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Two types of particles, A and S,

m A particles: continuous time random walk in Z¢,
with jumps rate 1, distribution of jumps P(-).

m S particles: at rest.
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Definition: Activated Random Walk

Two types of particles, A and S,

m A particles: continuous time random walk in Z¢,
with jumps rate 1, distribution of jumps P(-).

m S particles: at rest.

Interaction:
m A +S — 2 A (instantaneously)
B A— S, rate \.
m Remark: 2A — A + S — 2 A" is not observed.

Initial configuration n € ¥ = N2°, (n(x))geza i.i.d. random variables
with E[n(z)] = p < cc.
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Phase Transition

Local Fixation: a.s. for any finite V C 7 dty such that there is no
activity in V for all ¢t > ty.

Activity: there is no local fixation.
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Critical density in d =1
Definition:
e = sup{p € [0,00] s.t. ARW starting from v(u) fixates locally}.

Theorem [Rolla - Sidoravicius (2009)]
m Initial configuration: i.i.d. Poisson random variables with
expectation .

m Jumps on nearest neighbours.

Then,
a) 3 pe €10, 0]

b) If d =1, then . € [

o U
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Question: is . < 17
(Dickmann, Rolla, Sidoravicius - 2010)
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Theorem [Taggi (2014)]
md=1.
m Jumps distribution P(1) =p, P(—1)=1—p, p € [0,1].
m Initial configuration: i.i.d. random variables with expectation p.

Let 6(p) = |2p — 1|. Then p. <
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Theorem [Taggi (2014)]
md=1.
m Jumps distribution P(1) =p, P(—1)=1—p, p € [0,1].
m Initial configuration: i.i.d. random variables with expectation p.

Let 5(p) = |2p — 1|. Then p. < 50—
Tt

Theorem [Cabezas - Rolla- Sidoravicius (2013)]
md=1.
m Jumps distribution P(1) = 1.
m Initial configuration: i.i.d. random variables with expectation p.

Then pi. = 125 and there is no fixation at = ..
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Critical density in d > 1

Theorem [Shellef (2010), Amir - Gurel Gurevich (2010)]

m Any d, any \.
m Any bounded jumps distribution.

m Initial configuration: i.i.d random variables with expectation p.

Then p. < 1.
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Critical density in d > 1

Theorem [Shellef (2010), Amir - Gurel Gurevich (2010)]

m Any d, any \.
m Any bounded jumps distribution.

m Initial configuration: i.i.d random variables with expectation p.

Then p. < 1.

Theorem [Taggi 2014]

md>2

m Biased ARW

m Initial configuration: i.i.d. random variables, n(z) = 1 with
probability 1 and 1(0) = 0 with probability 1 — p.

There exists K (P(-)) > 0 such that p, < ——.
T+l
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The case of A — o0

Theorem [Cabezas - Rolla- Sidoravicius (2013); Shellef (2010), Amir -
Gurel Gurevich (2010)]

® )\ = oo, any dimension.

® Any jumps distribution.

m Initial configuration: i.i.d. Poisson random variables with

expectation .

Then if g, = 1 and there is no fixation at = 1.
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Diaconis-Fulton graphical representation
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Diaconis-Fulton graphical representation
Definition: let m,, v () be the number of instructions that must be used

at 2 € Z% in order to stabilize the initial configuration 7 € NZ” in the
(finite) set V C Z%.

> CEC“ €S > €C>P>EC>P>S >>
> S >E>>PEC€>>S >>€>>>
> > €>>S >>>C>>>S >>
> > €>>>>>>>>> S > > > >

> S >« > S >« > S > > >|S|>>>
> <> S > S > «>>>><|>>S >
- > P> P> P> > > > > > >
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Diaconis-Fulton graphical representation
Space (N2, 7) Z={rl|x€Z,jcN}
Probability measure P”:
PU(r="=")=1 PU("<")=13%, PUri=Y) = 1y

> CECc€S €“>E>P>PEC>P>S >>
> S P> P ECECI>S >>Cc>>>
> > €>>S >>>EC>>> S > >
> > €>>>>>>>>> S >>>>
> S >€«>S >€«>S >>> S >>>
><€«> S >SS >Ee>P>>>E>>S >
CE € > > € > €S> > > > > >
> S>> S>> S >Ee>P>E<S >>>
> > > P> P> > > € > > €S> > >
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Diaconis-Fulton graphical representation

Lemma [Rolla - Sidoravicius (2009)]
Let v be a translation-invariant, ergodic distribution with finite density
v(n(0)). Then,

P¥ ( the system locally fixates ) = P”(‘}i&{i my, v (0) < o0) € {0,1}.

Proposition (Monotonicity)

Consider a realization of the instructions, consider
mn=<7,
m (finite) V. C V' c Z4.

Then Va € Z4, my, v (x) < myy v/ ().



Thank you for your attention!



