Edge-Reinforced Random Walk, Vertex-Reinforced Jump Process and the second generalised Ray-Knight theorem

Pierre Tarrès, University of Oxford (joint work with Christophe Sabot)

Bath, 23 June 2014

うして ふゆう ふほう ふほう うらつ

CONTENTS

- I) DEFINITION of Vertex-Reinforced Jump Process (VRJP)
- II) LINK with Edge-Reinforced Random Walk (ERRW)
- III) LINK with supersymmetric (SuSy) hyperbolic sigma model

(ロ) (型) (E) (E) (E) (O)

- IV) Ray-Knight and the reversed VRJP
- V) The magnetized reversed VRJP: inverting Ray-Knight

I) Definition of Vertex Reinforced Jump Process (VRJP)

- G = (V, E) non-oriented locally finite graph
- $(W_e)_{e \in E}$ be positive conductances on edges

•
$$\varphi = (\varphi_i)_{i \in V}, \ \varphi_i > 0.$$

VRJP (Y_s)_{s≥0} continuous-time process: Y₀ = i₀ and, if Y_s = i, then Y (conditionally) jumps to j ∼ i at rate

 $W_{i,j}L_j(s),$

where

$$L_j(s) = \varphi_j + \int_0^t \mathbb{1}_{Y_u=j} du.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 Proposed by Werner ('00) and studied by Davis, Volkov ('02,'04), Collevechio ('09), Basdevant and Singh ('10) on trees. I) Definition of Vertex Reinforced Jump Process (VRJP)

Change of time

$$\ell_i := rac{1}{2}(L_i^2 - arphi_i^2), \ \ t := \sum_{i \in V} \ell_i$$

defines time-changed VRJP $(Z_t)_{t\geq 0}$.

Between times t and t + dt, X (conditionally) jumps to j ~ i with probability

$$W_{i,j}\sqrt{rac{arphi_j^2+2\ell_j(t)}{arphi_i^2+2\ell_i(t)}}dt,$$

where

$$\ell_i(t) = \int_0^t \mathbb{1}_{Z_u=i} du.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

II) LINK with ERRW ($\forall i, \varphi_i = 1$)

- G = (V, E) non-oriented locally finite graph
- $(a_e)_{e \in E}$ weights on edges, $a_e > 0$.
- ► ERRW on V with initial weights (a_e), starting from i₀ ∈ V, is the discrete-time process (X_n) defined by X₀ = i₀ and

$$\mathbb{P}(X_{n+1}=j \mid X_k, k \le n) = \mathbb{1}_{j \sim X_n} \frac{Z_n(\{X_n, j\})}{\sum_{i \sim X_n} Z_n(\{X_n, i\})}$$

ション ふゆ く 山 マ ふ し マ うくの

where $Z_n(e) = a_e + \sum_{k=0}^{n-1} \mathbb{1}_{\{X_{k-1}, X_k\} = e}$.

 Coppersmith-Diaconis ('86), Pemantle ('88), Merkl-Rolles ('05-09). II) LINK with ERRW ($\forall i, \varphi_i = 1$)

Theorem (Sabot, T. '11)

- $W_e \sim Gamma(a_e)$ independent, $e \in E$
- ▶ Y VRJP with Gamma(a_e, 1) independent conductances.

Then $(Y_t)_{t\geq 0}$ (at jump times) $"law" = (X_n)$. Two ingredients :

- Rubin construction (Davis '90, Sellke '94) : (X
 _t) continuous-time version of (X_n) through independent sequences of exponential random variables for each edge.
- Kendall transform ('66): Representation of the timeline at each edge as a Poisson Point Process with Gamma random parameter after change of time.

III) LINK with SuSy hyperbolic sigma model ($\forall i, \varphi_i = 1$)

VRJP Mixture of MJPs (G finite, |V| = N))

Let $\mathbb{P}_{i_0} := \text{law of } (X_t) \text{ starting at } i_0 \in V.$ Theorem (Sabot, T. '11) $i) \forall i \in V, \exists U_i := \lim[(\log \ell_i(t))/2 - \sum_{i \in V} (\log \ell_i(t))/2N] \text{ s.t.,}$ conditionally on $U = (U_i)_{i \in V}$, X is a Markov jump process starting from i_0 with jump rate from i to j

 $W_{i,j}e^{U_j-U_i}$.

In particular

VRJP (jump times) MC with conductances $W_{ij}^U := W_{ij}e^{U_i+U_j}$.

III) LINK with SuSy hyperbolic sigma model ($\forall i, \varphi_i = 1$) Mixing law of VRJP (*G* finite, |V| = N) ii) Under \mathbb{P}_{i_0} , (U_i) has density on $\mathcal{H}_0 := \{(u_i), \sum u_i = 0\}$

$$\frac{N}{(2\pi)^{(N-1)/2}}e^{u_{i_0}}e^{-H(W,u)}\sqrt{D(W,u)},$$

where, if \mathcal{T} is the set of (non-oriented) spanning trees of G,

$$egin{aligned} \mathcal{H}(\mathcal{W},u) &:= 2\sum_{\{i,j\}\in E}\mathcal{W}_{i,j}(\cosh(u_i-u_j)-1)\ \mathcal{D}(\mathcal{W},u) &:= \sum_{\mathcal{T}\in\mathcal{T}}\prod_{\{i,j\}\in\mathcal{T}}\mathcal{W}_{\{i,j\}}e^{u_i+u_j}. \end{aligned}$$

,

Introduced by Zirnbauer (1991) in quantum field theory as the SuSy hyperbolic sigma model.

III) LINK with SuSy hyperbolic sigma model ($\forall i, \varphi_i = 1$)

Recurrence/transience of ERRW/VRJP

Theorem (Recurrence: Sabot-T.'11-'12 (using Disertori and Spencer '10), Angel, Crawford and Kozma '12)

For any graph of bounded degree there exists $\beta_c > 0$ such that, if $W_e < \beta_c$ (resp. $a_e < \beta_c$) for all $e \in E$, the VRJP (resp. ERRW) is recurrent.

Theorem (Transience: Sabot and T. '12 (using Disertori, Spencer and Zirnbauer '10), Disertori, Sabot and T. '13) On \mathbb{Z}^d , $d \ge 3$, there exists $\beta_c > 0$ such that, if $W_e > \beta_c$ (resp. $a_e > \beta_c$) for all $e \in E$, then VRJP (resp. ERRW) is transient a.s.

▶ \mathbb{P}_{i_0} law of MJP $X = (X_t)_{t \ge 0}$ starting at i_0 , with local time ℓ .

Theorem (Generalized second Ray-Knight theorem) For any u > 0,

$$\begin{pmatrix} \ell_{\sigma_{u}}^{x} + \frac{1}{2}\varphi_{x}^{2} \end{pmatrix}_{x \in V} \text{ under } \mathbb{P}_{i_{0}} \otimes \mathcal{P}^{G,U}, \text{ has the same law as} \\ \left(\frac{1}{2}(\varphi_{x} + \sqrt{2u})^{2}\right)_{x \in V} \text{ under } \mathcal{P}^{G,U}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Let

$$\Phi_i = \sqrt{arphi_i^2 + 2\ell_i(t)}.$$

Let $\mathbb{P}_{i_0,t}$ (resp. $\mathbb{P}_{i_0,t}^{VRJP}$) be the laws of VRJP (resp. MJP) $(X_t)_{t\geq 0}$ starting at i_0 , with conductances $(W_e)_{e\in E}$, up to time t. An elementary calculation yields

$$\frac{d\mathbb{P}_{i_0,t}^{VRJP}}{d\mathbb{P}_{i_0,t}} = \exp\left(\frac{1}{2}\left(\mathcal{E}(\Phi,\Phi) - \mathcal{E}(\varphi,\varphi)\right)\right) \frac{\prod_{j\neq i_0}\varphi_j}{\prod_{j\neq X_t}\Phi_j}$$

- Exponential part is the holding probability, where the fraction is the product of the jump probabilities.
- Implies partial exchangeability easily
- Yields a martingale of the MJP
- Can be used to obtain large deviation estimates

• Given $\Phi = (\Phi_i)_{i \in V}$, $\Phi_i > 0$, time-reversed VRJP defined as follows: $\tilde{Y}_0 = i_0$ and, if $\tilde{Y}_s = i$, then \tilde{Y} (conditionally) jumps to $j \sim i$ at rate

$$W_{i,j}\tilde{L}_j(s)$$
, where $\tilde{L}_j(s) = \Phi_j - \int_0^t \mathbbm{1}_{\tilde{Y}_u=j} du$.

Change of time

$$ilde{\ell}_i := rac{1}{2}(\Phi_i^2 - ilde{L}_i^2), \ t := \sum_{i \in V} ilde{\ell}_i$$

defines time-changed VRJP $(\tilde{Z}_t)_{t\geq 0}$.

Between times t and t + dt, X (conditionally) jumps to j ~ i with probability

$$W_{i,j}\sqrt{\frac{\Phi_j^2 - 2\tilde{\ell}_j(t)}{\Phi_i^2 - 2\tilde{\ell}_i(t)}}dt, \text{ where } \tilde{\ell}_i(t) = \int_0^t \mathbb{1}_{\tilde{Z}_u=i}du.$$

Let

$$\varphi_i = \sqrt{\Phi_i^2 - 2\tilde{\ell}_i(t)},$$

and assume it is well-defined at time t for all $i \in V$. Let $\tilde{\mathbb{P}}_{i_0,t}^{VRJP}$ be the law of time-reversed VRJP. Then, similarly,

$$\frac{d\tilde{\mathbb{P}}_{i_{0},t}^{VRJP}}{d\mathbb{P}_{i_{0},t}} = \exp\left(\frac{1}{2}(\mathcal{E}(\Phi,\Phi) - \mathcal{E}(\varphi,\varphi))\right) \frac{\prod_{j\neq i_{0}} \Phi_{j}}{\prod_{j\neq X_{t}} \varphi_{j}}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Let $t = \sigma_u$ and

$$\Phi_{i} = \sqrt{\varphi_{i}^{2} + 2\ell_{i}(\sigma_{u})},$$

$$\sigma(\varphi) = (\operatorname{sign}(\varphi_{i}))_{i \in V},$$

$$\sigma = + \iff \forall i \in V, \ \sigma_{i} = 1.$$

Let us explain why, heuristically,

 $\mathcal{L}\left(\ell \left| \sigma(\varphi) = +\right) = \tilde{\ell},\right.$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

where $\tilde{\ell}$ is distributed under $\tilde{\mathbb{P}}_{i_0,\sigma_{\mu}}^{VRJP}$.

Indeed, by Ray-Knight Theorem above, and a change of variables,

$$\mathbb{P}_{i_0} \otimes P^{G,U}(\Phi + d\Phi) = \exp(-\frac{1}{2}\mathcal{E}(\Phi, \Phi))d\Phi \qquad (1)$$
$$= \exp(-\frac{1}{2}\mathcal{E}(\Phi, \Phi))\prod_{j \neq i_0} \frac{\varphi_j}{\Phi_j}d\varphi$$

Therefore

$$\begin{aligned} \frac{d(\mathbb{P}_{i_0}\otimes P^{G,U})}{\mathbb{P}_{i_0}\otimes P^{G,U}(\Phi+d\Phi)} &= \exp\left(\frac{1}{2}(\mathcal{E}(\Phi,\Phi)-\mathcal{E}(\varphi,\varphi))\right)\frac{\prod_{j\neq i_0}\Phi_j}{\prod_{j\neq X_t}\varphi_j}d\mathbb{P}_{i_0,t}\\ &= \left(\frac{d\tilde{\mathbb{P}}_{i_0,t}^{VRJP}}{d\mathbb{P}_{i_0,t}}\right)d\mathbb{P}_{i_0,t} = d\tilde{\mathbb{P}}_{i_0,t}^{VRJP}.\end{aligned}$$

Problem By Ray-Knight Theorem, Φ is the modulus a variable $\tilde{\varphi} + \sqrt{2u}$ with $\mathcal{L}(\tilde{\varphi}) = P^{G,U}$, but

 $\sigma = +$ does not imply $\tilde{\varphi} + \sqrt{2u} = +$, i.e. (1) does not hold.

V) The magnetized time-reversed VRJP

- Magnetized time-reversed VRJP $(\check{Y}_s)_{s\geq 0}$, $\check{Y}_0 = i_0$.
- $(\Phi_x)_{x \in V}$ positive reals.

•
$$\check{L}_i(s) = \Phi_i - \int_0^s \mathbb{1}_{\check{Y}_u=i} du.$$

► $< \cdot >_s$ (resp. F(s)) the expectation (resp. partition function) of the Ising model with interaction

$$J_{i,j}(s) = W_{i,j}\check{L}_i(s)\check{L}_j(s),$$

and with boundary condition $\sigma_{i_0} = +1$.

• Conditioned on the past at time *s*, if $\check{Y}_s = i$, jumps from *i* to *j* with a rate

$$W_{i,j}\check{L}_j(s) rac{<\sigma_j>_s}{<\sigma_i>_s}$$

$$S = \sup\{s \ge 0, \ \check{L}_i(s) > 0 \text{ for all } i\}$$

うして ふゆう ふほう ふほう うらつ

V) The magnetized time-reversed VRJP Lemma

$$\check{Y}_{S}=i_{0}.$$

Let $\check{\mathbb{P}}_{i_0}^{VRJP}$ be the law of $(\check{Y}_s)_{s\geq 0}$ up to the time S, and set

$$\Phi_i = \sqrt{\varphi_i^2 + 2\ell_i(\sigma_u)}.$$

Theorem (Sabot, T. '14)

$$\mathcal{L}((\ell,\varphi)|\Phi) = \left(\frac{1}{2}(\Phi^2 - \check{L}^2(S)),\sigma\check{L}(S)\right),$$

where

- $\check{L}(S)$ distributed under $\check{\mathbb{P}}_{\Phi,i_0}^{VRJP}$
- conditionally on $\check{L}(S)$, σ has law $< \cdot >_S$.