A lower bound for disconnection by random interlacements

Xinyi Li, ETH Zurich

joint with A.-S. Sznitman

June 25, 2014

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

We consider (continuous-time) simple random walk on \mathbb{Z}^d , $d \ge 3$. For $M \subset \subset \mathbb{Z}^d$, we denote

▶ the equilibrium measure of *M* by

$$e_M(x) := 1_M(x) P_x(\widetilde{H}_M = \infty), \ \forall x \in M,$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

We consider (continuous-time) simple random walk on \mathbb{Z}^d , $d \ge 3$. For $M \subset \subset \mathbb{Z}^d$, we denote

▶ the equilibrium measure of *M* by

$$e_M(x) := 1_M(x) P_x(\widetilde{H}_M = \infty), \ \forall x \in M,$$

▶ and the capacity of *M* as

$$\operatorname{cap}(M) := \sum_{x \in M} e_K(x).$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

We consider (continuous-time) simple random walk on \mathbb{Z}^d , $d \ge 3$. For $M \subset \subset \mathbb{Z}^d$, we denote

▶ the equilibrium measure of *M* by

$$e_M(x) := 1_M(x) P_x(\widetilde{H}_M = \infty), \ \forall x \in M,$$

and the capacity of M as

$$\operatorname{cap}(M) := \sum_{x \in M} e_K(x).$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Some remarks:

• The equilibrium measure of M is concentrated on $\partial_i M$.

We consider (continuous-time) simple random walk on \mathbb{Z}^d , $d \ge 3$. For $M \subset \mathbb{Z}^d$, we denote

the equilibrium measure of M by

$$e_M(x) := 1_M(x) P_x(\widetilde{H}_M = \infty), \ \forall x \in M,$$

and the capacity of M as

$$\operatorname{cap}(M) := \sum_{x \in M} e_K(x).$$

Some remarks:

- The equilibrium measure of M is concentrated on $\partial_i M$.
- $cap(B(0, N)) = O(N^{d-2}).$

We consider (continuous-time) simple random walk on \mathbb{Z}^d , $d \ge 3$. For $M \subset \subset \mathbb{Z}^d$, we denote

▶ the equilibrium measure of *M* by

$$e_M(x) := 1_M(x) P_x(\widetilde{H}_M = \infty), \ \forall x \in M,$$

and the capacity of M as

$$\operatorname{cap}(M) := \sum_{x \in M} e_K(x).$$

Some remarks:

- The equilibrium measure of M is concentrated on $\partial_i M$.
- $\blacktriangleright \operatorname{cap}(B(0,N)) = O(N^{d-2}).$
- Alternative definition of capacity:

 $cap(M) = inf\{D(f, f); f \ge 1 \text{ on } M \text{ and } f \text{ has finite support}\}.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Random interlacements can be regarded as a random subset of \mathbb{Z}^d , governed by a non-negative parameter u, which we denote by \mathcal{I}^u , and the complement (i.e. the VACANT SET) by $\mathcal{V}^u = \mathbb{Z}^d \setminus \mathcal{I}^u$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Random interlacements can be regarded as a random subset of \mathbb{Z}^d , governed by a non-negative parameter u, which we denote by \mathcal{I}^u , and the complement (i.e. the VACANT SET) by $\mathcal{V}^u = \mathbb{Z}^d \setminus \mathcal{I}^u$.

We wish to investigate the distribution of \mathcal{I}^u through a "window" $M \subset \subset \mathbb{Z}^d$.

Random interlacements can be regarded as a random subset of \mathbb{Z}^d , governed by a non-negative parameter u, which we denote by \mathcal{I}^u , and the complement (i.e. the VACANT SET) by $\mathcal{V}^u = \mathbb{Z}^d \setminus \mathcal{I}^u$.

We wish to investigate the distribution of \mathcal{I}^u through a "window" $M \subset \subset \mathbb{Z}^d$.

• Take $N_u \sim \operatorname{Pois}(u\operatorname{cap}(M))$.

Random interlacements can be regarded as a random subset of \mathbb{Z}^d , governed by a non-negative parameter u, which we denote by \mathcal{I}^u , and the complement (i.e. the VACANT SET) by $\mathcal{V}^u = \mathbb{Z}^d \setminus \mathcal{I}^u$.

We wish to investigate the distribution of \mathcal{I}^u through a "window" $M \subset \subset \mathbb{Z}^d$.

- Take $N_u \sim \operatorname{Pois}(u\operatorname{cap}(M))$.
- Start N_u i.i.d. random walks (X_t)ⁱ_{t≥0}, i = 1,..., N_u, with initial distribution e_M(·)/cap(M) (i.e., the normalised equilibrium measure).

Random interlacements can be regarded as a random subset of \mathbb{Z}^d , governed by a non-negative parameter u, which we denote by \mathcal{I}^u , and the complement (i.e. the VACANT SET) by $\mathcal{V}^u = \mathbb{Z}^d \setminus \mathcal{I}^u$.

We wish to investigate the distribution of \mathcal{I}^u through a "window" $M \subset \subset \mathbb{Z}^d$.

- Take $N_u \sim \operatorname{Pois}(u\operatorname{cap}(M))$.
- Start N_u i.i.d. random walks (X_t)ⁱ_{t≥0}, i = 1,..., N_u, with initial distribution e_M(·)/cap(M) (i.e., the normalised equilibrium measure).

▶ $\mathcal{I}^u \cap M \sim \cup_{i=1}^{N_u} \operatorname{Range}((X_t^i)_{t \ge 0}) \cap M.$

Random interlacements can be regarded as a random subset of \mathbb{Z}^d , governed by a non-negative parameter u, which we denote by \mathcal{I}^u , and the complement (i.e. the VACANT SET) by $\mathcal{V}^u = \mathbb{Z}^d \setminus \mathcal{I}^u$.

We wish to investigate the distribution of \mathcal{I}^u through a "window" $M \subset \subset \mathbb{Z}^d$.

- Take $N_u \sim \operatorname{Pois}(u\operatorname{cap}(M))$.
- Start N_u i.i.d. random walks (X_t)ⁱ_{t≥0}, i = 1,..., N_u, with initial distribution e_M(·)/cap(M) (i.e., the normalised equilibrium measure).
- ► $\mathcal{I}^u \cap M \sim \cup_{i=1}^{N_u} \operatorname{Range}((X_t^i)_{t \ge 0}) \cap M.$

Characterisation of \mathbb{P} , the law of \mathcal{I}^u :

$$\mathbb{P}[\mathcal{I}^u \cap M = \emptyset] = e^{-u \operatorname{cap}(M)}.$$

We denote the space of continuous-time doubly-infinite nearest-neighbour paths tending to infinity at both sides by

 $W:=\{w: ext{nearest-neighbour path, with } \lim_{t o\pm\infty} |X_t(w)|=\infty\},$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

We denote the space of continuous-time doubly-infinite nearest-neighbour paths tending to infinity at both sides by

 $W:=\{w: ext{nearest-neighbour path, with } \lim_{t o\pm\infty} |X_t(w)|=\infty\},$

and the quotient space of W modulo time shift by

$$W^* = W / \sim,$$

where \sim is the equivalence class of time shifts.

We denote the space of continuous-time doubly-infinite nearest-neighbour paths tending to infinity at both sides by

 $W:=\{w: ext{nearest-neighbour path, with } \lim_{t o\pm\infty}|X_t(w)|=\infty\},$

and the quotient space of W modulo time shift by

$$W^* = W / \sim,$$

where \sim is the equivalence class of time shifts.

Random interlacements at level u, are a Poisson point process on W^* , with intensity measure $u\nu$, where ν is the unique ergodic and translation-invariant measure on W^* such that the trace of this PPP on \mathbb{Z}^d has the same distribution as \mathcal{I}^u defined above.

The phase transition of percolation on \mathcal{V}_u is non-trivial.

The phase transition of percolation on \mathcal{V}_u is non-trivial.

Theorem (Sznitman 07', Sidoravicius-Sznitman 08', Teixeira 08', Sznitman 09')

Let

$$u_{**} = \inf\{u \ge 0; \exists k < \infty, \ s.t. \ \forall L \ge 0, \ \mathbb{P}[0 \stackrel{\mathcal{V}^u}{\leftrightarrow} B(0,L)] \le \kappa \cdot e^{-L^{1/k}}\},$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

there exists u_* , such that $0 < u_* \le u_{**} < \infty$, and

The phase transition of percolation on \mathcal{V}_u is non-trivial.

Theorem (Sznitman 07', Sidoravicius-Sznitman 08', Teixeira 08', Sznitman 09')

Let

$$u_{**} = \inf\{u \ge 0; \exists k < \infty, \ s.t. \ \forall L \ge 0, \ \mathbb{P}[0 \stackrel{\mathcal{V}^u}{\leftrightarrow} B(0,L)] \le \kappa \cdot e^{-L^{1/k}}\},$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

there exists u_* , such that $0 < u_* \le u_{**} < \infty$, and

▶ for all $u < u_*$, \mathcal{V}^u has a unique infinite cluster, \mathbb{P}_u -a.s.;

The phase transition of percolation on \mathcal{V}_u is non-trivial.

Theorem (Sznitman 07', Sidoravicius-Sznitman 08', Teixeira 08', Sznitman 09')

Let

$$u_{**} = \inf\{u \ge 0; \exists k < \infty, \ s.t. \ \forall L \ge 0, \ \mathbb{P}[0 \stackrel{\mathcal{V}^u}{\leftrightarrow} B(0,L)] \le \kappa \cdot e^{-L^{1/k}}\},$$

there exists u_* , such that $0 < u_* \le u_{**} < \infty$, and

- ▶ for all $u < u_*$, \mathcal{V}^u has a unique infinite cluster, \mathbb{P}_u -a.s.;
- for all $u > u_*$, \mathcal{V}^u has no infinite cluster, \mathbb{P}_u -a.s..

The phase transition of percolation on \mathcal{V}_u is non-trivial.

Theorem (Sznitman 07', Sidoravicius-Sznitman 08', Teixeira 08', Sznitman 09')

Let

$$u_{**} = \inf\{u \ge 0; \exists k < \infty, \ s.t. \ \forall L \ge 0, \ \mathbb{P}[0 \stackrel{\mathcal{V}^u}{\leftrightarrow} B(0,L)] \le \kappa \cdot e^{-L^{1/k}}\},$$

there exists u_* , such that $0 < u_* \le u_{**} < \infty$, and

- ▶ for all $u < u_*$, \mathcal{V}^u has a unique infinite cluster, \mathbb{P}_u -a.s.;
- for all $u > u_*$, \mathcal{V}^u has no infinite cluster, \mathbb{P}_u -a.s..

Conjecture

Do the two critical parameters actually coincide, i.e.,

$$u_{**} = u_{*}?$$

For any K compact subset of \mathbb{R}^d , we denote

• $K_N = \{x \in \mathbb{Z}^d; d_{\infty}(NK, x) \leq 1\}$ the discrete blow-up of K,

For any K compact subset of \mathbb{R}^d , we denote

- ▶ $K_N = \{x \in \mathbb{Z}^d; d_\infty(NK, x) \le 1\}$ the discrete blow-up of K,
- $A_N = \{K_N \stackrel{\mathcal{V}^u}{\nleftrightarrow} \infty\}$ the event "no path in \mathcal{V}^u connects K_N with infinity".

For any K compact subset of \mathbb{R}^d , we denote

- $K_N = \{x \in \mathbb{Z}^d; d_{\infty}(NK, x) \leq 1\}$ the discrete blow-up of K,
- $A_N = \{K_N \stackrel{\mathcal{V}^u}{\nleftrightarrow} \infty\}$ the event "no path in \mathcal{V}^u connects K_N with infinity".

When $u > u_{**}$, $\mathbb{P}[A_N] \to 1$ as $N \to \infty$. How big is $\mathbb{P}[A_N]$ when $u < u_{**}$?

For any K compact subset of \mathbb{R}^d , we denote

- $K_N = \{x \in \mathbb{Z}^d; d_{\infty}(NK, x) \leq 1\}$ the discrete blow-up of K,
- $A_N = \{K_N \stackrel{\mathcal{V}^u}{\nleftrightarrow} \infty\}$ the event "no path in \mathcal{V}^u connects K_N with infinity".

When $u > u_{**}$, $\mathbb{P}[A_N] \to 1$ as $N \to \infty$. How big is $\mathbb{P}[A_N]$ when $u < u_{**}$?

Theorem (L.-Sznitman 13')

$$\liminf_{N\to\infty}\frac{1}{N^{d-2}}\log\mathbb{P}[A_N]\geq -\frac{1}{d}(\sqrt{u_{**}}-\sqrt{u})^2\mathrm{cap}_{\mathbb{R}^d}(K),$$

where $\operatorname{cap}_{\mathbb{R}^d}(K)$ denotes the Brownian capacity of K.

We need to find a law P̃ of "tilted random interlacements" (which are Poissonian "clouds" of tilted random walks) such that P̃[A_N] → 1 as N → ∞ and need to minimise the relative entropy H(P̃|P).

- We need to find a law P̃ of "tilted random interlacements" (which are Poissonian "clouds" of tilted random walks) such that P̃[A_N] → 1 as N → ∞ and need to minimise the relative entropy H(P̃|P).
- ► The tilted random walk should appear more "often" around the set *K_N* in a way that the occupation-time profile should resemble that of random interlacements of level *u*_{**}.

- We need to find a law P̃ of "tilted random interlacements" (which are Poissonian "clouds" of tilted random walks) such that P̃[A_N] → 1 as N → ∞ and need to minimise the relative entropy H(P̃|P).
- ► The tilted random walk should appear more "often" around the set K_N in a way that the occupation-time profile should resemble that of random interlacements of level u_{**}.
- To this end, we take a tilted random walk with generator

$$\widetilde{L}h(x) = \sum_{|e|=1} \frac{f(x+e)}{f(x)} (h(x+e) - h(x)),$$

and reversibility measure $\pi(x) = f^2(x)$, where f is to be chosen carefully in order to minimise the relative entropy.

Thanks for your attention!