### Planar lattices do not recover from forest fires

#### Ioan Manolescu Joint work with Demeter Kiss and Vladas Sidoravicius



23 June 2014

Image: A match the second s

### What is self-destructive percolation?

Let  $p, \delta \in [0, 1]$ . Two percolation configurations:

•  $\omega$  - intensity p (measure  $\mathbb{P}_p$ ).



The model

### What is self-destructive percolation?

Let  $p, \delta \in [0, 1]$ . Two percolation configurations:

•  $\omega$  - intensity p (measure  $\mathbb{P}_p$ ).



A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

### What is self-destructive percolation?

Let  $p, \delta \in [0, 1]$ . Two percolation configurations:

•  $\omega$  - intensity p (measure  $\mathbb{P}_p$ ).





#### The model

## What is self-destructive percolation?

Let  $p, \delta \in [0, 1]$ . Two percolation configurations:

- $\omega$  intensity p (measure  $\mathbb{P}_p$ ).
- $\sigma$  intensity  $\delta$  (small).

$$\omega \xrightarrow{\text{close } \infty \text{-cluster}} \overline{\omega} \xrightarrow{\text{enhancement}} \overline{\omega}^{\delta} = \overline{\omega} \vee \sigma.$$



A (1) > A (2) > A

### What is self-destructive percolation?

Let  $p, \delta \in [0, 1]$ . Two percolation configurations:

- $\omega$  intensity p (measure  $\mathbb{P}_p$ ).
- $\sigma$  intensity  $\delta$  (small).

$$\omega \xrightarrow[]{\text{close $\infty$-cluster}} \overline{\omega} \xrightarrow[]{\text{enhancement}} \overline{\omega}^{\delta} = \overline{\omega} \vee \sigma.$$

$$\delta_c(p) = \sup\{\delta : \mathbb{P}_{p,\delta}(0 \stackrel{\overline{\omega}^{\delta}}{\longleftrightarrow} \infty) = 0\}.$$



A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

#### The model

## What is self-destructive percolation?

Let  $p, \delta \in [0, 1]$ . Two percolation configurations:

- $\omega$  intensity p (measure  $\mathbb{P}_p$ ).
- $\sigma$  intensity  $\delta$  (small).

$$\omega \xrightarrow{\text{close } \infty \text{-cluster}} \overline{\omega} \xrightarrow{\text{enhancement}} \overline{\omega}^{\delta} = \overline{\omega} \vee \sigma.$$

$$\delta_c(p) = \sup\{\delta : \mathbb{P}_{p,\delta}(0 \stackrel{\overline{\omega}^{\delta}}{\longleftrightarrow} \infty) = 0\}.$$



イロト イヨト イヨト イヨト

#### **Question:** $\delta_c(p) \to 0$ as $p \searrow p_c$ ?

The model

## What is self-destructive percolation?

Let  $p, \delta \in [0, 1]$ . Two percolation configurations:  $\infty$ •  $\omega$  - intensity p (measure  $\mathbb{P}_p$ ). •  $\sigma$  - intensity  $\delta$  (small).  $\omega \xrightarrow{\mathsf{close} \ \infty - \mathsf{cluster}} \overline{\omega} \xrightarrow{\mathsf{enhancement}} \overline{\omega}^{\delta} = \overline{\omega} \lor \sigma.$  $\delta_{c}(p) = \sup\{\delta : \mathbb{P}_{p,\delta}(0 \stackrel{\overline{\omega}^{\delta}}{\longleftrightarrow} \infty) = 0\}.$ 

**Theorem** [Kiss, M., Sidoravicius] : There exists  $\delta > 0$  such that, for all  $p > p_c$ ,  $\mathbb{P}_{p,\delta}(\text{infinite cluster in } \overline{\omega}^{\delta}) = 0.$ 

In particular  $\lim_{p\to p_c} \delta_c(p) > 0$ 

There exists  $p_c \in [0, 1]$  such that •  $p < p_c \Rightarrow \mathbb{P}_p(\text{infinite cluster}) = 0$ ,

•  $p > p_c \Rightarrow \mathbb{P}_p(\text{infinite cluster}) = 1.$ 

There exists  $p_c \in [0, 1]$  such that •  $p < p_c \Rightarrow \mathbb{P}_p(\text{infinite cluster}) = 0$ , •  $p > p_c \Rightarrow \mathbb{P}_p(\text{infinite cluster}) = 1$ . At  $p_c$ ..

$$\forall n, \mathbf{P}_{p_c}\left[\underbrace{\frown}_{2n}^{n}n\right] \geq \epsilon$$



```
There exists p_c \in [0, 1] such that

• p < p_c \Rightarrow \mathbb{P}_p(\text{infinite cluster}) = 0,

• p > p_c \Rightarrow \mathbb{P}_p(\text{infinite cluster}) = 1.

At p_c..
```





```
There exists p_c \in [0, 1] such that

• p < p_c \Rightarrow \mathbb{P}_p(\text{infinite cluster}) = 0,

• p > p_c \Rightarrow \mathbb{P}_p(\text{infinite cluster}) = 1.

At p_c..
```





```
There exists p_c \in [0, 1] such that

• p < p_c \Rightarrow \mathbb{P}_p(\text{infinite cluster}) = 0,

• p > p_c \Rightarrow \mathbb{P}_p(\text{infinite cluster}) = 1.

At p_c..
```





There exists  $p_c \in [0, 1]$  such that •  $p < p_c \Rightarrow \mathbb{P}_p(\text{infinite cluster}) = 0$ , •  $p > p_c \Rightarrow \mathbb{P}_p(\text{infinite cluster}) = 1$ . At  $p_c$ ..



There exists  $p_c \in [0, 1]$  such that •  $p < p_c \Rightarrow \mathbb{P}_p(\text{infinite cluster}) = 0$ , •  $p > p_c \Rightarrow \mathbb{P}_p(\text{infinite cluster}) = 1$ . At  $p_c$ .



・ロト ・回ト ・ヨト ・ヨト



 $\omega$  containing crossing

#### Proposition



Image: A match the second s

























▲□→ ▲圖→ ▲温→ ▲温→



▲□→ ▲圖→ ▲温→ ▲温→



▲□→ ▲圖→ ▲温→ ▲温→



イロン イロン イヨン イヨン



 $\gamma$  - vertical crossing with minimal number of enhanced points.

イロン イロン イヨン イヨン



 $\gamma$  - vertical crossing with minimal number of enhanced points.

 $\mathcal{X} = \{ \text{enhanced points used by } \gamma \}.$  If no crossing  $\mathcal{X} = \emptyset$ .

$$\mathbb{P}_{p_c,\delta}(\text{vertical crossing in }\widetilde{\omega}^{\delta}) = \sum_{X \neq \emptyset} \mathbb{P}_{p_c,\delta}(\mathcal{X} = X).$$











$$\mathbb{P}_{p_c}\left(\left| \underbrace{r}_{r} \right|^{R} \right) \leq \left(\frac{r}{R}\right)^{2+\lambda} \qquad \mathbb{P}_{p_c}\left(R \right| \underbrace{r}_{r} \right) \leq \left(\frac{r}{R}\right)^{2+\lambda}$$









イロン イロン イヨン イヨン







イロン イロン イヨン イヨン



$$\mathbb{P}_{p,\delta}(\mathcal{X}=X) \leq c^k n^{-2-\lambda} \prod_j d_j^{-2-\lambda} \times \delta^k,$$

where  $d_1, \ldots, d_k$  are the merger times of X.

$$\#\{X \text{ with merger times } d_1, \ldots, d_k\} \leq C^k n^2 \prod_j d_j.$$



$$\begin{split} \mathbb{P}(\text{vetical crossing in } \widetilde{\omega}^{\delta}) &\leq n^{-\lambda} \sum_{\substack{k \geq 1 \\ d_1, \dots, d_k}} \left( \delta^k c^k \prod_k d_k^{-1-\lambda} \right) \\ &= n^{-\lambda} \sum_{k \geq 1} \left( \delta c \sum_{d \geq 1} d^{-1-\lambda} \right)^k \to 0, \end{split}$$

for  $\delta > 0$  small.

イロン イロン イヨン イヨン



$$\begin{split} \mathbb{P}(\text{vetical crossing in } \widetilde{\omega}^{\delta}) &\leq n^{-\lambda} \sum_{\substack{k \geq 1 \\ d_1, \dots, d_k}} \left( \delta^k c^k \prod_k d_k^{-1-\lambda} \right) \\ &= n^{-\lambda} \sum_{k \geq 1} \left( \delta c \sum_{d \geq 1} d^{-1-\lambda} \right)^k \to 0, \end{split}$$

for  $\delta > 0$  small.

イロン イロン イヨン イヨン

# Thank you!