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FMIE Processes

General Setup: interacting particle systems reinterpreted as
stochastic social dynamics.

I n agents; each in some state Xi (t) for each time t ≥ 0.

I Each pair of agents (i , j) meets at the times of a Poisson
process of rate νij .

I At meeting times t between pairs of agents (i , j), the states
transition

(Xi (t−),Xj(t−)) 7→ (Xi (t),Xj(t))

according to some deterministic or random rule.
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FMIE Processes

Some familiar (and less familiar) examples:

I Stochastic epidemic models; SIR model, etc.

I Density dependent Markov chains (for ex. Kurtz ’78).

I Averaging process (Aldous, L. ’12). State space R≥0,
interpreted as money. Upon meeting two agents average their
money, i.e. deterministic transition rule

(a, b) 7→
(
a + b

2
,
a + b

2

)
.

I The iPod Model, a variant of the Voter Model (L. ’13).
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Compulsive Gambler Process

Simple FMIE process with agents’ state space R≥0, interpreted as
money. When agents i and j meet they play a fair, winner take all
game, i.e. the transition function is

(a, b) 7→

{
(a + b, 0) with prob. a

a+b

(0, a + b) with prob. b
a+b

In the finite agent setting, we assume the total initial (and thus for
all t ≥ 0) wealth is normalized∑

i∈Agents
Xi (0) = 1.

Importantly this allows us to view the state of the process as a
probability measure on the set of agents.
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Compulsive Gambler Process

The CG first studied in the setting of d-regular graphs and
Galton-Watson trees (Aldous, Salez, L. ’14 [ALS14]). Results on
the proportion of agents still “solvent” at a time t > 0, in
particular t =∞.

The rest of today’s talk will focus on a very particular variant of
the CG, one with dependent rates νij .

Daniel Lanoue The Metric Coalescent



Introduction
The Metric Coalescent

The Finite Support Process
Generalizing to P(S)

Extending the CG Process

We can reformulate the CG as a measure-valued Markov process in
terms of:

I A metric space (S , d),

I A function φ(x) : R>0 → R>0, called the rate function (think
of as φ(= 1

x ).

We write:

I P(S) for the space of Borel probability measures on S ,

I Pfs(S) ⊂ P(S) for the subspace of finitely supported
measures.
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Extending the CG Process

The Metric Coalescent (MC) is then a continuous time
Pfs(S)-valued Markov process, generalizing the CG as follows. For
any µ ∈ Pfs(S):

I The atoms si , 1 ≤ i ≤ #µ of µ are identified as the agents,

I The masses µ(si ) as their respective current wealth,

I The meeting rates between agents (i.e. atoms) i and j is
given by φ(x) and the metric as

νij = φ(d(si , sj))
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A Visualization

A simulation of the Metric Coalescent process on S = [0, 1]2 with
the Euclidean metric, started from finitely supported
approximations of the uniform measure:

I Link

Developed by Weijian Han.
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Our Result

Goal: Make sense of the MC process for a more general class of
measures.
We make the following assumptions on (S , d) and φ(x):

I (S , d) is locally compact and separable,

I limx↓0 φ(x) =∞.
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Main Theorem

Main Theorem [Lan14]

There exists a unique, cadlag, Feller continuous P(S)-valued
Markov process

µt , t ≥ 0

defined from any initial measure µ0 ∈ P(S) s.t. if µ0 is compactly
supported:

I (Coming Down from Infinity) µt ∈ Pfs(S) for all t > 0,
almost surely;

I (Consistency) For each t0 > 0, the process

µt , t ≥ t0

is distributed as the MC started at µt0 .

Daniel Lanoue The Metric Coalescent



Introduction
The Metric Coalescent

The Finite Support Process
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Proof Idea: Naive Approach

The “naive” proof idea for a generic µ ∈ P(S) is to approximate µ
with a sequence of finitely supported measures µi ∈ Pfs(S). Then
for t ≥ 0 define (the random measure) µt as the weak limit

µt = lim
i
µit .

Feller continuity in the Main Theorem retroactively shows that this
sequence of random measures does converge, however – even
ignoring the coupling issues here – this approach isn’t so fruitful.

Some progress is made in [Lan14] following this idea using moment
methods.
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Proof Idea: Exchangeable Coalescents

Key Ideas:

I Replace the symmetric “random winners at meeting times”
dynamics between agents with “deterministic winners at
meeting times, according to a size-biased initial ranking”.

I These new dynamics are described by a spacial coalescing
exchangeable partition process, which can be defined for any
arbitrary initial measure µ0 ∈ P(S).

I de Finetti (i.e. Kingman’s Paintbox) arguments show that the
partitions give rise to a P(S)-valued process µt , t ≥ 0.

I Analysis begins with the fact that for this new process and
any f : S → R the evaluation process∫

S
f dµt , t ≥ 0

is a martingale.
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Further Directions

Two directions for further research:

I Coming Down From Infinity: We know that for compactly
supported initial measures, µt is finitely supported for all
positive times t > 0. It is easy to construct non-compactly
supported µ0 for which this isn’t true. What more can be
said?

I Time Reversal: A classical result on Kingman’s Coalescent is
its duality under a time reversal to a conditioned Yule process.
Viewing the MC as a “geometrization” of KC, can something
similar be said?
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Thanks for listening!
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