From loop clusters and random interlacements to the Gaussian free field

Titus Lupu

Université Paris-Sud, Orsay

June 24, 2014

Titus Lupu From loop clusters and random interlacements to the Gaussian free field

Definition of the random walk "loop soup"

- G = (V, E) undirected connected graph. V at most countable.
 Every vertex has finite degree.
- Conductances on edges $(C(e))_{e \in E}$, C(e) > 0.
- Killing measure $(\kappa(x))_{x \in V}$, $\kappa(x) \ge 0$.
- (X_t)_{0≤t<ζ} Markov jump process on G that jumps from x to a neighbour y with rate C({x, y}) and to the cemetery point (killing) with rate κ(x).
- Assumption: $(X_t)_{0 \le t < \zeta}$ transient: either $\kappa \neq 0$ or V infinite and C appropriate.
- $(G(x,y))_{x,y\in V}$ Green's function of X.
- $P_{x,y}^t(\cdot)$ bridge probability measures, $p_t(x, y)$ transition probabilities Measure on loops:

$$\mu(\cdot) = \sum_{x \in V} \int_{t>0} P_{x,x}^t(\cdot) p_t(x,x) \frac{dt}{t}$$

 Possonian ensemble of loops or "loop soup": a Poisson point process L_c of intensity cμ where c > 0 constant.

Percolation by loops

- Loop clusters: γ, γ' ∈ L_c belong to the same cluster if there is a chain γ₀,..., γ_n ∈ L_c such that γ₀ = γ, γ_n = γ' and γ_i and γ_{i-1} have a common vertex.
- Percolation problem: existence of an unbounded cluster of loops. Natural framework:
 - \mathbb{Z}^d , $d \geq 3$, uniform conductances, $\kappa \equiv 0$
 - \mathbb{Z}^2 , uniform conductances, $\kappa > 0$ uniform
 - discrete half-plane $\mathbb{Z}\times\mathbb{N},$ uniform conductances, instantaneous killing at the boundary $\mathbb{Z}\times\{0\}$
- Previously known: non trivial phase transition (critical $c^* \in (0, +\infty)$), uniqueness of the infinite cluster (Burton-Keane). See:
 - Y. Le Jan, S. Lemaire (2012): Markovian loop clusters on graphs, to appear in *Illinois J. Math.*
 - Y. Chang, A. Sapozhnikov (2014): Phase transition in loop percolation, arXiv:1403.5687v1

くぼう くまり くまり

Isomorphism with the Gaussian free field

• Occupation field of the "loop soup": $x \in V$

$$\widehat{\mathcal{L}}_{c}^{ imes} := \sum_{\gamma \in \mathcal{L}_{c}} \int_{0}^{t_{\gamma}} \mathbb{1}_{\gamma(s)=x} ds$$

• Gaussian free field $(\phi_x)_{x \in V}$. $\mathbb{E}[\phi_x] = 0$. $\mathbb{E}[\phi_x \phi_y] = G(x, y)$.

• Le Jan's isomorphism (2011):

$$(\widehat{\mathcal{L}}_{\frac{1}{2}}^{\mathsf{X}})_{\mathsf{X}\in\mathcal{V}} \stackrel{(d)}{=} \left(\frac{1}{2}\phi_{\mathsf{X}}^{2}\right)_{\mathsf{X}\in\mathcal{V}}$$

Theorem (L. 2014)

There is a coupling between $\mathcal{L}_{\frac{1}{2}}$ and ϕ such that:

•
$$(\widehat{\mathcal{L}}_{\frac{1}{2}}^{x})_{x \in V} = \left(\frac{1}{2}\phi_{x}^{2}\right)_{x \in V}$$

• The sign of ϕ is constant on clusters of loops in $\mathcal{L}_{\frac{1}{2}}$

Brownian motion on metric graphs

- Each edge e of G are replaced by a continuous interval *I_e*: topological space G.
- Metric structure on \$\tilde{\mathcal{G}}\$: each interval \$I_e\$ has length \$\frac{1}{2}C(e)^{-1}\$. \$\tilde{\mathcal{G}}\$ metric graph.
- $B^{\widetilde{\mathcal{G}}}$ Brownian motion on $\widetilde{\mathcal{G}}$. Continuous family of local times $(L_t^z(B^{\widetilde{\mathcal{G}}}))_{z\in\widetilde{\mathcal{G}},t\geq 0}$.
- If $\kappa \not\equiv 0$ then killing measure

$$\tilde{\kappa} = \sum_{x \in V} \kappa(x) \delta_x$$

on $B^{\widetilde{\mathcal{G}}}$.

Stopping times (*τ*_l)_{l≥0}:

$$\tau_{l} := \inf \left\{ t > 0 | \sum_{x \in V} L_{t}^{x}(B^{\widetilde{\mathcal{G}}}) > 0 \right\}$$

• $(B_{\tau_l}^{\widetilde{\mathcal{G}}})_{l\geq 0}$ has the same law as the Markov jump process X.

Clusters of loops on metric graphs

- $\tilde{\mu}$ measure on loops on $\tilde{\mathcal{G}}$ associated to $B^{\tilde{\mathcal{G}}}$. $\tilde{\mathcal{L}}_c$ Poisson point process of intensity with intensity $c\tilde{\mu}$.
- Discrete loop soup L_c can be reconstructed from the metric graph loop soup L_c:
 - Throw away loops in $\widetilde{\mathcal{L}}_c$ that do not visit V.
 - Take the restriction to V of the loops in \mathcal{L}_c that visit V
- Occupation field of $\widetilde{\mathcal{L}}_c$: sum of local times of loops.

$$\widehat{\mathcal{L}}_{c}^{\mathsf{z}} := \sum_{\gamma \in \widetilde{\mathcal{L}}_{c}} \mathcal{L}_{t_{\gamma}}^{\mathsf{z}}(\gamma)$$

The restriction of $(\widehat{\mathcal{L}}_{c}^{z})_{z\in\widetilde{\mathcal{G}}}$ to V is the occupation field of \mathcal{L}_{c} .

- $(\widehat{\mathcal{L}}_{c}^{z})_{z\in\widetilde{\mathcal{G}}}$ is a continuous field. The clusters of loops in $\widetilde{\mathcal{L}}_{c}$ are the connected components of $\{Z\in\widetilde{\mathcal{G}}|\widehat{\mathcal{L}}_{c}^{z}>0\}$.
- The clusters of $\tilde{\mathcal{L}}_c$ are larger than then clusters of \mathcal{L}_c : excursions and loops inside the interior of edges can create connections.

Construction of the coupling

- The discrete Gaussian free field $(\phi_x)_{x \in V}$ can be interpolated to the Gaussian free field on metric graph $(\phi_z)_{z \in \widetilde{\mathcal{G}}}$ by adding independent Brownian bridges.
- Le Jan's isomorphism holds on metric graphs:

$$(\widehat{\mathcal{L}}^{z}_{\frac{1}{2}})_{z\in\widetilde{\mathcal{G}}} \stackrel{(d)}{=} \left(\frac{1}{2}\phi_{z}^{2}\right)_{z\in\widetilde{\mathcal{G}}}$$

- Given $(|\phi_z|)_{z\in\widetilde{\mathcal{G}}}$ the sign of ϕ is to be chosen independently and uniformly on each connected component of $\{z\in\widetilde{\mathcal{G}}||\phi_z|>0\}$, that is to say on each cluster of $\widetilde{\mathcal{L}}_{\frac{1}{2}}$.
- Thus the sign of ϕ is constant on each cluster of $\mathcal{\hat{L}}_{\frac{1}{2}}$ and a fortiori on each cluster of $\mathcal{L}_{\frac{1}{2}}$.

Theorem (L. 2014)

At $c = \frac{1}{2}$ there is no infinite cluster of loops in all the following settings:

- \mathbb{Z}^d , $d \ge 3$, uniform conductances, $\kappa \equiv 0$
- \mathbb{Z}^2 , uniform conductances, $\kappa > 0$ uniform
- discrete half-plane $\mathbb{Z} \times \mathbb{N}$, uniform conductances, instantaneous killing at the boundary $\mathbb{Z} \times \{0\}$
- In dimension 2 the discrete GFF does not have infinite sign clusters.
- In higher dimension the discrete GFF may have infinite sign clusters (Rodriguez, Sznitman, 2013)
- But in all dimensions the metric graph GFF has only bounded sign clusters.

•
$$\mathbb{P}(z, z' \text{ in same sign cluser of metric graph GFF}) = \mathbb{E}[sgn(\phi_z)sgn(\phi_{z'})] = \frac{2}{\pi} Arcsin\left(\frac{G(z, z')}{\sqrt{G(z, z)G(z', z')}}\right) \xrightarrow{d(z, z') \to \infty} 0$$

Isomorphism for random interlacements

- $d \ge 3$. I^u random interlacement of level u on \mathbb{Z}^d . \mathcal{V}^u vacant set.
- (L^x(I^u))_{x∈Z^d} occupation field of I^u: add an independent exponential time at x for each visit by random interlacements. Sznitman's isomorphism:

$$\left(L^{x}(I^{u})+\frac{1}{2}\phi_{x}^{\prime 2}\right)_{x\in\mathbb{Z}^{d}}\stackrel{(d)}{=}\left(\frac{1}{2}(\phi_{x}-\sqrt{2u})^{2}\right)_{x\in\mathbb{Z}^{d}}$$

where ϕ' GFF independent of I^u .

Theorem (L. 2014)

There is a coupling between I^u and the GFF ϕ such that

$$\{x \in \mathbb{Z}^d | \phi_x > \sqrt{2u}\} \subseteq \mathcal{V}^u$$

• $h_* \ge 0$ critical level for the percolation by level sets of GFF. u_* critical level for the vacant set of random interlacements. From the coupling follows that:

$$h_* \leq \sqrt{2u_*}$$

- $\widetilde{\mathbb{Z}}^d$ metric graph associated to \mathbb{Z}^d .
- Construct metric graph interlacments by adding Brownian excursions.
- Sznitman's isomorphism holds in metric graph setting.
- The occupation field of metric graph interlacments is strictly positive on the edges and vertices visited by I^u .
- Thus the interlacements are contained in the unbounded connected components of $\{z \in \widetilde{\mathbb{Z}}^d | \phi_z \neq \sqrt{2u}\}$
- $\{z \in \widetilde{\mathbb{Z}}^d | \phi_z > \sqrt{2u}\}$ has only bounded connected components.
- Thus I^u is contained in $\{z \in \mathbb{Z}^d | \phi_z < \sqrt{2u}\}.$

Thank you for your attention!