Geometric RSK, Whittaker functions and random polymers

Neil O'Connell

University of Warwick / Trinity College Dublin

School and Workshop on Random Interacting Systems Bath, June 25, 2014

Collaborators: I. Corwin, T. Seppäläinen, N. Zygouras

For a permutation $\sigma \in S_n$, write

 $L_n(\sigma) =$ length of longest increasing subsequence in σ

E.g. if $\sigma = 154263$ then $L_6(\sigma) = 3$.

<ロ> (四) (四) (三) (三) (三)

For a permutation $\sigma \in S_n$, write

 $L_n(\sigma) =$ length of longest increasing subsequence in σ

E.g. if $\sigma = 154263$ then $L_6(\sigma) = 3$.

Based on Monte-Carlo simulations, Ulam (1961) conjectured that

$$EL_n = \frac{1}{n!} \sum_{\sigma \in S_n} L_n(\sigma) \sim c\sqrt{n}, \qquad n \to \infty.$$

A classical result from combinatorial geometry (Erdős-Szekeres 1935) implies that $EL_n \ge \sqrt{n-1}/2$.

(日) (P) (P

Hammersley (1972): The limit *c* exists, and $\pi/2 \le c \le e$.

Hammersley (1972): The limit *c* exists, and $\pi/2 \le c \le e$. Logan and Shepp (1977): $c \ge 2$

Hammersley (1972): The limit *c* exists, and $\pi/2 \le c \le e$. Logan and Shepp (1977): $c \ge 2$ Vershik and Kerov (1977): c = 2

◆□▶★@▶★温▶★温▶ = 温

Hammersley (1972): The limit *c* exists, and $\pi/2 \le c \le e$.

- Logan and Shepp (1977): $c \ge 2$
- Vershik and Kerov (1977): c = 2

Baik, Deift and Johansson (1999): for each $x \in \mathbb{R}$,

$$\frac{1}{n!} |\{\sigma \in S_n : n^{-1/6} (L_n(\sigma) - 2\sqrt{n}) \le x\}| \to F_2(x),$$

where F_2 is the Tracy-Widom (GUE) distribution from random matrix theory (Tracy and Widom 1994 — limiting distribution of largest eigenvalue of high-dimensional random Hermitian matrix)

Hammersley (1972): The limit *c* exists, and $\pi/2 \le c \le e$.

- Logan and Shepp (1977): $c \ge 2$
- Vershik and Kerov (1977): c = 2

Baik, Deift and Johansson (1999): for each $x \in \mathbb{R}$,

$$\frac{1}{n!} |\{\sigma \in S_n : n^{-1/6} (L_n(\sigma) - 2\sqrt{n}) \le x\}| \to F_2(x),$$

where F_2 is the Tracy-Widom (GUE) distribution from random matrix theory (Tracy and Widom 1994 — limiting distribution of largest eigenvalue of high-dimensional random Hermitian matrix)

How is this possible?

The Robinson-Schensted correspondence

From the representation theory of S_n ,

$$n! = \sum_{\lambda \vdash n} d_{\lambda}^2$$

where d_{λ} = number of standard tableaux with shape λ .

A standard tableau with shape $(4, 3, 1) \vdash 8$:

1	3	5	6
2	4	8	
7			

In other words, S_n has the same cardinality as the set of pairs of standard tableaux of size n with the same shape.

◆□ > ◆圖 > ◆臣 > ◆臣 > □ 臣

The Robinson-Schensted correspondence

Robinson (38): A bijection between S_n and such pairs

$$\sigma \longleftrightarrow (P,Q)$$

Schensted (61):

$$L_n(\sigma) =$$
 length of longest row of P and Q

This yields

$$|\{\sigma \in S_n : L_n(\sigma) \le k\}| = \sum_{\lambda \vdash n, \ \lambda_1 \le k} d_{\lambda}^2.$$

∃ ► < ∃ ►</p>

The RSK correspondence

Knuth (70): Extends to a bijection between matrices with nonnegative integer entries and pairs of *semi-standard* tableaux of same shape.

A *semistandard tableau* of shape $\lambda \vdash n$ is a diagram of that shape, filled in with positive integers which are *weakly* increasing along rows and strictly increasing along columns.

A semistandard tableau of shape (5, 3, 1):

1	2	2	5	7
3	3	8		
4				

◆□ > ◆圖 > ◆臣 > ◆臣 > □ 臣

Cauchy-Littlewood identity

This gives a combinatorial proof of the Cauchy-Littlewood identity

$$\prod_{ij} (1 - x_i y_j)^{-1} = \sum_{\lambda} s_{\lambda}(x) s_{\lambda}(y),$$

where s_{λ} are Schur polynomials, defined by

$$s_{\lambda}(x) = \sum_{\operatorname{sh} P = \lambda} x^{P},$$

where $x = (x_1, x_2, ...)$ and

$$x^P = x_1^{\sharp 1's \text{ in } P} x_2^{\sharp 2's \text{ in } P} \dots$$

Cauchy-Littlewood identity

Let
$$(a_{ij}) \mapsto (P, Q)$$
 under RSK.
Then $C_j = \sum_i a_{ij} = \sharp j$'s in P and $R_i = \sum_j a_{ij} = \sharp i$'s in Q .
For $x = (x_1, x_2, ...)$ and $y = (y_1, y_2, ...)$ we have

$$\prod_{ij} (y_i x_j)^{a_{ij}} = \prod_j x_j^{C_j} \prod_i y_i^{R_i} = x^P y^Q.$$

Summing over (a_{ij}) on the left and (P, Q) with sh P = sh Q on the right gives

$$\prod_{ij} (1 - x_i y_j)^{-1} = \sum_{\lambda} s_{\lambda}(x) s_{\lambda}(y).$$

◆□▶ ◆舂▶ ◆臣▶ ◆臣▶ 三臣

Tableaux and Gelfand-Tsetlin patterns

Semistandard tableaux \longleftrightarrow discrete Gelfand-Tsetlin patterns

∃ ► < ∃ ►</p>

The RSK correspondence

If $(a_{ij}) \in \mathbb{N}^{m \times n}$, then length of longest row in corresponding tableaux is

イロト 人間 とくほ とくほう

Combinatorial interpretation

Consider *n* queues in series:

Data:

 a_{ij} = time required to serve i^{th} customer at j^{th} queue

If we start with all customers in first queue, then M is the time taken for all customers to leave the system (Muth 79).

◆ロ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

Combinatorial interpretation

From the RSK correspondence:

If a_{ij} are independent random variables with $P(a_{ij} \ge k) = (p_i q_j)^k$ then

$$P(M \le k) = \prod_{ij} (1 - p_i q_j) \sum_{\lambda: \ \lambda_1 \le k} s_{\lambda}(p) s_{\lambda}(q).$$

cf. Weber (79): *The interchangeability of* $\cdot/M/1$ *queues in series.* Johansson (99): As $n, m \to \infty$, $M \sim$ Tracy-Widom distribution (and other related asymptotic results)

Surface growth and KPZ universality

The queueing system can be thought of as a model for surface growth ...

Surface growth and KPZ universality

... and belongs to the same *universality class* as:

Random tiling

Burning paper

Bacteria colonies

KPZ = Kardar-Parisi-Zhang (1986)

The RSK mapping can be defined by expressions in the (max, +)-semiring. Replacing these expressions by their $(+, \times)$ counterparts, A.N. Kirillov (00) introduced a *geometric lifting* of RSK correspondence. It is a bi-rational map

 $T: (\mathbb{R}_{>0})^{n \times n} \to (\mathbb{R}_{>0})^{n \times n}$

$$X = (x_{ij}) \mapsto (t_{ij}) = T = T(X).$$

For n = 2,

◆ロ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

The analogue of the 'longest increasing subsequence' is the matrix element:

$$t_{nn} = \sum_{\phi \in \Pi_{(n,n)}} \prod_{(i,j) \in \phi} x_{ij}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ =

$$t_{nm} = \sum_{\phi \in \Pi_{(n,m)}} \prod_{(i,j) \in \phi} x_{ij}$$

< □ > < 同

17/62

э

콜▶ ★ 콜▶

$$t_{n-k+1,m-k+1}\dots t_{nm} = \sum_{\phi \in \Pi_{(n,m)}^{(k)}} \prod_{(i,j) \in \phi} x_{ij}$$

A B > A
 B > A
 B
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A

3 k 3

$$t_{n-k+1,m-k+1}\ldots t_{nm} = \sum_{\phi\in\Pi_{(n,m)}^{(k)}} \prod_{(i,j)\in\phi} x_{ij}$$

A B > A
 B > A
 B
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A

$$T(X)' = T(X')$$

3 k 3

A *triangle P* with shape $x \in (\mathbb{R}_{>0})^n$ is an array of positive real numbers:

with bottom row $z_{n} = x$.

Denote by $\Delta(x)$ the set of triangles with shape *x*.

イロト 不得 とくほ とくほ とうほ

Let

Define

$$P^{\lambda} = R_1^{\lambda_1} \left(\frac{R_2}{R_1}\right)^{\lambda_2} \cdots \left(\frac{R_n}{R_{n-1}}\right)^{\lambda_n}, \qquad \lambda \in \mathbb{C}^n, \qquad R_k = \prod_{i=1}^k z_{ki}$$

20/62

æ

◆ロト ◆聞 と ◆ 臣 と ◆ 臣 と

Let

Define

$$P^{\lambda} = R_1^{\lambda_1} \left(\frac{R_2}{R_1}\right)^{\lambda_2} \cdots \left(\frac{R_n}{R_{n-1}}\right)^{\lambda_n}, \qquad \lambda \in \mathbb{C}^n, \qquad R_k = \prod_{i=1}^k z_{ki}$$

$$\mathcal{F}(P) = \sum_{a \to b} \frac{z_a}{z_b}$$

For $\lambda \in \mathbb{C}^n$ and $x \in (\mathbb{R}_{>0})^n$, define

$$\Psi_{\lambda}(x) = \int_{\Delta(x)} P^{-\lambda} e^{-\mathcal{F}(P)} dP,$$

where $dP = \prod_{1 \le i \le k < n} dz_{ki}/z_{ki}$. For n = 2,

$$\Psi_{(\nu/2,-\nu/2)}(x) = 2K_{\nu}\left(2\pi\sqrt{x_2/x_1}\right).$$

These are called GL(n)-Whittaker functions.

They are the analogue of Schur polynomials in the geometric setting.

イロト 不得 とく ヨト イヨト 二日

Recall

$$X = (x_{ij}) \mapsto (t_{ij}) = T = t_{11} \qquad \begin{array}{ccc} t_{31} \\ t_{21} \\ t_{22} \\ t_{12} \\ t_{13} \end{array} \qquad \begin{array}{ccc} t_{33} \\ t_{33} \\ t_{13} \end{array}$$

= pair of triangles of same shape (t_{nn}, \ldots, t_{11}) .

(n, n)

ヘロト 人間 とくほ とくほとう

$$t_{nn} = \sum_{\phi \in \Pi_{(n,n)}} \prod_{(i,j) \in \phi} x_{ij}$$

Whittaker measures

Let $a, b \in \mathbb{R}^n$ with $a_i + b_j > 0$ and define

$$\mathbb{P}(dX) = \prod_{ij} \Gamma(a_i + b_j)^{-1} x_{ij}^{-a_i - b_j - 1} e^{-1/x_{ij}} dx_{ij}.$$

Theorem (Corwin-O'C-Seppäläinen-Zygouras, '14)

Under \mathbb{P} , the law of the shape of the output under geometric RSK is given by the Whittaker measure on \mathbb{R}^n_+ defined by

$$\mu_{a,b}(dx) = \prod_{ij} \Gamma(a_i + b_j)^{-1} e^{-1/x_n} \Psi_a(x) \Psi_b(x) \prod_{i=1}^n \frac{dx_i}{x_i}.$$

Application to random polymers

Corollary

Suppose $a_i > 0$ for each *i* and $b_i < 0$ for each *j*. Then

$$\mathbb{E}e^{-st_{nn}} = \int_{\iota\mathbb{R}^m} s^{\sum_{i=1}^n (b_i - \lambda_i)} \prod_{ij} \Gamma(\lambda_i - b_j) \prod_{ij} \frac{\Gamma(a_i + \lambda_j)}{\Gamma(a_i + b_j)} s_n(\lambda) d\lambda,$$

where

$$s_n(\lambda) = \frac{1}{(2\pi\iota)^n n!} \prod_{i\neq j} \Gamma(\lambda_i - \lambda_j)^{-1}.$$

Application to random polymers

If $a_i + b_j = \theta$ for all *i*, *j*, this is the log-gamma polymer model introduced by Seppäläinen (2012). Using the above integral formula, Borodin, Corwin and Remenik (2013) have shown that for $\theta < \theta^*$ (for technical reasons)

$$\frac{\log t_{nn} - c(\theta)n}{d(\theta)n^{1/3}} \xrightarrow{dist} F_2.$$

The constant $c(\theta) = -2\Psi(\theta/2)$ and bound on fluctuation exponent $\chi < 1/3$ were established earlier by Seppäläinen (2012).

Combinatorial approach

Recall:
$$X = (x_{ij}) \mapsto (t_{ij}) = T(X) = (P, Q).$$

Theorem (O'C-Seppäläinen-Zygouras, '14)

- The map $(\log x_{ij}) \rightarrow (\log t_{ij})$ has Jacobian ± 1
- For $u, \lambda \in \mathbb{C}^n$, $\prod_{ij} x_{ij}^{\nu_i + \lambda_j} = P^{\lambda} Q^{\nu}$

• The following identity holds:

$$\sum_{ij} \frac{1}{x_{ij}} = \frac{1}{t_{11}} + \mathcal{F}(P) + \mathcal{F}(Q)$$

This theorem (a) explains the appearance of Whittaker functions and (b) extends to models with symmetry.

Analogue of the Cauchy-Littlewood identity

It follows that

$$\prod_{ij} x_{ij}^{-\nu_i-\lambda_j} e^{-1/x_{ij}} \frac{dx_{ij}}{x_{ij}} = P^{-\lambda} Q^{-\nu} e^{-1/t_{11}-\mathcal{F}(P)-\mathcal{F}(Q)} \prod_{ij} \frac{dt_{ij}}{t_{ij}}.$$

Integrating both sides gives, for $\Re(\nu_i + \lambda_j) > 0$:

Corollary (Stade 02)

$$\prod_{ij} \Gamma(\nu_i + \lambda_j) = \int_{\mathbb{R}^n_+} e^{-1/x_n} \Psi_{\nu}(x) \Psi_{\lambda}(x) \prod_{i=1}^n \frac{dx_i}{x_i}.$$

This is equivalent to a Whittaker integral identity which was conjectured by Bump (89) and proved by Stade (02). The integral is associated with Archimedean *L*-factors of automorphic *L*-functions on $GL(n, \mathbb{R}) \times GL(n, \mathbb{R})$.

◆□▶ ◆課 ▶ ◆理 ▶ ◆理 ▶

Proof of second theorem uses new description of the gRSK map T as a composition of a sequence of 'local moves' applied to the input matrix

 $\begin{array}{cccc} & x_{31} \\ & x_{21} & x_{32} \\ x_{11} & x_{22} & x_{33} \\ & x_{12} & x_{23} \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\$

 x_{13}

This description is a re-formulation of Noumi and Yamada's (2004) geometric row insertion algorithm.

イロト 不得 とくほ とくほ とうほ

The basic move is:

æ

◆ロト ◆聞 と ◆ 臣 と ◆ 臣 と

The basic move is:

bbc bd + cd

ab + ac

с

æ

◆ロト ◆聞 と ◆ 臣 と ◆ 臣 と

This can be applied at any position in the matrix:

э

This can be applied at any position in the matrix:

э

This can be applied at any position in the matrix:

c $\frac{ce}{bc+be}$ cf+ef a e i d h g

э

This can be applied at any position in the matrix:

This can be applied at any position in the matrix:

э

◆ロト ◆聞 と ◆ 臣 と ◆ 臣 と

This can be applied at any position in the matrix:

This can be applied at any position in the matrix:

c b f a e i d h dg

æ

This can be applied at any position in the matrix:

э

This can be applied at any position in the matrix:

э

This can be applied at any position in the matrix:

This can be applied at any position in the matrix:

Start with:

æ

◆ロト ◆聞 と ◆ 臣 と ◆ 臣 と

To arrive at:

 t_{31} t_{21} t_{32} t_{11} t_{22} t_{33} t_{12} t_{23} t_{13}

æ

◆ロト ◆聞 と ◆ 臣 と ◆ 臣 と

Combinatorial approach

Recall:
$$X = (x_{ij}) \mapsto (t_{ij}) = T(X) = (P, Q).$$

Theorem (O'C-Seppäläinen-Zygouras, Invent. Math. 14)

- The map $(\log x_{ij}) \rightarrow (\log t_{ij})$ has Jacobian ± 1
- For $u, \lambda \in \mathbb{C}^n$, $\prod_{ij} x_{ij}^{\nu_i + \lambda_j} = P^{\lambda} Q^{\nu}$

• The following identity holds:

$$\sum_{ij} \frac{1}{x_{ij}} = \frac{1}{t_{11}} + \mathcal{F}(P) + \mathcal{F}(Q)$$

This theorem (a) explains the appearance of Whittaker functions and (b) extends to models with symmetry.

Symmetric input matrix

Symmetry properties of gRSK:

$$T(X') = T(X)'$$
$$X \mapsto (P,Q) \iff X' \mapsto (Q,P).$$
$$X = X' \iff P = Q$$

Theorem (O'C-Seppäläinen-Zygouras 14)

The restriction of T to symmetric matrices is volume-preserving.

Symmetric input matrix

The analogue of the Cauchy-Littlewood identity in this setting is:

Corollary

Suppose s > 0 and $\Re \lambda_i > 0$ for each *i*. Then

$$\int_{(\mathbb{R}_{>0})^n} e^{-sx_1} \Psi_{-\lambda}^n(x) \prod_{i=1}^n \frac{dx_i}{x_i} = s^{-\sum_{i=1}^n \lambda_i} \prod_i \Gamma(\lambda_i) \prod_{i < j} \Gamma(\lambda_i + \lambda_j).$$

This is equivalent to a Whittaker integral identity which was conjectured by Bump-Friedberg (90) and proved by Stade (01).

Symmetric input matrix

Corollary

Let $\alpha_i > 0$ *for each i and define*

$$\mathbb{P}_{\alpha}(dX) = Z_{\alpha}^{-1} \prod_{i} x_{ii}^{-\alpha_i} \prod_{i < j} x_{ij}^{-\alpha_i - \alpha_j} e^{-\frac{1}{2}\sum_i \frac{1}{x_{ii}} - \sum_{i < j} \frac{1}{x_{ij}}} \prod_{i \le j} \frac{dx_{ij}}{x_{ij}}$$

Then

$$\mathbb{P}_{\alpha}(sh P \in dx) = c_{\alpha}^{-1} e^{-1/2x_n} \Psi_{\alpha}^n(x) \prod_i \frac{dx_i}{x_i},$$

where

$$c_{\alpha} = \prod_{i} \Gamma(\alpha_{i}) \prod_{i < j} \Gamma(\alpha_{i} + \alpha_{j}).$$

Application to 'symmetrised' random polymer (reflecting boundary conditions)

Formally, this yields the integral formula:

$$\mathbb{E}_{\alpha}e^{-st_{nn}} = \int s^{-\sum_{i}\lambda_{i}}\prod_{i}\frac{\Gamma(\lambda_{i})}{\Gamma(\alpha_{i})}\prod_{i,j}\Gamma(\alpha_{i}+\lambda_{j})\prod_{i< j}\frac{\Gamma(\lambda_{i}+\lambda_{j})}{\Gamma(\alpha_{i}+\alpha_{j})}s_{n}(\lambda)d\lambda$$

for appropriate vertical contours which stay to the right of zero.