Polymer Pinning with Sparse Disorder

Ken Alexander (joint with Quentin Berger)

Univ. of Southern California

June 2014

Ken Alexander (joint with Quentin Berger) (I Polymer Pinning with Sparse Disorder

Usual polymer pinning model: $X = \{X_n\}$ a Markov chain interacting with a quenched random potential (reward/penalty) on the axis in spacetime—potential ω_n at (n, 0), mean-0 i.i.d. r.v.'s. Hamiltonian and Gibbs measure

$$H_{N,\omega}(x) = \sum_{n=1}^{N} (\omega_n + h) \mathbf{1}_{x_n = 0}, \quad \mu_{N,\omega}^{\beta,h}(x) = \frac{1}{Z_{N,\omega}} e^{\beta H_{N,\omega}(x)} P(x).$$

Let $\tau = {\tau_j}$ be the return times—a renewal process. We really only need some renewal process τ , not the Markov chain. $\mathbf{1}_{x_n=0}$ becomes $\mathbf{1}_{n\in\tau}$. Assume power-law tails:

 $P(au_1 = n) = n^{-(1+lpha)} \varphi(n), \quad \text{for some } \alpha \ge 0 \text{ and slowly var. } \varphi.$

Polymer Types

Homogeneous polymer: constant potential $\omega_n \equiv c$.

Annealed polymer: Take mean over ω of each Boltzmann weight, ω_n replaced by $\beta^{-1} \log M(\beta)$ (M=mgf.) Special case of homogeneous. **Free energy** $F(\beta, h) = \lim_{N \to \infty} \frac{1}{N} \log Z_{N,\omega}^{\beta,h}$. Let L_n be the number of returns to 0. The polymer is **pinned** if for some

 $\delta > 0$,

Contact fraction is $C(\beta, h)$ such that $\frac{|\tau|_N}{N} \to C$ in $\mu_{N,\omega}^{\beta,h}$ -probability, where $|\tau|_N = |\tau \cap (0, N]|$.

Depinning transition

Critical value $h_c(\beta)$ (= h_c^{qu} or h_c^{ann}) such that

$$h > h_c(\beta) \implies$$
 pinned: $F(\beta, h) > 0, \ C(\beta, h) > 0;$

$$h < h_c(\beta) \implies$$
 depinned: $F(\beta, h) = 0$, $C(\beta, h) = 0$;

Jensen's ineq. implies $h_c^{ann} \leq h_c^{qu}$ (quenched is harder to pin.) Belief: inequality is strict if and only if the overlap is infinite, i.e. $\tau \cap \tau'$ is recurrent for τ' an independent copy. Overlap is infinite for $\alpha > 1/2$; depends on φ for $\alpha = 1/2$. Belief is "almost proved" except that some φ aren't covered for $\alpha = 1/2$. (Giacomin, Lacoin Toninelli 2009, A. 2008.)

Modified Model: Pinning-By-Renewals

Sparse disorder: $\sigma = \{\sigma_j\}$ another (quenched) renewal, reward

 $\omega_n = \mathbf{1}_{n \in \sigma}.$

 τ must hit sites $n \in \sigma$ to claim any reward. τ, σ have possibly different tail exponents $\alpha, \tilde{\alpha}$. Gap $W_j = \sigma_j - \sigma_{j-1}$. Disorder is truly "sparse" if $\tilde{\alpha} < 1$ which makes $E^{\sigma}(W_1) = \infty$. For $\tilde{\alpha} < 1$, typically

$$\sigma_{\boldsymbol{N}} \asymp \boldsymbol{N}^{1/\tilde{\alpha}}, \quad |\sigma|_{\boldsymbol{N}} \asymp \boldsymbol{N}^{\tilde{\alpha}},$$

so we can never have free energy $F(\beta) > 0$ by the old definition. Instead:

$$Z_{N,\sigma} = E^{\tau} \left(e^{\beta | \tau \cap \sigma |_{\sigma_N}} \mathbf{1}_{\sigma_N \in \tau} \right), \quad F(\beta) = \lim_N \frac{1}{N} \log Z_{N,\sigma}.$$

Here $\mathbf{1}_{\sigma_N\in au}$ is a convenience which does not alter the free energy.

Corresponding annealed model:

$$Z_N^{ann} = E^{\tau\sigma} \left(e^{\beta |\tau \cap \sigma|_{\sigma_N}} \mathbf{1}_{\sigma_N \in \tau} \right).$$

This may be dominated by unusually short trajectories, say σ_N, τ_N both O(N). Related to the "usual" homogeneous model with renewal $\tau \cap \sigma$ and fixed length *n*:

$$Z_n^{hom} = E^{\tau\sigma} \left(e^{\beta | \tau \cap \sigma |_n} \mathbf{1}_{n \in \sigma} \right).$$

In fact

$$Z_n^{hom} \leq \sum_{N=1}^n Z_N^{ann}, \quad Z_N^{ann} \leq \sum_{n=1}^\infty Z_n^{hom}.$$

Can use this to show:

Lemma 1

 $\beta_c^{ann} = \beta_c^{hom}.$

イロト イポト イヨト イヨト

Consequence: $\beta_c^{ann} = 0$ if and only if $\tau \cap \sigma$ is recurrent. (Transient renewal must be "bribed" to return to the axis.) Same as

$$\sum_{n=1}^{\infty} P^{\tau}(n \in \tau) P^{\sigma}(n \in \sigma) = \infty.$$

By Doney (1997), for $lpha, ilde{lpha} < 1$,

$$P^{\tau}(n \in \tau) \sim Cn^{-(1-\alpha)} \varphi(n)^{-1}, \quad P^{\sigma}(n \in \sigma) \sim Cn^{-(1-\tilde{\alpha})} \tilde{\varphi}(n)^{-1}.$$

 $\tau \cap \sigma$ is always recurrent for $\alpha + \tilde{\alpha} > 1$, depends on φ for $\alpha + \tilde{\alpha} = 1$.

Question: When does $\beta_c^{qu} = \beta_c^{ann}$?

Connection between the usual model and pinning by renewals: Birkner, Greven, den Hollander (2010). In the Gaussian-disorder case (where $h_c^{ann} = -\beta/2$), critical points differ in the usual model if and only if

$$\lim_{T \to \infty} \frac{1}{m_T} \lim_{N} \frac{1}{N} \log E^{\sigma} E^{\omega} \log E^{\tau_T} \bigg\{ \exp \bigg(\beta \sum_{n=1}^{\sigma_N} \bigg[\bigg(\omega_n - \frac{\beta}{2} \bigg) \mathbf{1}_{n \in \tau} + \mathbf{1}_{n \in \tau \cap \sigma} \bigg] \bigg) \bigg\} > 0.$$

Here τ_T is the renewal τ with gaps truncated at T, and m_T is the mean of the truncated gap. First term in the sum corresponds to the usual model at the annealed critical point $h_c^{ann} = -\beta/2$. Second term means disorder is supplemented by 1 at times $n \in \sigma$; limit would be 0 without this supplement.

・ロン ・四 ・ ・ ヨン ・ ヨン

Tail exponent 0: $\tilde{\alpha} = 0$ means σ is "extremely sparse": $\sigma_N \gg N^k$ for all k (e.g. exponentially large for RW in 2 dimensions.) In the recurrent case, the tail exponent of $\tau \cap \sigma$ is

$$\overline{\alpha} = \alpha + \tilde{\alpha} - 1$$

so in the borderline case $\alpha + \tilde{\alpha} = 1$, $\tau \cap \sigma$ is either "barely transient" or "recurrent but extremely sparse."

In our main theorem we rule out extremely sparse disorder σ .

Main Result:

Theorem 2

For the pinning-by-renewal model: (i) If $\tilde{\alpha} > 0$ and $\alpha + \tilde{\alpha} \ge 1$ then $\beta_c^{qu} = \beta_c^{ann}$. If also $\tau \cap \sigma$ is transient (possible only for $\alpha + \tilde{\alpha} = 1$), this means $\beta_c^{qu} = \beta_c^{ann} > 0$. (ii) If $1 \quad \alpha \quad \tilde{\alpha} \quad 1$

$$\frac{1-\alpha-\alpha}{\tilde{\alpha}} > \frac{1}{2}$$

(so $\tau \cap \sigma$ is transient), then $0 < \beta_c^{ann} < \beta_c^{qu}$.

Note that (ignoring marginal cases)

 $\tau \cap \sigma \text{ transient } \leftrightarrow \tilde{\alpha} < 1 - \alpha, \qquad \text{condition in (ii) } \leftrightarrow \frac{3}{2}\tilde{\alpha} < 1 - \alpha,$

so (ii) says σ is more sparse than is required for transience of $\tau \cap \sigma$. The situation for $0 < \frac{1-\alpha-\tilde{\alpha}}{\tilde{\sigma}} \leq 1/2$ is unclear.

Proof sketch for $\beta_c^{qu} = \beta_c^{ann}$ when $\alpha + \tilde{\alpha} \ge 1$

Strategy for τ to be pinned: find favorable parts of σ , and visit them! But what is "favorable"? The good part is, we don't need to know.

Rate function $I(\delta)$ satisfying

$$P^{\sigma\tau}(L_N \geq \delta N) pprox e^{-NI(\delta)}.$$

Let $\beta > \beta_c^{hom}$ so $F^{hom}(\beta) > 0$. Variational formula for $F^{hom}(\beta)$:

$$F^{hom}(\beta) = \sup_{\delta} (\beta \delta - I(\delta)).$$

Choose $\tilde{\delta}$ with $\beta \tilde{\delta} - I(\tilde{\delta}) > \frac{1}{2}F^{hom}(\beta)$. Look for favorable segments of the quenched σ where τ can achieve contact fraction $\geq \tilde{\delta}$ with a not-too-small probability.

Favorability of σ (or of any length-L segment of σ) for pinning τ is measured by

$$g_L(\sigma) = \mathcal{P}^{\tau}(|\tau \cap \sigma|_L \geq \tilde{\delta}L, \sigma_L \in \tau)\mathbf{1}_{\sigma_L \leq L^q}.$$

(q large, fixed, so $\sigma_L \leq L^q$ just rules out extremely long σ .) Note $\sigma_L \in \tau$ has a cost that is only polynomial in L, so $|\tau \cap \sigma|_L \geq \tilde{\delta}L$ is the main event here. We decompose the space of σ 's according to favorability: for $\epsilon > 0$,

$$\begin{split} e^{-I(\tilde{\delta})L-o(L)} &\leq P^{\tau\sigma}(|\tau \cap \sigma|_L \geq \tilde{\delta}L, \sigma_L \in \tau, \sigma_L \leq L^q) \\ &= E^{\sigma}(g_L(\sigma)) \\ &\leq \sum_{0 \leq k \leq 1/\epsilon} P^{\sigma}\bigg(g_L(\sigma) \in (e^{-(k+1)\epsilon I(\tilde{\delta})L}, e^{-k\epsilon I(\tilde{\delta})L}]\bigg)e^{-k\epsilon I(\tilde{\delta})L} \\ &+ e^{-(1+\epsilon)I(\tilde{\delta})L}. \end{split}$$

Note $P^{\sigma}(\cdots)$ is a cost borne by σ , and $e^{-k\epsilon I(\tilde{\delta})L}$ is a cost borne by τ , so each k corresponds to a different cost split.

Take the k_0 term corresponding to the optimal cost split (the largest term in the sum) and η small, so that

$$\mathcal{P}^{\sigma}\left(g_{L}(\sigma)\in(e^{-(k_{0}+1)\epsilon I(\tilde{\delta})L},e^{-k_{0}\epsilon I(\tilde{\delta})L}]\right)e^{-k_{0}\epsilon I(\tilde{\delta})L}$$

is a positive fraction of the full probability

$$P^{\tau\sigma}(|\tau \cap \sigma|_L \geq \tilde{\delta}L, \sigma_L \in \tau, \sigma_L \leq L^q).$$

Then $\lambda = k_0 \epsilon$ represents the fraction of the cost borne by τ in the optimal cost split, and moving $e^{-k\epsilon I(\tilde{\delta})L}$ to the other side we get:

$$P^{\sigma}\left(g_{L}(\sigma)\in(e^{-(\lambda+\epsilon)I(\tilde{\delta})L},e^{-\lambda I(\tilde{\delta})L}]\right)\geq e^{-(1-\lambda+\epsilon)I(\tilde{\delta})L}$$

Let A denote the event above. Divide σ into blocks of L returns; corresponding gaps in block *i* are $B_i = (W_{(i-1)L+1}, \ldots, W_{iL})$. Event A is a function of a block so it makes sense to call block *i* accepting (in σ) if $B_i \in A$. Independent from block to block.

On an accepting block, τ can "score big": cost is reduced by factor λ , to hit δL of the renewals in σ . In fact the gain for τ is

$$E^{\tau}\left(e^{\beta|\tau\cap\sigma|_{\sigma_{L}}}\mathbf{1}_{\sigma_{L}\in\tau}\right)\mathbf{1}_{B_{1}(\sigma)\in A}\geq e^{\left(\beta\tilde{\delta}-(\lambda+\epsilon)I(\tilde{\delta})\right)L}\mathbf{1}_{B_{1}(\sigma)\in A}.$$

But there is a cost for τ to find (exp. rare) accepting blocks; frequency

$$p_A := P^{\sigma}(B_i \in A) \geq e^{-(1-\lambda+\epsilon)I(\widetilde{\delta})L}.$$

Let M_i be the index of the *i*th accepting block; then $M_i - M_{i-1}$ are independent geometric r.v.'s with parameter p_A . We can bound $Z_{M_kL,\sigma}$ below by the contribution from trajectories τ which visit every accepting block, and hit the σ renewals marking the start and end of the block:

$$\log Z_{M_kL,\sigma} \geq \sum_{i=1}^k \left(\log P^{\tau}(\sigma_{(M_i-1)L} - \sigma_{M_{i-1}L} \in \tau) + \beta \tilde{\delta}L - (\lambda + \epsilon)I(\tilde{\delta})L \right)$$

Here the log term is the cost to find the *i*th accepting block from the (i-1)st, and the rest is the gain for τ in that block. Log terms are i.i.d. functions of σ .

Therefore

$$F(\beta) \geq \liminf_{k} \frac{1}{M_{k}L} \log Z_{M_{k}L,\sigma}$$

$$\geq \frac{1}{E^{\sigma}(M_{1})} \left(\frac{1}{L} E^{\sigma} \log P^{\tau}(\sigma_{(M_{1}-1)L} \in \tau) + \beta \tilde{\delta} - (\lambda + \epsilon) I(\tilde{\delta}) \right).$$

Approximate size of the probability on the right:

$$P^{\tau}(n \in \tau) = n^{(\alpha \wedge 1) - 1} \varphi(n)^{-1}, \quad \sigma_n \approx n^{1/(\tilde{\alpha} \wedge 1)}, \quad (M_1 - 1)L \approx \frac{L}{p_A},$$

which leads to (with η small)

$$E^{\sigma} \log P^{ au}(\sigma_{(M_1-1)L} \in au) \geq -rac{1-(lpha \wedge 1)+\eta}{ ilde{lpha} \wedge 1} \left(\log L + \log rac{1}{p_A}
ight).$$

The assumption $\alpha + \tilde{\alpha} \ge 1$ means the fraction here is at most 1+(small). log $1/p_A$ is the σ share of the cost, at most about $(1 - \lambda - \epsilon)I(\tilde{\delta})L$.

Image: A matrix

The key is that the cost for τ to find accepting blocks is no worse (up to small ϵ) than the cost of having such blocks occur in the annealed system, since

$$rac{1-(lpha\wedge 1)}{ ilde{lpha}\wedge 1}\leq 1.$$

This leads to

 $F(\beta) > 0$ if ϵ is small.

It is essential that when τ moves from one accepting block to the next, it does not have to do it in a single jump to avoid bad regions of disorder, since the disorder is nonnegative. This contrasts with the "usual" model where the ω_n 's can be negative. Otherwise the numerator would be bigger than $1 - (\alpha \wedge 1)$.

イロト イポト イヨト イヨト 二日

Proof sketch for $0 < \beta_c^{ann} < \beta_c^{qu}$ when $(1 - \alpha - \tilde{\alpha})/\tilde{\alpha} > 1/2$

Use fractional moments. Derrida-Giacomin-Lacoin-Toninelli (2007), plus other papers by these authors. Originally a method for other disordered systems, e.g. Aizenman-Molchanov (1993).

Polymer length σ_N , N = JL, divide σ (up to σ_N) into J blocks of L renewals. For $\mathcal{I} \subset \{1, \ldots, J\}$ let $Z_{N,\sigma}(\mathcal{I})$ be the contribution to $Z_{N,\sigma}$ from trajectories that visit exactly these blocks. Fix $0 < \gamma < 1$ (close to 1.) Then since

Interchanging log and E^{σ} after using this inequality shows

$$\frac{1}{N}E^{\sigma}\log Z_{N,\sigma} = \frac{1}{\gamma N}E^{\sigma}\log Z_{N,\sigma}^{\gamma} \leq \frac{1}{\gamma N}\log \sum_{\mathcal{I}}E^{\sigma}[Z_{N,\sigma}(\mathcal{I})^{\gamma}].$$

Consider a change of measure for the disorder, from P^{σ} to some \overline{P}^{σ} :

$$egin{split} E^{\sigma}[Z_{m{N},\sigma}(\mathcal{I})^{\gamma}] &= \overline{E}^{\sigma}\left[Z_{m{N},\sigma}(\mathcal{I})^{\gamma}rac{dP^{\sigma}}{d\overline{P}^{\sigma}}
ight] \ &\leq \left(\overline{E}^{\sigma}(Z_{m{N},\sigma}(\mathcal{I}))^{\gamma}\left(\overline{E}^{\sigma}\left[\left(rac{dP^{\sigma}}{d\overline{P}^{\sigma}}
ight)^{\gamma/(1-\gamma)}
ight]
ight)^{1-\gamma} \end{split}$$

The change of measure must be chosen so that the Radon-Nikodyn factor here is at most a constant (say e) for each block visited; then

$$E^{\sigma}[Z_{N,\sigma}(\mathcal{I})^{\gamma}] \leq e^{|\mathcal{I}|} \left(\overline{E}^{\sigma}(Z_{N,\sigma}(\mathcal{I}))^{\gamma}\right)^{\gamma}.$$

.

The factor $\overline{E}^{\sigma}(Z_{N,\sigma}(\mathcal{I}))$ in this bound can be viewed as one term of the partition function (= sum over \mathcal{I}) for a renormalized annealed system. Power $\gamma \leftrightarrow$ change exponent $1 + \alpha$ to $\gamma(1 + \alpha)$, in the gap distribution $P^{\sigma}(\sigma_1 = n) = n^{-(1+\alpha)}\varphi(n)$. Power still > 1 if γ near 1.

The renormalized annealed system serves as an upper bound and has an effective reward (potential) of order $\gamma \log \overline{E}^{\sigma}(Z_{L,\sigma})$ for each length-*L* block (i.e. renormalized site) visited. So we need to choose \overline{P}^{σ} to make $\overline{E}^{\sigma}(Z_{L,\sigma})$ small, so that its log is $\ll 0$ and the renormalized process is depinned, free energy 0. But we must do this without making the Radon-Nikodym factor large.

$$f_L(\sigma) = rac{d\overline{P}^{\sigma}}{dP^{\sigma}}$$
 (function of $(\sigma_1, \dots, \sigma_L)$)

should be small for those rare σ blocks that are favorable to being hit by $\tau,$ and larger on unfavorable blocks.

イロト 不得下 イヨト イヨト 二日

Idea from Birkner, Greven, den Hollander (2011), Berger, Toninelli (2010), Birkner, Sun (2009): re-express the partition function via $e^{\beta} = 1 + z$:

$$Z_{L,\sigma} = E^{\tau} \left[(1+z)^{\sum_{n=1}^{L} \mathbf{1}_{\sigma_n \in \tau}} \mathbf{1}_{\sigma_L \in \tau} \right]$$
$$= E^{\tau} \left[\sum_{m=1}^{L} z^m \sum_{1 \le i_1 < \dots < i_m = L} \prod_{k=1}^{m} \mathbf{1}_{\sigma_{i_k} \in \tau} \right]$$
$$= \sum_{m=1}^{L} \sum_{1 \le i_1 < \dots < i_m = L} \prod_{k=1}^{m} z P^{\tau} (\sigma_{i_k} - \sigma_{i_{k-1}} \in \tau)$$
$$= \sum_{m=1}^{L} \sum_{1 \le i_1 < \dots < i_m = L} \prod_{k=1}^{m} z P^{\tau} (\sigma_{i_k - i_{k-1}} \in \tau).$$

Now use transience to rewrite the last probability:

$$e^{eta^{ann}_c}=e^{eta^{hom}_c}=rac{1}{P^{\sigma au}((au\cap\sigma)_1<\infty)}$$

and

$$\frac{1}{z_c^{ann}} = \frac{1}{e^{\beta_c^{ann}} - 1} = E^{\sigma\tau}(|\tau \cap \sigma|_{\infty}) = \sum_j P^{\sigma\tau}(\sigma_j \in \tau)$$

yield

$$zP^{\tau}(\sigma_{i_k-i_{k-1}}\in\tau)=\frac{z}{z_c^{ann}}K^*(i_k-i_{k-1})\frac{P^{\tau}(\sigma_{i_k}-\sigma_{i_{k-1}}\in\tau)}{E^{\sigma}P^{\tau}(\sigma_{i_k}-\sigma_{i_{k-1}}\in\tau)},$$

where

$$\mathcal{K}^*(n) = rac{\mathcal{P}^{\sigma au}(\sigma_n \in au)}{\sum_j \mathcal{P}^{\sigma au}(\sigma_j \in au)}.$$

 K^* can be viewed as a distribution of gaps in a renewal τ^* , with a renewal at time *n* corresponding to $\sigma_n \in \tau$ for the corresponding trajectories.

Then

$$Z_{L,\sigma} = E^{\tau^*} \left[\left(\prod_{k=1}^{|\tau^*|_L} \frac{z}{z_c^{ann}} \frac{P^{\tau}(\sigma_{i_k} - \sigma_{i_{k-1}} \in \tau)}{E^{\sigma} P^{\tau}(\sigma_{i_k} - \sigma_{i_{k-1}} \in \tau)} \right) \mathbf{1}_{L \in \tau^*} \right]$$

so we can also view $\frac{P^{\tau}(\sigma_{i_k} - \sigma_{i_{k-1}} \in \tau)}{E^{\sigma}P^{\tau}(\sigma_{i_k} - \sigma_{i_{k-1}} \in \tau)}$ as the reward associated with the segment of σ between the returns at i_{k-1} and i_k . Note this partition function corresponds to a partition function of a polymer of fixed length L.

We want a change of measure $d\overline{P}^{\sigma} = f(\sigma)dP^{\sigma}$ for which

$$\overline{E}^{\sigma}(Z_{L,\sigma}) = E^{\tau^*} \left[\left(\prod_{k=1}^{|\tau^*|_L} \frac{z}{z_c^{ann}} \frac{\overline{P}^{\sigma\tau}(\sigma_{\tau^*_k} - \sigma_{\tau^*_{k-1}} \in \tau)}{P^{\sigma\tau}(\sigma_{\tau^*_k} - \sigma_{\tau^*_{k-1}} \in \tau)} \right) \mathbf{1}_{L \in \tau^*} \right]$$
(1)

is small. (Note τ distribution is unchanged in $\overline{P}^{\sigma\tau}$.) But the Radon-Nikodym factor

$$\overline{E}^{\sigma}\left[\left(\frac{1}{f(\sigma)}\right)^{\gamma/(1-\gamma)}\right]$$

must be near 1, cannot be large. So $f(\sigma)$ should only be small on a small set of σ 's—those which make the main contribution to (1).

Consider the events

$$\mathcal{D}_{\mathcal{L}}(au^*) = \{(\sigma, au): \sigma_{ au_k^*} \in au ext{ for all } k \leq | au^*|_{\mathcal{L}}\}$$

satisfying (for $f_L(\sigma) = d\overline{P}^{\sigma}/dP^{\sigma}$)

$$E^{\sigma\tau}[f_{L}(\sigma)\mathbf{1}_{D_{L}(\tau^{*})}] = \overline{P}^{\sigma\tau}(D_{L}(\tau^{*})) = \prod_{k=1}^{|\tau^{*}|_{L}} \overline{P}^{\sigma\tau}(\sigma_{\tau^{*}_{k}} - \sigma_{\tau^{*}_{k-1}} \in \tau)$$

This means that we can rewrite further:

$$\overline{E}^{\sigma}(Z_{L,\sigma}) = E^{\tau^*} \left[E^{\sigma\tau} \left(f_L(\sigma) \mid D_L(\tau^*) \right) \left(\frac{z}{z_c^{ann}} \right)^{|\tau^*|_L} \mathbf{1}_{L \in \tau^*} \right]$$

while by comparison

$$E^{\sigma}(Z_{L,\sigma}) = E^{\tau^*} \left[\left(\frac{z}{z_c^{ann}} \right)^{|\tau^*|_L} \mathbf{1}_{L \in \tau^*} \right].$$

Thus we need that for "most" τ^* , $E^{\sigma\tau}(f_L(\sigma) \mid D_L(\tau^*))$ is small, though $E^{\sigma\tau}(f_L(\sigma)) = 1$. $f_L(\sigma)$ must reflect what the information " τ hit all the renewals σ_j with $j \in \tau^*$ " tells us about σ , not for a specific τ^* but averaged over all τ^* .

One natural guess: τ 's success tells us that the length σ_L of the polymer is shorter than usual. This turns out to be incorrect. Even for a single gap σ_1 , the information that τ hit σ_1 does not shorten σ_1 (much) on average. But it does shrink the tail, i.e. it reduces the probability that σ_1 is exceptionally large. This suggests the right approach: using a statistic $f_L(\sigma)$ based on the number Y_L of gaps $\sigma_j - \sigma_{j-1}, j \leq L$, exceeding some large K_L .

It is necessary to verify that the typical resulting change in Y_L can be seen above the noise of the random fluctuations in Y_L . This turns out to be a consequence of the fact that when the tail exponent $\alpha^* = (1 - \alpha - \tilde{\alpha})/\tilde{\alpha}$ of τ^* exceeds 1/2, there is infinite overlap in τ^* .

Thus we have found our desired $f_L(\sigma)$ to make the change of measure.

Alternate definitions of pinning: In the pinning-by-renewals model, one has

$$|\tau|_{\sigma_N} \gg N$$

when $\alpha \wedge 1 > \tilde{\alpha}$, that is, the fraction of τ renewals that hit σ renewals is approaching 0. Should this really count as pinning? We can restrict to trajectories with $|\tau|_{\sigma_N} \leq bN$ for some $b \geq 1$. Let

$$F_2(\beta, b) = \lim_N \frac{1}{N} \log Z_{N,\sigma}(|\tau|_{\sigma_N} \leq bN).$$

Theorem 3

If $\tilde{\alpha} > 0$ and $\alpha + \tilde{\alpha} \ge 1$, then for every $\beta > \beta_c^{ann}$ there exists $b_0(\beta)$ such that $F_2(\beta, b) > 0$ for all $b \ge b_0(\beta)$.

Proof Idea: As a lower bound for $Z_{N,\sigma}(|\tau|_{\sigma_N} \leq bN)$, consider only trajectories τ which "skip over" very long gaps between accepting blocks.

(日) (周) (王) (王)

Another twist: What if the rewards for hitting σ_j 's are random?

$$H_{N,\sigma,\omega}(\tau) = \sum_{j=0}^{N} (\beta \omega_j + h) \mathbf{1}_{\sigma_j \in \tau} \quad \text{or} \quad \sum_{i=0}^{\infty} (\beta \omega_i + h) \mathbf{1}_{i \in \sigma} \mathbf{1}_{i \in \tau}$$

 ω_j tied to σ_j or ω_i tied to site *i* give the same model. But it is convenient to use the second form:

$$E^{\omega}E^{\sigma}(\log Z_{N,\omega,\sigma}) \leq E^{\omega}(\log E^{\sigma}Z_{N,\omega,\sigma}) \leq \sum_{n=1}^{\infty} Z_{n,\omega}^{usual}$$

for all *N*, where on the right the renewal sequence is $\tau \cap \sigma$. Recall in the recurrent case the tail exponent of $\tau \cap \sigma$ is $\alpha + \tilde{\alpha} - 1$. If this is > 1/2 then for $h_c^{ann}(usual) < h < h_c^{qu}(usual)$ we have the right side finite (Mourrat 2012), so

$$\lim_{N} \frac{1}{N} E^{\omega} E^{\sigma}(\log Z_{N,\omega,\sigma}) = 0.$$

The usual model and the above pin-to-renewal model with random rewards have the same h_c^{ann} . This proves:

Theorem 4

Suppose $\alpha + \tilde{\alpha} > 3/2$ and ω_1 has a finite exponential moment. Then for the pin-to-renewal model with random rewards, $h_c^{ann} < h_c^{qu}$.