

Ising critical exponents on random graphs

Sander Dommers

Joint work with Cristian Giardinà and Remco van der Hofstad

ALMA MATER STUDIORUM – UNIVERSITÀ DI BOLOGNA

Introduction

There are many *complex real-world networks*, e.g., social, biological, technological, ...

Many have *scale-free* behavior.

Processes on networks: opinion formation, virus spreading...

Introduction

What are effects of *structure* of complex networks on *behavior* of processes on the network?

Here, the effect on the *phase transition* in the *Ising model*, a toy model for *opinion formation*.

ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA

 $\sim \sim \sim \sim \sim$

 $\land \land \land \land \land$

Special attention to power-law degree sequences, i.e.,

$$ck^{-\tau} \leq \mathbb{P}[D=k] \leq Ck^{-\tau}, \qquad \tau > 2.$$

Locally tree-like structure

Neighborhood of random vertex

Branching process with offspring D in first generation and K in further generations.

Ising model

For spin configuration $\sigma \in \{-1, +1\}^n$,

$$\mu(\sigma) = \frac{1}{Z_n(\beta, B)} \exp\left\{\beta \sum_{(i,j)\in E_n} \sigma_i \sigma_j + B \sum_{i=1}^n \sigma_i\right\},\,$$

where

- $\beta \geq 0$ inverse temperature
- *B* external magnetic field
- $Z_n(\beta, B)$ normalization factor (partition function)

Magnetization

Magnetization

$$M(\beta, B) \equiv \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \langle \sigma_i \rangle_{\mu},$$

Spontaneous magnetization

 $M(\beta,0^+) \equiv \lim_{B\searrow 0} M(\beta,B).$

Critical temperature

 $\beta_c \equiv \inf\{\beta : M(\beta, 0^+) > 0\}.$

Theorem (Lyons, '89, DGvdH, '14)

 $\beta_c = \operatorname{atanh}(1/\mathbb{E}[K])$

Note that, for $\tau \in (2,3)$, we have $\mathbb{E}[\mathcal{K}] = \infty$, so that $\beta_c = 0$.

We study *critical exponents* for $\tau > 3$.

Critical exponents

$$M(\beta, 0^+) \asymp (\beta - \beta_c)^{\beta}, \qquad \qquad \text{for } \beta \searrow \beta_c;$$

$$M(\beta_c, B) \asymp B^{1/\delta},$$
 for $B \searrow 0.$

Theorem (DGvdH, '14)

	$\mathbb{E}[\mathcal{K}^3] < \infty$	$ au \in (3,5)$
β	1/2	1/(au-3)
δ	3	au-2

Smoothness of transition

For
$$\tau = 3.5$$
, $\beta = \frac{1}{3.5-3} = 2$

Tree recursion

Root *magnetization* on a tree:

Effective field h^* is *unique* solution to recursion

$$h^{(t+1)} \stackrel{d}{=} B + \sum_{i=1}^{K_t} \xi(h_i^{(t)}),$$

where,

 $\xi(h) = \operatorname{atanh}(\operatorname{tanh}(\beta) \operatorname{tanh}(h)).$

Magnetization

The *magnatization* equals

$$M(\beta, B) = \mathbb{E}\left[\tanh\left(B + \sum_{i=1}^{D} \xi(h_i)\right) \right]$$
$$\approx B + \mathbb{E}[D]\mathbb{E}[\xi(h)].$$

Hence, same scaling for $M(\beta, B)$ and $\mathbb{E}[\xi(h)]$.

Taylor expansion of $\mathbb{E}[\xi(h)]$:

$$\mathbb{E}[\xi(h)] \approx \tanh(\beta)\mathbb{E}[h] - C\mathbb{E}[h^3]$$

= $\tanh(\beta) (B + \mathbb{E}[K]\mathbb{E}[\xi(h)]) - C\mathbb{E}\left[\left(B + \sum_{i=1}^{K} \xi(h_i)\right)^3\right].$

Taylor expansion of $\mathbb{E}[\xi(h)]$:

```
\mathbb{E}[\xi(h)] \approx \tanh(\beta)\mathbb{E}[h] - C\mathbb{E}[h^3]
= \tanh(\beta) (B + \mathbb{E}[K]\mathbb{E}[\xi(h)]) - C\mathbb{E}\left[\left(B + \sum_{i=1}^{K} \xi(h_i)\right)^3\right].
```

Only allowed for $\mathbb{E}[\mathcal{K}^3] < \infty.$ In that case

 $\mathbb{E}[\xi(h)] \approx \tanh(\beta)B + \tanh(\beta)\mathbb{E}[K]\mathbb{E}[\xi(h)] - C\mathbb{E}[\xi(h)]^3.$

Taylor expansion of $\mathbb{E}[\xi(h)]$: $\mathbb{E}[\xi(h)] \approx \tanh(\beta)\mathbb{E}[h] - C\mathbb{E}[h^3]$ $= \tanh(\beta) (B + \mathbb{E}[K]\mathbb{E}[\xi(h)]) - C\mathbb{E}\left[\left(B + \sum_{i=1}^{K} \xi(h_i)\right)^3\right].$

Only allowed for $\mathbb{E}[\mathcal{K}^3] < \infty.$ In that case

 $\mathbb{E}[\xi(h)] \approx \tanh(\beta)B + \tanh(\beta)\mathbb{E}[\mathcal{K}]\mathbb{E}[\xi(h)] - C\mathbb{E}[\xi(h)]^3.$

For $au \in (3,5)$, split analysis for small and large K to obtain

 $\mathbb{E}[\xi(h)] \approx \tanh(\beta)B + \tanh(\beta)\mathbb{E}[K]\mathbb{E}[\xi(h)] - C\mathbb{E}[\xi(h)]^{\tau-2}.$

Critical exponents

Theorem (DGvdH, '14)

