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The longest increasing subsequence problem

For a permutation o € S, write

L,(0) = length of longest increasing subsequence in o

E.g. if o = 154263 then Lg(c) = 3.



The longest increasing subsequence problem

For a permutation o € S, write

L,(0) = length of longest increasing subsequence in o

E.g. if o = 154263 then Lg(c) = 3.

Based on Monte-Carlo simulations, Ulam (1961) conjectured that

1
EL, = i ;LH(O’) ~ cy/n, n— oo.
[eASN]

A classical result from combinatorial geometry (Erdds-Szekeres 1935)
implies that EL, > /n — 1/2.

Neil O’Connell 2/62



The longest increasing subsequence problem

Hammersley (1972): The limit ¢ exists, and 7/2 < ¢ < e.

=] F = = DA
Neil O’Connell



The longest increasing subsequence problem

Hammersley (1972): The limit ¢ exists, and 7/2 < ¢ < e.
Logan and Shepp (1977): ¢ > 2

=] F = = DA
Neil O’Connell



The longest increasing subsequence problem

Hammersley (1972): The limit ¢ exists, and 7/2 < ¢ < e.
Logan and Shepp (1977): ¢ > 2
Vershik and Kerov (1977): ¢ =2



The longest increasing subsequence problem

Hammersley (1972): The limit ¢ exists, and 7/2 < ¢ < e.
Logan and Shepp (1977): ¢ > 2

Vershik and Kerov (1977): ¢ =2

Baik, Deift and Johansson (1999): for each x € R,

Mo €S, n o (Lafo) ~ 2vR) < 3} = Fa(o)

where F’ is the Tracy-Widom (GUE) distribution from random matrix theory
(Tracy and Widom 1994 — limiting distribution of largest eigenvalue of
high-dimensional random Hermitian matrix)
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The longest increasing subsequence problem

Hammersley (1972): The limit ¢ exists, and 7/2 < ¢ < e.
Logan and Shepp (1977): ¢ > 2

Vershik and Kerov (1977): ¢ =2

Baik, Deift and Johansson (1999): for each x € R,

1
;‘{‘7 €Sy : n”O(Ly(0) = 2v/n) < x}| = Fa(x),
where F’ is the Tracy-Widom (GUE) distribution from random matrix theory

(Tracy and Widom 1994 — limiting distribution of largest eigenvalue of
high-dimensional random Hermitian matrix)

How is this possible?
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The Robinson-Schensted correspondence

From the representation theory of S,
n! = Z a3
An

where d) = number of standard tableaux with shape A.

A standard tableau with shape (4,3,1) - 8:

3[5]6]
418

|\]l\)»—

In other words, S, has the same cardinality as the set of pairs of standard
tableaux of size n with the same shape.
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The Robinson-Schensted correspondence

Robinson (38): A bijection between S, and such pairs
o+— (P,0)
Schensted (61):

L,(0) = length of longest row of P and Q
This yields
o €Su: Li(o) <k} = D di

Men, A <k
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The RSK correspondence

Knuth (70): Extends to a bijection between matrices with nonnegative integer
entries and pairs of semi-standard tableaux of same shape.

A semistandard tableau of shape A - n is a diagram of that shape, filled in
with positive integers which are weakly increasing along rows and strictly
increasing along columns.

A semistandard tableau of shape (5,3, 1):

2[2]5]7]
3]8

|-|>UJ>—A
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Cauchy-Littlewood identity

This gives a combinatorial proof of the Cauchy-Littlewood identity

H xtyj Z S)\ S)\

i
where s are Schur polynomials, defined by

>

sh p=x

where x = (x1,xp,...) and

= fl'sin P_ #2's in P
—.xl .x2
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Cauchy-Littlewood identity

Let (a;) — (P, Q) under RSK.
Then ;=3 ,a; = #jsinPandR; =} ;a; = §i’sin Q.
For x = (x1,x2,...) andy = (y1,y2,...) we have
[Toae =TT T =2
ij j i
Summing over (a;;) on the left and (P, Q) with sh P = sh Q on the right gives

[T =x)™ =D sa@sn().

ij A
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Tableaux and Gelfand-Tsetlin patterns

Semistandard tableaux <— discrete Gelfand-Tsetlin patterns

—_
—
[\S]
[\S]

3]

|wt\>-
(O8]
[9%]




The RSK correspondence

If (a;;) € N™*", then length of longest row in corresponding tableaux is

(m, n)

M =maxz ) her dij




Combinatorial interpretation

Consider n queues in series:

©00l— 60— 606]— e —

Data:

th

a; = time required to serve i"' customer at 7™ queue

If we start with all customers in first queue, then M is the time taken for all
customers to leave the system (Muth 79).
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Combinatorial interpretation

From the RSK correspondence:

If a;; are independent random variables with P(a; > k) = (p,-qj)k then

P(M <k)= H(l — Pig)) Z sx(P)sx(q)-

ij X\ <k

cf. Weber (79): The interchangeability of - /M /1 queues in series.

Johansson (99): As n,m — oo, M ~ Tracy-Widom distribution
(and other related asymptotic results)
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Surface growth and KPZ universality

The queueing system can be thought of as a model for surface growth ...

Customer

L T T NV}

Queue

Or «Fr«Er «F Qo
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Surface growth and KPZ universality

...and belongs to the same universality class as:

Random tiling Burning paper Bacteria colonies

KPZ = Kardar-Parisi-Zhang (1986)
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Geometric RSK correspondence

The RSK mapping can be defined by expressions in the (max, +)-semiring.
Replacing these expressions by their (+, x) counterparts, A.N. Kirillov (00)
introduced a geometric lifting of RSK correspondence. It is a bi-rational map

T: (R>O)n><n - (R>O)I’l><l’l

X =(x5) — (t;) =T =T(X).
Forn =2,

X21 X11X21

X11 X22 — X221/ (X12 + X21) x11x22(X12 + X21)
X12 X11X12

Neil O’Connell
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Geometric RSK correspondence

The analogue of the ‘longest increasing subsequence’ is the matrix element:

tin = Z H Xij

d’en(n,n) (l,])E(ﬁ

(n,n)




Geometric RSK correspondence

tam = Z H Xij

¢en(n,m) (l,])e(,f)
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Geometric RSK correspondence

T—k+1,m—k+1 -« - Inm = 2 H Xij

k) (ij)e
pen) (iy)€d

(n,m)
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Geometric RSK correspondence

T—k+1,m—k+1 -« - Inm = 2 H Xij

geny) ()€o
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Whittaker functions

A triangle P with shape x € (R)" is an array of positive real numbers:

211

222 221

Zmn e Zn1

with bottom row z,,. = x.

Denote by A(x) the set of triangles with shape x.



Whittaker functions

Let
211
222 221
P =
Znn an
Define
Ao A
Ry R "
PP=RM[Z=) 2 recn
! (R1> <Rn—1 ' ’
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Whittaker functions

Let
211
2 221
P =
Znn an
Define
A2 A k
Ry R "
Pr=R"(2) recC” Ry = ;
1 (R1> <Rn_1 s 5 k il;Ilel
211
. 7 N
]:(P) _ <a /‘222 221
Zp
a—b

N N
733 232 131
o = = = 9ac



Whittaker functions

For A € C" and x € (R+()", define

where dP = ngigk@ dzii [ ki-

Forn =2,

\I/(V/L_V/z) (x) = 2K, (271‘\/)(2/)61) .

These are called GL(n)-Whittaker functions.

They are the analogue of Schur polynomials in the geometric setting.
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Geometric RSK correspondence

Recall
13
153} 13
X = (x,]) — (tij) =T = 581 125 133
2 3
113

= pair of triangles of same shape (%,

(n,m)

tan = 2 ger,,, N ij)eo Xi

1,1
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---,tll)-

22/62



Whittaker measures

Let a, b € R" with a; + b; > 0 and define

Hr (a; + b))~ T e g,

Theorem (Corwin-O’C-Seppilédinen-Zygouras, ’14)

Under P, the law of the shape of the output under geometric RSK is given by
the Whittaker measure on R’} defined by

n
dx,-
X '

prap(dx) = [ Tai + by) e /0, (x) Ty (x)
ij i=1
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Application to random polymers

Corollary
Suppose a; > 0 for each i and b; < 0 for each j. Then

_ R L(a; + A)
Sthn — = (bl /\1) . b i SeCRLING VA
Ee /L]Rm s2i=1 |ij| I'(\i — b)) IUI T(a; + b)) sn(A)dA,

where

s = 1 -t
ey (m)nnlgml A7
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Application to random polymers

If a; 4+ b; = 0 for all i, j, this is the log-gamma polymer model introduced by
Seppildinen (2012). Using the above integral formula, Borodin, Corwin and
Remenik (2013) have shown that for 8 < 8* (for technical reasons)

log ty, — c(0)n agist
—— — F5.
d(0)n'/3 :

The constant ¢(6) = —2W(#/2) and bound on fluctuation exponent y < 1/3
were established earlier by Seppéldinen (2012).
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Combinatorial approach

Recall: X = (x;) — (t;) = T(X) = (P, Q).

Theorem (O’ C-Seppildinen-Zygouras, *14)
® The map (logx;;) — (logt;;) has Jacobian 1

e Forv,\ € C",
[T =P0”
ij
@ The following identity holds:

1 1
L_L 7+ 70
7 Xij 551

This theorem (a) explains the appearance of Whittaker functions and
(b) extends to models with symmetry.

Neil O’Connell
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Analogue of the Cauchy-Littlewood identity

It follows that

i i il
Integrating both sides gives, for #(v; + A;) > 0:
Corollary (Stade 02)
n d .
HF(U,- + ) = / eV, (x) W) (x) H il
i R iy i

This is equivalent to a Whittaker integral identity which was conjectured by

Bump (89) and proved by Stade (02). The integral is associated with

Archimedean L-factors of automorphic L-functions on GL(n, R) x GL(n,R).

Neil O’Connell
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Local moves

Proof of second theorem uses new description of the gRSK map 7 as a
composition of a sequence of ‘local moves’ applied to the input matrix

X31
X21 X32
X11 X22 X33
X12 X23
X13

This description is a re-formulation of Noumi and Yamada’s (2004) geometric
row insertion algorithm.
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Local moves

The basic move is:
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Local moves

The basic move is:

bc
ab + ac

bd + cd
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Local moves

This can be applied at any position in the matrix:
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Local moves

This can be applied at any position in the matrix

ce

bc + be

cf +ef
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Local moves

This can be applied at any position in the matrix:
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Local moves

This can be applied at any position in the matrix

i
2
de + dg

eh+gh
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Local moves

This can be applied at any position in the matrix:
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This can be applied at any position in the matrix:
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Local moves

This can be applied at any position in the matrix:
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Local moves

Start with:

X31
X21 X32
X11 X2 X33
X12

X23

X13

=] F = = DA
Neil O’Connell



Local moves

Apply the local moves in the following order:
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Local moves

Apply the local moves in the following order:
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Local moves

To arrive at:

131
53} 13

i 15)) 133
3P)

13

13

=] F = = DA
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Combinatorial approach

Recall: X = (x;) — (t;) = T(X) = (P, Q).

Theorem (O’ C-Seppildinen-Zygouras, Invent. Math. 14)
® The map (logx;;) — (logt;;) has Jacobian 1

e Forv,\ € C",
[T =P0”
ij
@ The following identity holds:

1 1
L_L 7+ 70
7 Xij 551

This theorem (a) explains the appearance of Whittaker functions and
(b) extends to models with symmetry.
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Symmetric input matrix

Symmetry properties of gRSK:

Theorem (O’C-Seppildinen-Zygouras 14)

The restriction of T to symmetric matrices is volume-preserving. J




Symmetric input matrix

The analogue of the Cauchy-Littlewood identity in this setting is:

Corollary
Suppose s > 0 and R\; > 0 for each i. Then

/ e | (x)
(R>0)" i

i=1

ndX' n
e —Zi:M:‘”r)\. ”p)\. ).
Xi S i (A) (Ai + )

i<j

This is equivalent to a Whittaker integral identity which was conjectured by
Bump-Friedberg (90) and proved by Stade (01).
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Symmetric input matrix

Corollary
Let a; > 0 for each i and define

1 1 1
—1 —Qi—0 —73 Dy i< 5 dxij
qu L e s [T
i<j i<j Y
Then J
Po(sh P € dx) = c;'e™ /20" (x) sl

Xi

b
i
where

ca—HF ;) HF a; + o).

i<j
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Application to ‘symmetrised’ random polymer
(reflecting boundary conditions)

Formally, this yields the integral formula:

—
+ aj)

for appropriate vertical contours which stay to the right of zero.
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