Critical density for Activated Random Walk

Lorenzo Taggi

Max Planck Institute for Mathematics in the Sciences Leipzig, Germany

June 24, 2014

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Outline

1 Definition

- 2 On monotonicity and the critical density
- 3 The Diaconis-Fulton Graphical Representation

Two types of particles, A and S,

- A particles: continuous time random walk in \mathbb{Z}^d , with jumps rate 1, distribution of jumps $P(\cdot)$.
- *S particles*: at rest.

Two types of particles, A and S,

- A particles: continuous time random walk in \mathbb{Z}^d , with jumps rate 1, distribution of jumps $P(\cdot)$.
- *S particles*: at rest.

Interaction:

• $A + S \longrightarrow 2 A$ (instantaneously)

Two types of particles, A and S,

- A particles: continuous time random walk in \mathbb{Z}^d , with jumps rate 1, distribution of jumps $P(\cdot)$.
- *S particles*: at rest.

Interaction:

- $A + S \longrightarrow 2 A$ (instantaneously)
- A \longrightarrow S, rate λ .

Two types of particles, A and S,

- A particles: continuous time random walk in \mathbb{Z}^d , with jumps rate 1, distribution of jumps $P(\cdot)$.
- S particles: at rest.

Interaction:

- $A + S \longrightarrow 2 A$ (instantaneously)
- A \longrightarrow S, rate λ .
- Remark: " $2A \longrightarrow A + S \longrightarrow 2 A$ " is not observed.

Two types of particles, A and S,

- A particles: continuous time random walk in \mathbb{Z}^d , with jumps rate 1, distribution of jumps $P(\cdot)$.
- S particles: at rest.

Interaction:

- $A + S \longrightarrow 2 A$ (instantaneously)
- A \longrightarrow S, rate λ .
- Remark: " $2A \longrightarrow A + S \longrightarrow 2 A$ " is not observed.

Initial configuration $\eta \in \Sigma = \mathbb{N}^{\mathbb{Z}^d}$. $(\eta(x))_{x \in \mathbb{Z}^d}$ i.i.d. random variables with $\mathbb{E}[\eta(x)] = \mu < \infty$.

Phase Transition

- **1** Local Fixation: a.s. for any finite $V \subset \mathbb{Z}^d \exists t_V$ such that there is no activity in V for all $t > t_V$.
- **2** Activity: there is no local fixation.

About monotonicity

About monotonicity

About monotonicity

Critical density in d = 1

Definition:

 $\mu_c = \sup\{\mu \in [0,\infty] \text{ s.t. ARW starting from } \nu(\mu) \text{ fixates locally}\}.$

Theorem [Rolla - Sidoravicius (2009)]

- Initial configuration: i.i.d. Poisson random variables with expectation μ .
- Jumps on nearest neighbours.

Then,

a)
$$\exists! \ \mu_c \in [0,\infty]$$

b) If d = 1, then $\mu_c \in [\frac{\lambda}{1+\lambda}, 1]$.

Critical density in d = 1

Definition:

 $\mu_c = \sup\{\mu \in [0,\infty] \text{ s.t. ARW starting from } \nu(\mu) \text{ fixates locally}\}.$

Theorem [Rolla - Sidoravicius (2009)]

- Initial configuration: i.i.d. Poisson random variables with expectation μ .
- Jumps on nearest neighbours.

Then,

a)
$$\exists! \ \mu_c \in [0,\infty]$$

b) If d = 1, then $\mu_c \in [\frac{\lambda}{1+\lambda}, 1]$.

Question: is $\mu_c < 1$? (Dickmann, Rolla, Sidoravicius - 2010)

Theorem [Taggi (2014)]

 $\bullet \ d = 1.$

- I Jumps distribution P(1) = p, P(-1) = 1 p, $p \in [0, 1]$.
- Initial configuration: i.i.d. random variables with expectation μ .

Let
$$\delta(p) = |2p-1|$$
. Then $\mu_c \leq \frac{1}{\delta(p)+1}$.

Theorem [Taggi (2014)]

d = 1.

- I Jumps distribution P(1) = p, P(-1) = 1 p, $p \in [0, 1]$.
- Initial configuration: i.i.d. random variables with expectation μ .

Let
$$\delta(p) = |2p - 1|$$
. Then $\mu_c \leq \frac{1}{\frac{\delta(p)}{1+\lambda}+1}$.

Theorem [Cabezas - Rolla- Sidoravicius (2013)]

d = 1.

• Jumps distribution P(1) = 1.

Initial configuration: i.i.d. random variables with expectation μ .

Then $\mu_c = \frac{\lambda}{1+\lambda}$ and there is no fixation at $\mu = \mu_c$.

Critical density in d > 1

Theorem [Shellef (2010), Amir - Gurel Gurevich (2010)]

- Any d, any λ .
- Any bounded jumps distribution.
- Initial configuration: i.i.d random variables with expectation μ .

Then $\mu_c \leq 1$.

Critical density in d > 1

Theorem [Shellef (2010), Amir - Gurel Gurevich (2010)]

- Any d, any λ .
- Any bounded jumps distribution.
- Initial configuration: i.i.d random variables with expectation μ .

Then $\mu_c \leq 1$.

Theorem [Taggi 2014]

- $\blacksquare \ d \geq 2$
- Biased ARW
- Initial configuration: i.i.d. random variables, $\eta(x) = 1$ with probability μ and $\eta(0) = 0$ with probability 1μ .

There exists $K(P(\cdot)) > 0$ such that $\mu_c \leq \frac{1}{\frac{K}{1+\lambda}+1}$.

The case of $\lambda \to \infty$

Theorem [Cabezas - Rolla- Sidoravicius (2013); Shellef (2010), Amir - Gurel Gurevich (2010)]

- $\lambda = \infty$, any dimension.
- Any jumps distribution.
- Initial configuration: i.i.d. Poisson random variables with expectation μ .

Then if $\mu_c = 1$ and there is no fixation at $\mu = 1$.

Diaconis-Fulton representation

・ロ・・聞・・言・・言・・ む・

Definition: let $m_{\eta,V}(x)$ be the number of instructions that must be used at $x \in \mathbb{Z}^d$ in order to stabilize the initial configuration $\eta \in \mathbb{N}^{\mathbb{Z}^d}$ in the (finite) set $V \subset \mathbb{Z}^d$.

Space
$$(\mathbb{N}^{\mathbb{Z}}, \mathcal{I})$$
 $\mathcal{I} = \{\tau_x^j \mid x \in \mathbb{Z}, j \in \mathbb{N}\}$

Probability measure \mathcal{P}^{ν} :

$$\mathcal{P}^{\nu}(\tau_x^j=\text{``}\rightarrow\text{''})=\frac{p}{1+\lambda}, \quad \mathcal{P}^{\nu}(\text{``}\leftarrow\text{''})=\frac{1-p}{1+\lambda}, \quad \mathcal{P}^{\nu}(\tau_x^j=\text{``}\mathbf{s}\text{''})=\frac{\lambda}{1+\lambda}$$

Lemma [Rolla - Sidoravicius (2009)]

Let ν be a translation-invariant, ergodic distribution with finite density $\nu(\eta(0)).$ Then,

 $\mathbb{P}^{\nu} \text{ (the system locally fixates) } = \mathcal{P}^{\nu}(\lim_{V\uparrow\mathbb{Z}^d} m_{\eta,V}(0) < \infty) \in \{0,1\}.$

Proposition (Monotonicity)

Consider a realization of the instructions, consider

•
$$\eta \prec \eta'$$
,

• (finite)
$$V \subset V' \subset \mathbb{Z}^d$$
.

Then $\forall x \in \mathbb{Z}^d$, $m_{\eta,V}(x) \leq m_{\eta',V'}(x)$.

Thank you for your attention!