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Usual Polymer Pinning Model

Usual polymer pinning model: X = {Xn} a Markov chain interacting
with a quenched random potential (reward/penalty) on the axis in
spacetime—potential ωn at (n, 0), mean-0 i.i.d. r.v.’s. Hamiltonian and
Gibbs measure

HN,ω(x) =
N∑

n=1

(ωn + h)1xn=0, µβ,hN,ω(x) =
1

ZN,ω
eβHN,ω(x)P(x).

Let τ = {τj} be the return times—a renewal process. We really only need
some renewal process τ , not the Markov chain. 1xn=0 becomes 1n∈τ .
Assume power-law tails:

P(τ1 = n) = n−(1+α)ϕ(n), for some α ≥ 0 and slowly var. ϕ.
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Polymer Types

Homogeneous polymer: constant potential ωn ≡ c .
Annealed polymer: Take mean over ω of each Boltzmann weight, ωn

replaced by β−1 log M(β) (M=mgf.) Special case of homogeneous.

Free energy F (β, h) = limN
1
N log Zβ,h

N,ω.
Let Ln be the number of returns to 0. The polymer is pinned if for some
δ > 0,

µn(Ln ≥ δn)→ 1 as n→∞.
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Polymer Types

Contact fraction is C (β, h) such that |τ |NN → C in µβ,hN,ω-probability,
where |τ |N = |τ ∩ (0,N]|.

Depinning transition

Critical value hc(β) (= hqu
c or hann

c ) such that

h > hc(β) =⇒ pinned: F (β, h) > 0, C (β, h) > 0;

h < hc(β) =⇒ depinned: F (β, h) = 0, C (β, h) = 0;

Jensen’s ineq. implies hann
c ≤ hqu

c (quenched is harder to pin.)
Belief: inequality is strict if and only if the overlap is infinite, i.e. τ ∩ τ ′ is
recurrent for τ ′ an independent copy. Overlap is infinite for α > 1/2;
depends on ϕ for α = 1/2. Belief is “almost proved” except that some ϕ
aren’t covered for α = 1/2. (Giacomin, Lacoin Toninelli 2009, A. 2008.)
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Disorder

Modified Model: Pinning-By-Renewals

Sparse disorder: σ = {σj} another (quenched) renewal, reward

ωn = 1n∈σ.

τ must hit sites n ∈ σ to claim any reward. τ, σ have possibly different tail
exponents α, α̃. Gap Wj = σj − σj−1. Disorder is truly “sparse” if α̃ < 1
which makes Eσ(W1) =∞. For α̃ < 1, typically

σN � N1/α̃, |σ|N � N α̃,

so we can never have free energy F (β) > 0 by the old definition. Instead:

ZN,σ = E τ
(

eβ|τ∩σ|σN 1σN∈τ
)
, F (β) = lim

N

1

N
log ZN,σ.

Here 1σN∈τ is a convenience which does not alter the free energy.
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Disorder

Corresponding annealed model:

Z ann
N = E τσ

(
eβ|τ∩σ|σN 1σN∈τ

)
.

This may be dominated by unusually short trajectories, say σN , τN both
O(N). Related to the “usual” homogeneous model with renewal τ ∩ σ and
fixed length n:

Zhom
n = E τσ

(
eβ|τ∩σ|n1n∈σ

)
.

In fact

Zhom
n ≤

n∑
N=1

Z ann
N , Z ann

N ≤
∞∑
n=1

Zhom
n .

Can use this to show:

Lemma 1

βannc = βhomc .
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Disorder

Consequence: βannc = 0 if and only if τ ∩ σ is recurrent. (Transient
renewal must be “bribed” to return to the axis.) Same as

∞∑
n=1

Pτ (n ∈ τ)Pσ(n ∈ σ) =∞.

By Doney (1997), for α, α̃ < 1,

Pτ (n ∈ τ) ∼ Cn−(1−α)ϕ(n)−1, Pσ(n ∈ σ) ∼ Cn−(1−α̃)ϕ̃(n)−1.

τ ∩ σ is always recurrent for α + α̃ > 1, depends on ϕ for α + α̃ = 1.

Question: When does βquc = βannc ?
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Disorder

Connection between the usual model and pinning by renewals:
Birkner, Greven, den Hollander (2010). In the Gaussian-disorder case
(where hann

c = −β/2), critical points differ in the usual model if and only if

lim
T→∞

1

mT
lim
N

1

N
log EσEω log E τT

{
exp

(
β

σN∑
n=1

[(
ωn −

β

2

)
1n∈τ

+ 1n∈τ∩σ

])}
> 0.

Here τT is the renewal τ with gaps truncated at T , and mT is the mean
of the truncated gap. First term in the sum corresponds to the usual
model at the annealed critical point hann

c = −β/2. Second term means
disorder is supplemented by 1 at times n ∈ σ; limit would be 0 without
this supplement.
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Disorder

Tail exponent 0: α̃ = 0 means σ is “extremely sparse”: σN � Nk for all
k (e.g. exponentially large for RW in 2 dimensions.) In the recurrent case,
the tail exponent of τ ∩ σ is

α = α + α̃− 1

so in the borderline case α + α̃ = 1, τ ∩ σ is either “barely transient” or
“recurrent but extremely sparse.”

In our main theorem we rule out extremely sparse disorder σ.
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Disorder

Main Result:

Theorem 2

For the pinning-by-renewal model:
(i) If α̃ > 0 and α + α̃ ≥ 1 then βquc = βannc . If also τ ∩ σ is transient
(possible only for α + α̃ = 1), this means βquc = βannc > 0.
(ii) If

1− α− α̃
α̃

>
1

2

(so τ ∩ σ is transient), then 0 < βannc < βquc .

Note that (ignoring marginal cases)

τ ∩ σ transient ↔ α̃ < 1− α, condition in (ii) ↔ 3

2
α̃ < 1− α,

so (ii) says σ is more sparse than is required for transience of τ ∩ σ. The
situation for 0 < 1−α−α̃

α̃ ≤ 1/2 is unclear.
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Disorder

Proof sketch for βqu
c = βann

c when α + α̃ ≥ 1

Strategy for τ to be pinned: find favorable parts of σ, and visit them! But
what is “favorable”? The good part is, we don’t need to know.

Rate function I (δ) satisfying

Pστ (LN ≥ δN) ≈ e−NI (δ).

Let β > βhomc so F hom(β) > 0. Variational formula for F hom(β):

F hom(β) = sup
δ

(βδ − I (δ)).

Choose δ̃ with βδ̃ − I (δ̃) > 1
2F hom(β). Look for favorable segments of the

quenched σ where τ can achieve contact fraction ≥ δ̃ with a not-too-small
probability.
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Disorder

Favorability of σ (or of any length-L segment of σ) for pinning τ is
measured by

gL(σ) = Pτ (|τ ∩ σ|L ≥ δ̃L, σL ∈ τ)1σL≤Lq .

(q large, fixed, so σL ≤ Lq just rules out extremely long σ.) Note σL ∈ τ
has a cost that is only polynomial in L, so |τ ∩ σ|L ≥ δ̃L is the main event
here. We decompose the space of σ’s according to favorability: for ε > 0,

e−I (δ̃)L−o(L) ≤ Pτσ(|τ ∩ σ|L ≥ δ̃L, σL ∈ τ, σL ≤ Lq)

= Eσ(gL(σ))

≤
∑

0≤k≤1/ε

Pσ

(
gL(σ) ∈ (e−(k+1)εI (δ̃)L, e−kεI (δ̃)L]

)
e−kεI (δ̃)L

+ e−(1+ε)I (δ̃)L.

Note Pσ(· · · ) is a cost borne by σ, and e−kεI (δ̃)L is a cost borne by τ , so
each k corresponds to a different cost split.
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Disorder

Take the k0 term corresponding to the optimal cost split (the largest term
in the sum) and η small, so that

Pσ

(
gL(σ) ∈ (e−(k0+1)εI (δ̃)L, e−k0εI (δ̃)L]

)
e−k0εI (δ̃)L

is a positive fraction of the full probability

Pτσ(|τ ∩ σ|L ≥ δ̃L, σL ∈ τ, σL ≤ Lq).

Then λ = k0ε represents the fraction of the cost borne by τ in the optimal
cost split, and moving e−kεI (δ̃)L to the other side we get:

Pσ

(
gL(σ) ∈ (e−(λ+ε)I (δ̃)L, e−λI (δ̃)L]

)
≥ e−(1−λ+ε)I (δ̃)L.
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Disorder

Let A denote the event above. Divide σ into blocks of L returns;
corresponding gaps in block i are Bi = (W(i−1)L+1, . . . ,WiL). Event A is a
function of a block so it makes sense to call block i accepting (in σ) if
Bi ∈ A. Independent from block to block.

On an accepting block, τ can “score big”: cost is reduced by factor λ, to
hit δ̃L of the renewals in σ. In fact the gain for τ is

E τ
(

eβ|τ∩σ|σL 1σL∈τ
)

1B1(σ)∈A ≥ e(βδ̃−(λ+ε)I (δ̃))L1B1(σ)∈A.
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Disorder

But there is a cost for τ to find (exp. rare) accepting blocks; frequency

pA := Pσ(Bi ∈ A) ≥ e−(1−λ+ε)I (δ̃)L.

Let Mi be the index of the ith accepting block; then Mi −Mi−1 are
independent geometric r.v.’s with parameter pA. We can bound ZMkL,σ

below by the contribution from trajectories τ which visit every accepting
block, and hit the σ renewals marking the start and end of the block:

log ZMkL,σ ≥
k∑

i=1

(
log Pτ (σ(Mi−1)L − σMi−1L ∈ τ) + βδ̃L− (λ+ ε)I (δ̃)L

)
Here the log term is the cost to find the ith accepting block from the
(i − 1)st, and the rest is the gain for τ in that block. Log terms are
i.i.d. functions of σ.
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Disorder

Therefore

F (β) ≥ lim inf
k

1

MkL
log ZMkL,σ

≥ 1

Eσ(M1)

(
1

L
Eσ log Pτ (σ(M1−1)L ∈ τ) + βδ̃ − (λ+ ε)I (δ̃)

)
.

Approximate size of the probability on the right:

Pτ (n ∈ τ) = n(α∧1)−1ϕ(n)−1, σn ≈ n1/(α̃∧1), (M1 − 1)L ≈ L

pA
,

which leads to (with η small)

Eσ log Pτ (σ(M1−1)L ∈ τ) ≥ −1− (α ∧ 1) + η

α̃ ∧ 1

(
log L + log

1

pA

)
.

The assumption α + α̃ ≥ 1 means the fraction here is at most 1+(small).
log 1/pA is the σ share of the cost, at most about (1− λ− ε)I (δ̃)L.
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Disorder

The key is that the cost for τ to find accepting blocks is no worse (up to
small ε) than the cost of having such blocks occur in the annealed system,
since

1− (α ∧ 1)

α̃ ∧ 1
≤ 1.

This leads to

F (β) > 0 if ε is small.

It is essential that when τ moves from one accepting block to the next, it
does not have to do it in a single jump to avoid bad regions of disorder,
since the disorder is nonnegative. This contrasts with the “usual” model
where the ωn’s can be negative. Otherwise the numerator would be bigger
than 1− (α ∧ 1).
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Disorder

Proof sketch for 0 < βann
c < βqu

c when
(1− α− α̃)/α̃ > 1/2

Use fractional moments. Derrida-Giacomin-Lacoin-Toninelli (2007), plus
other papers by these authors. Originally a method for other disordered
systems, e.g. Aizenman-Molchanov (1993).

Polymer length σN ,N = JL, divide σ (up to σN) into J blocks of L
renewals. For I ⊂ {1, . . . , J} let ZN,σ(I) be the contribution to ZN,σ from
trajectories that visit exactly these blocks. Fix 0 < γ < 1 (close to 1.)
Then since

ZN,σ =
∑
I

ZN,σ(I), we have Zγ
N,σ ≤

∑
I

ZN,σ(I)γ .
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Disorder

Interchanging log and Eσ after using this inequality shows

1

N
Eσ log ZN,σ =

1

γN
Eσ log Zγ

N,σ ≤
1

γN
log
∑
I

Eσ[ZN,σ(I)γ ].

Consider a change of measure for the disorder, from Pσ to some P
σ

:

Eσ[ZN,σ(I)γ ] = E
σ
[

ZN,σ(I)γ
dPσ

dP
σ

]

≤
(

E
σ

(ZN,σ(I)
)γ (

E
σ

[(
dPσ

dP
σ

)γ/(1−γ)])1−γ

.

The change of measure must be chosen so that the Radon-Nikodyn factor
here is at most a constant (say e) for each block visited; then

Eσ[ZN,σ(I)γ ] ≤ e |I|
(

E
σ

(ZN,σ(I)
)γ
.
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Disorder

The factor E
σ

(ZN,σ(I) in this bound can be viewed as one term of the
partition function (= sum over I) for a renormalized annealed system.
Power γ ↔ change exponent 1 + α to γ(1 + α), in the gap distribution
Pσ(σ1 = n) = n−(1+α)ϕ(n). Power still > 1 if γ near 1.

The renormalized annealed system serves as an upper bound and has an
effective reward (potential) of order γ log E

σ
(ZL,σ) for each length-L block

(i.e. renormalized site) visited. So we need to choose P
σ

to make
E
σ

(ZL,σ) small, so that its log is � 0 and the renormalized process is
depinned, free energy 0. But we must do this without making the
Radon-Nikodym factor large.

fL(σ) =
dP

σ

dPσ
(function of (σ1, . . . , σL))

should be small for those rare σ blocks that are favorable to being hit by
τ , and larger on unfavorable blocks.
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Disorder

Idea from Birkner, Greven, den Hollander (2011), Berger, Toninelli (2010),
Birkner, Sun (2009): re-express the partition function via eβ = 1 + z :

ZL,σ = E τ
[
(1 + z)

∑L
n=1 1σn∈τ1σL∈τ

]
= E τ

 L∑
m=1

zm
∑

1≤i1<···<im=L

m∏
k=1

1σik∈τ


=

L∑
m=1

∑
1≤i1<···<im=L

m∏
k=1

zPτ (σik − σik−1
∈ τ)

=
L∑

m=1

∑
1≤i1<···<im=L

m∏
k=1

zPτ (σik−ik−1
∈ τ).

Now use transience to rewrite the last probability:
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Disorder

eβ
ann
c = eβ

hom
c =

1

Pστ ((τ ∩ σ)1 <∞)

and
1

zann
c

=
1

eβann
c − 1

= Eστ (|τ ∩ σ|∞) =
∑
j

Pστ (σj ∈ τ)

yield

zPτ (σik−ik−1
∈ τ) =

z

zann
c

K ∗(ik − ik−1)
Pτ (σik − σik−1

∈ τ)

EσPτ (σik − σik−1
∈ τ)

,

where

K ∗(n) =
Pστ (σn ∈ τ)∑
j Pστ (σj ∈ τ)

.

K ∗ can be viewed as a distribution of gaps in a renewal τ∗, with a renewal
at time n corresponding to σn ∈ τ for the corresponding trajectories.
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Disorder

Then

ZL,σ = E τ∗

|τ∗|L∏
k=1

z

zann
c

Pτ (σik − σik−1
∈ τ)

EσPτ (σik − σik−1
∈ τ)

 1L∈τ∗


so we can also view

Pτ (σik−σik−1
∈τ)

EσPτ (σik−σik−1
∈τ) as the reward associated with the

segment of σ between the returns at ik−1 and ik . Note this partition
function corresponds to a partition function of a polymer of fixed length L.
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Disorder

We want a change of measure dP
σ

= f (σ)dPσ for which

E
σ

(ZL,σ) = E τ∗

|τ∗|L∏
k=1

z

zann
c

P
στ

(στ∗k − στ∗k−1
∈ τ)

Pστ (στ∗k − στ∗k−1
∈ τ)

 1L∈τ∗

 (1)

is small. (Note τ distribution is unchanged in P
στ

.) But the
Radon-Nikodym factor

E
σ

[(
1

f (σ)

)γ/(1−γ)]

must be near 1, cannot be large. So f (σ) should only be small on a small
set of σ’s—those which make the main contribution to (1).
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Disorder

Consider the events

DL(τ∗) = {(σ, τ) : στ∗k ∈ τ for all k ≤ |τ∗|L}

satisfying (for fL(σ) = dP
σ
/dPσ)

Eστ [fL(σ)1DL(τ∗)] = P
στ

(DL(τ∗)) =

|τ∗|L∏
k=1

P
στ

(στ∗k − στ∗k−1
∈ τ)

This means that we can rewrite further:

E
σ

(ZL,σ) = E τ∗

[
Eστ (fL(σ) | DL(τ∗))

(
z

zann
c

)|τ∗|L
1L∈τ∗

]
while by comparison

Eσ(ZL,σ) = E τ∗

[(
z

zann
c

)|τ∗|L
1L∈τ∗

]
.
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Disorder

Thus we need that for “most” τ∗, Eστ (fL(σ) | DL(τ∗)) is small, though
Eστ (fL(σ)) = 1. fL(σ) must reflect what the information “τ hit all the
renewals σj with j ∈ τ∗” tells us about σ, not for a specific τ∗ but
averaged over all τ∗.

One natural guess: τ ’s success tells us that the length σL of the polymer is
shorter than usual. This turns out to be incorrect. Even for a single gap
σ1, the information that τ hit σ1 does not shorten σ1 (much) on average.
But it does shrink the tail, i.e. it reduces the probability that σ1 is
exceptionally large. This suggests the right approach: using a statistic
fL(σ) based on the number YL of gaps σj − σj−1, j ≤ L, exceeding some
large KL.

It is necessary to verify that the typical resulting change in YL can be seen
above the noise of the random fluctuations in YL. This turns out to be a
consequence of the fact that when the tail exponent α∗ = (1− α− α̃)/α̃
of τ∗ exceeds 1/2, there is infinite overlap in τ∗.

Thus we have found our desired fL(σ) to make the change of measure.
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Disorder

Alternate definitions of pinning: In the pinning-by-renewals model, one
has

|τ |σN � N

when α ∧ 1 > α̃, that is, the fraction of τ renewals that hit σ renewals is
approaching 0. Should this really count as pinning? We can restrict to
trajectories with |τ |σN ≤ bN for some b ≥ 1. Let

F2(β, b) = lim
N

1

N
log ZN,σ(|τ |σN ≤ bN).

Theorem 3

If α̃ > 0 and α + α̃ ≥ 1, then for every β > βannc there exists b0(β) such
that F2(β, b) > 0 for all b ≥ b0(β).

Proof Idea: As a lower bound for ZN,σ(|τ |σN ≤ bN), consider only
trajectories τ which “skip over” very long gaps between accepting blocks.
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Disorder

Another twist: What if the rewards for hitting σj ’s are random?

HN,σ,ω(τ) =
N∑
j=0

(βωj + h)1σj∈τ or
∞∑
i=0

(βωi + h)1i∈σ1i∈τ

ωj tied to σj or ωi tied to site i give the same model. But it is convenient
to use the second form:

EωEσ(log ZN,ω,σ) ≤ Eω(log EσZN,ω,σ) ≤
∞∑
n=1

Zusual
n,ω

for all N, where on the right the renewal sequence is τ ∩ σ. Recall in the
recurrent case the tail exponent of τ ∩ σ is α+ α̃− 1. If this is > 1/2 then
for hann

c (usual) < h < hqu
c (usual) we have the right side finite (Mourrat

2012), so

lim
N

1

N
EωEσ(log ZN,ω,σ) = 0.

The usual model and the above pin-to-renewal model with random rewards
have the same hann

c . This proves:
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Disorder

Theorem 4

Suppose α + α̃ > 3/2 and ω1 has a finite exponential moment. Then for
the pin-to-renewal model with random rewards, hann

c < hqu
c .
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