsf{e_0} \, \mathsf{I})t}$ and $f_\lambda(H_\lambda \cdot) o f(\cdot)$.

$$\sum_{\mathsf{r}\in\mathbb{N}_\lambda}\mu_\lambda(H_\lambda\mathsf{r})\cdots=c_\lambda\sum_{\mathsf{r}\in\mathbb{N}_\lambda}\phi_\lambda(H_\lambda\mathsf{r})^2\cdots
ightarrow\int\mathrm{d}\mathsf{r}\,arphi_0(\mathsf{r})^2\cdots=\int\mu_0(\mathsf{d}\mathsf{r})\cdots$$

and

$$egin{aligned} \sum_{\mathsf{s}\in\mathbb{N}_{\lambda}}\pi_{\lambda}^{[H_{\lambda}^{2}t]}[u_{1}(H_{\lambda}^{-1}\cdot)](H_{\lambda}\mathsf{r})&=rac{1}{\phi_{\lambda}(H_{\lambda}\mathsf{r})}\mathsf{T}_{\lambda}^{[H_{\lambda}^{2}t]}[\phi_{\lambda}u_{1}(H_{\lambda}^{-1}\cdot)](H_{\lambda}\mathsf{r})\ & orac{1}{arphi_{0}(\mathsf{r})}\mathsf{T}^{t}[arphi_{0}u_{1}](\mathsf{r})&=e^{G_{\sigma,q}t}[u_{1}](\mathsf{r}) \end{aligned}$$

Convergence of fdds

Let $\mathbb{N}_{\lambda} = H_{\lambda}^{-1} \mathbb{N}$.

$$\mathbb{E}_{\lambda}\{u_0(x_{\lambda}(0))u_1(x_{\lambda}(t))\} = \sum_{\mathsf{r},\mathsf{s}\in\mathbb{N}_{\lambda}} \mu_{\lambda}(H_{\lambda}\mathsf{r})\,\pi_{\lambda}^{[H_{\lambda}^2t]}(H_{\lambda}\mathsf{r},H_{\lambda}\mathsf{s})\,u_0(\mathsf{r})u_1(\mathsf{s})$$

Assume one can show that, as $\lambda \downarrow 0$,

$$H_{\lambda}c_{\lambda} o 1, \qquad \phi_{\lambda}(H_{\lambda}\mathsf{r}) o arphi_{0}(\mathsf{r}), \qquad \mathsf{T}_{\lambda}^{[H_{\lambda}^{2}t]}[f_{\lambda}](H_{\lambda}\mathsf{r}) o \mathsf{T}^{t}[f](\mathsf{r})$$

where $\mathsf{T}^t = e^{(L + \mathsf{e_0} \, \mathsf{I})t}$ and $f_\lambda(H_\lambda \cdot) o f(\cdot)$.

$$\sum_{\mathsf{r}\in\mathbb{N}_\lambda}\mu_\lambda(H_\lambda\mathsf{r})\cdots=c_\lambda\sum_{\mathsf{r}\in\mathbb{N}_\lambda}\phi_\lambda(H_\lambda\mathsf{r})^2\cdots
ightarrow\int\mathsf{d}\mathsf{r}\,arphi_0(\mathsf{r})^2\cdots=\int\mu_0(\mathsf{d}\mathsf{r})\cdots$$

and

$$egin{aligned} \sum_{\mathbf{s}\in\mathbb{N}_{\lambda}}\pi_{\lambda}^{[H_{\lambda}^{2}t]}[u_{1}(H_{\lambda}^{-1}\cdot)](H_{\lambda}\mathsf{r})&=rac{1}{\phi_{\lambda}(H_{\lambda}\mathsf{r})}\mathsf{T}_{\lambda}^{[H_{\lambda}^{2}t]}[\phi_{\lambda}u_{1}(H_{\lambda}^{-1}\cdot)](H_{\lambda}\mathsf{r})\ & orac{1}{arphi_{0}(\mathsf{r})}\mathsf{T}^{t}[arphi_{0}u_{1}](\mathsf{r})&=e^{G_{\sigma,q}t}[u_{1}](\mathsf{r})\end{aligned}$$

Thus,

$$\mathbb{E}_{\lambda}\{u_0(x_{\lambda}(0))u_1(x_{\lambda}(t))\}
ightarrow \mathbb{E}_{\sigma,q}\{u_0(x(0))u_1(x(t))\}$$

Three main probabilistic inputs

1. The free energy is of order H_{λ}^{-2} Setting $\mathbf{e}_{\lambda} = -H_{\lambda}^{2} \log E_{\lambda}$, this implies that

$$0< \liminf_{\lambda\downarrow 0} e_\lambda \leq \limsup_{\lambda\downarrow 0} e_\lambda < \infty.$$

 \rightsquigarrow compactness of $(e_{\lambda})_{\lambda>0}$

Three main probabilistic inputs

1. The free energy is of order H_{λ}^{-2}

Setting $\mathbf{e}_{\lambda} = -H_{\lambda}^2 \log E_{\lambda}$, this implies that

$$0< \liminf_{\lambda\downarrow 0} e_{\lambda} \leq \limsup_{\lambda\downarrow 0} e_{\lambda} < \infty.$$

 \rightsquigarrow compactness of $(e_{\lambda})_{\lambda>0}$

2. Tail estimate:

$$\mathbb{P}^{\mathsf{u},\mathsf{v}}_{N,+,\lambda_N}(X_0>KH_\lambda) \leq \exp\bigl\{-\nu\,K\bigl(\sqrt{q(K)}\wedge\,H_\lambda\bigr)\bigr\}$$

uniformly in K>0 and $\lambda \leq \lambda_0$.

ightsquigar tightness of $(x_{\lambda},\mathbb{P}_{\lambda})$ and compactness of $(\phi_{\lambda}(H_{\lambda}\cdot))_{\lambda>0}$

Three main probabilistic inputs

1. The free energy is of order H_{λ}^{-2}

Setting $\mathbf{e}_{\lambda} = -H_{\lambda}^2 \log E_{\lambda}$, this implies that

$$0< \liminf_{\lambda\downarrow 0} e_\lambda \leq \limsup_{\lambda\downarrow 0} e_\lambda < \infty.$$

 \rightsquigarrow compactness of $(e_{\lambda})_{\lambda>0}$

2. Tail estimate:

$$\mathbb{P}^{\mathsf{u},\mathsf{v}}_{N,+,\lambda_N}(X_0>KH_\lambda) \leq \exp\bigl\{-\nu\,K\bigl(\sqrt{q(K)}\wedge\,H_\lambda\bigr)\bigr\}$$

uniformly in K>0 and $\lambda \leq \lambda_0$.

$$\leadsto$$
 tightness of $(x_{\lambda}, \mathbb{P}_{\lambda})$ and compactness of $(\phi_{\lambda}(H_{\lambda}\cdot))_{\lambda>0}$

3. Approximation by stationary distribution

Suppose $N\gg H_{\lambda_N}^2$ and ${\sf u}_N,{\sf v}_N\leq cH_{\lambda_N}.$ Then, for any local event A,

$$\lim_{N\to\infty} |\mathbb{P}_{N,+,\lambda_N}^{\mathsf{u},\mathsf{v}}(A) - \mathbb{P}_{\lambda_N}(A)| = 0.$$

ightsquigar sufficient to prove convergence of fdd under \mathbb{P}_{λ_N}

Convergence of semigroup

Let
$$\mathsf{L}_\lambda f(\mathsf{r}) = rac{\mathsf{T}_\lambda - \mathsf{I}}{H_\lambda^{-2}} f(\mathsf{r})$$

"Fact":
$$\lim_{\lambda\downarrow 0}\mathsf{T}_{\lambda}^{\lfloor H_{\lambda}^2t\rfloor}f_{\lambda}=e^{(\mathsf{L}+\mathsf{el})t}f$$
 follows from $\lim_{\lambda\downarrow 0}\mathsf{L}_{\lambda}u_{\lambda}=(\mathsf{L}+\mathsf{el})u$

Convergence of semigroup

Let
$$\mathsf{L}_\lambda f(\mathsf{r}) = rac{\mathsf{T}_\lambda - \mathsf{I}}{H_\lambda^{-2}} f(\mathsf{r})$$

"Fact": $\lim_{\lambda\downarrow 0}\mathsf{T}_{\lambda}^{\lfloor H_{\lambda}^2t\rfloor}f_{\lambda}=e^{(\mathsf{L}+\mathsf{el})t}f$ follows from $\lim_{\lambda\downarrow 0}\mathsf{L}_{\lambda}u_{\lambda}=(\mathsf{L}+\mathsf{el})u$

► Computation:

$$E_{\lambda} \, \mathrm{e}^{V_{\lambda} \, (H_{\lambda} \mathrm{r})} \mathsf{L}_{\lambda} u_{\lambda} (\mathsf{r}) =$$

$$\frac{1}{h_{\lambda}^2} \sum_{\mathsf{s} \in \mathbb{N}_{\lambda}} p_{\lambda} \big(H_{\lambda} \mathsf{s} - H_{\lambda} \mathsf{r} \big) \big(\mathsf{e}^{\frac{V_{\lambda} (H_{\lambda} \mathsf{r}) - V_{\lambda} (H_{\lambda} \mathsf{s})}{2}} u(\mathsf{s}) - u(\mathsf{r}) \big)$$

$$+rac{1-E_{\lambda}\mathsf{e}^{V_{\lambda}(H_{\lambda}\mathsf{r})}}{h_{\lambda}^{2}}u(\mathsf{r})$$

Convergence of semigroup

Let
$$\mathsf{L}_\lambda f(\mathsf{r}) = rac{\mathsf{T}_\lambda - \mathsf{I}}{H_\lambda^{-2}} f(\mathsf{r})$$

"Fact": $\lim_{\lambda\downarrow 0}\mathsf{T}_{\lambda}^{\lfloor H_{\lambda}^2t\rfloor}f_{\lambda}=e^{(\mathsf{L}+\mathsf{el})t}f$ follows from $\lim_{\lambda\downarrow 0}\mathsf{L}_{\lambda}u_{\lambda}=(\mathsf{L}+\mathsf{el})u$

► Computation: Assume that $\lim_{\lambda \downarrow 0} e_{\lambda} = e$

$$\underbrace{\frac{1}{h_{\lambda}^{2}} \sum_{s \in \mathbb{N}_{\lambda}} p_{\lambda}(H_{\lambda}s - H_{\lambda}r) \left(e^{\frac{V_{\lambda}(H_{\lambda}r) - V_{\lambda}(H_{\lambda}s)}{2}} u(s) - u(r)\right)}_{\rightarrow \frac{1}{2}\sigma^{2}u''(r)} + \underbrace{\frac{1 - E_{\lambda}e^{V_{\lambda}(H_{\lambda}r)}}{h_{\lambda}^{2}} u(r)}_{\rightarrow (e - g(r))u(r)}$$

One then easily deduce:

Proposition

$$\mathsf{e}_0 = \lim_{\lambda \downarrow 0} \mathsf{e}_\lambda, \qquad arphi_0(\mathsf{r}) = \lim_{\lambda \downarrow 0} \phi_\lambda(H_\lambda \mathsf{r})$$

One then easily deduce:

Proposition

$$\mathsf{e}_0 = \lim_{\lambda \downarrow 0} \mathsf{e}_\lambda, \qquad arphi_0(\mathsf{r}) = \lim_{\lambda \downarrow 0} \phi_\lambda(H_\lambda \mathsf{r})$$

Indeed, w.l.o.g., consider a subsequence $(\lambda_k)_{k>0}$ such that $\mathbf{e}_{\lambda_k} \to \mathbf{e}$ and $\phi_{\lambda_k}(H_{\lambda_k}\cdot) \to \varphi(\cdot)$

One then easily deduce:

Proposition

$$\mathsf{e}_0 = \lim_{\lambda \downarrow 0} \mathsf{e}_\lambda, \qquad arphi_0(\mathsf{r}) = \lim_{\lambda \downarrow 0} \phi_\lambda(H_\lambda \mathsf{r})$$

Indeed, w.l.o.g., consider a subsequence $(\lambda_k)_{k>0}$ such that $e_{\lambda_k}\to e$ and $\phi_{\lambda_k}(H_{\lambda_k}\cdot)\to \varphi(\cdot)$

$$\mathsf{T}_{\lambda}\phi_{\lambda}=\phi_{\lambda}\implies e^{(\mathsf{L}+\mathsf{el})t}\varphi=\varphi$$

One then easily deduce:

Proposition

$$\mathsf{e}_0 = \lim_{\lambda \downarrow 0} \mathsf{e}_\lambda, \qquad arphi_0(\mathsf{r}) = \lim_{\lambda \downarrow 0} \phi_\lambda(H_\lambda \mathsf{r})$$

Indeed, w.l.o.g., consider a subsequence $(\lambda_k)_{k>0}$ such that $e_{\lambda_k}\to e$ and $\phi_{\lambda_k}(H_{\lambda_k}\cdot)\to \varphi(\cdot)$

$$\mathsf{T}_\lambda \phi_\lambda = \phi_\lambda \implies e^{(\mathsf{L} + \mathsf{el})t} \varphi = \varphi$$

 $\implies \varphi$ is a non-negative (normalized) eigenfunction of L with eigenvalue -e.

One then easily deduce:

Proposition

$$\mathsf{e}_0 = \lim_{\lambda \downarrow 0} \mathsf{e}_\lambda, \qquad arphi_0(\mathsf{r}) = \lim_{\lambda \downarrow 0} \phi_\lambda(H_\lambda \mathsf{r})$$

Indeed, w.l.o.g., consider a subsequence $(\lambda_k)_{k>0}$ such that $e_{\lambda_k}\to e$ and $\phi_{\lambda_k}(H_{\lambda_k}\cdot)\to \varphi(\cdot)$

$$\mathsf{T}_{\lambda}\phi_{\lambda}=\phi_{\lambda}\implies e^{(\mathsf{L}+\mathsf{el})t}\varphi=\varphi$$

 $\implies \varphi$ is a non-negative (normalized) eigenfunction of L with eigenvalue -e.

$$\implies \varphi = \varphi_0 \text{ and } e = e_0$$

Thanks for your attention!

