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Introduction The model

What is self-destructive percolation?

Let p, δ ∈ [0, 1].
Two percolation configurations:

ω - intensity p (measure Pp).

σ - intensity δ (small).

ω
close ∞-cluster−−−−−−−−−→ ω

enhancement−−−−−−−→ ωδ = ω ∨ σ.

δc(p) = sup{δ : Pp,δ(0
ωδ

←→∞) = 0}.
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Question: δc(p)→ 0 as p ↘ pc?
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∞

Theorem [Kiss, M., Sidoravicius] : There exists δ > 0 such that, for all p > pc ,

Pp,δ(infinite cluster in ωδ) = 0.

In particular limp→pc δc(p) > 0
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Reminders on planar percolation

Critical percolation facts

There exists pc ∈ [0, 1] such that
p < pc ⇒ Pp(infinite cluster) = 0,
p > pc ⇒ Pp(infinite cluster) = 1.

At pc ..

Ppc
2n

n[ ]≥ ε∀n,

Ppc

n

[ ]≤ n−α1 Ppc

n

[ ]≤ n−(2+λ)
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A crossing probability estimate

ω containing crossing

delete crossing cluster−−−−−−−−−−−−→ ω̃
enhancement−−−−−−−→ ω̃δ

Proposition

For δ > 0 small enough, as n→∞,

Ppc,δ ( )
4n nn

nω ω̃δ
and → 0
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Proof of crossing probability estimate
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Proof of crossing probability estimate

γ - vertical crossing with minimal number of enhanced points.
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Proof of crossing probability estimate

γ - vertical crossing with minimal number of enhanced points.

X = {enhanced points used by γ}. If no crossing X = ∅.

Ppc ,δ(vertical crossing in ω̃δ) =
∑

X 6=∅
Ppc ,δ(X = X ).
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Proof of crossing probability estimate

Annulus surrounding passage points but not containing passage points:
6 arms or 4 half-plane arms in ω (possibly with one defect).
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Proof of crossing probability estimate

Annulus surrounding passage points but not containing passage points:
6 arms or 4 half-plane arms in ω (possibly with one defect).

Ppc ( )R

≤
(
r
R

)2+λ
r Ppc ( )R ≤

(
r
R

)2+λ
r
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Proof of crossing probability estimate

For a set X , what is Ppc ,δ(X = X )?
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Proof of crossing probability estimate

d1 d2

d3

d4

d5

d6

For a set X , what is Ppc ,δ(X = X )?
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Proof of crossing probability estimate

Pp,δ(X = X ) ≤ ckn−2−λ
∏

j

d−2−λj × δk ,

where d1, . . . , dk are the merger times of X .

#{X with merger times d1, . . . , dk} ≤ C kn2
∏

j

dj .
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Proof of crossing probability estimate

P(vetical crossing in ω̃δ) ≤ n−λ
∑

k≥1
d1,...,dk

(
δkck

∏

k

d−1−λk

)

= n−λ
∑

k≥1


δc

∑

d≥1
d−1−λ




k

→ 0,

for δ > 0 small.
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Proof of crossing probability estimate

Thank you!
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