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Outline

• Introduction (known results, motivation, definition of the
model)

• O(n) model on a rhombic tiling, critical weights

• Local deformations as the way to get new observables

• Convergence result for the Ising model

2 / 18



Observables as a tool
Observable is a function defined on a lattice. It contains
information about particular statistical mechanical model and
satisfies some local relations. If you have enough relations and can
determine the observable on the boundary then you might hope to
obtain convergence results.
2001, Conformal invariance of percolation on the triangular lattice
(Smirnov)
2006, Conformal invariance of the Ising model on the square lattice
(Smirnov)
2011, Universality of the 2D Ising model (Chelkak and Smirnov)
2011-..., other results in the Ising model (Hongler, Izyurov, Kytola)
2011, Connectivity constant of the honeycomb lattice
(Duminil-Copin and Smirnov)
The main tool in all these papers is a specific observable —
fermionic observable, spinor, parafermionic observable.
In the case of the Ising model, the limit of the fermionic observable
was identified.
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(Loop representation of) O(n) model
on the honeycomb lattice

Honeycomb lattice, finite part.

The configuration is a subgraph of this lattice where each vertex
has degree 0 or 2. It can be divided into loops. The weight is
calculated as follows:

ω(conf ) = x#edges · n#loops
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O(n) model, boundary conditions
We can allow walks also. We just pick a pair of points on the
boundary and say that they have degree 1 in our configuration.

The weight is calculated in the same way:

ω(conf ) = x#edges · n#loops
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n = 0, self-avoiding walk
We pick boundary conditions with two vertices of degree 1 on the
boundary and obtain the self-avoiding walk.

The weight of the configuration:

ω(conf ) = x length
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n = 1, Ising model
In this case, we do not count loops — Ising model. The
configuration can be understood as walls between different
adjacent spins.
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O(n) model on the dual lattice
Triangular lattice

The weight of the configuration:

ω(conf ) = x length · nloops
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O(n) model on a rhombic tiling

We consider the O(n) model
on any rhombic tiling of some
domain.
The weight of the configura-
tion:

ω(conf ) =
∏

r − rhombus

ω(r)·nloops
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Weight of a rhombus

u1 u2 v w1 w21
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Critical weights, historical remark
We will consider a specific family of weights parametrized by
angle θ of the rhombus. They were discovered as the weights, for
which parafermionic observable satisfies half of Cauchy-Riemann
equations. These weights satisfy also the Yang-Baxter equation.

θ

First integrable weights were discovered by Nienhuis in 1990 as the
solutions to Yang-Baxter equation.

In 2009, Cardy and Ikhlef discovered the same weights as the
weights for which the parafermionic observable satisfies some
particular equation.
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The case θ = π
3

For θ ∈ (π3 ,
2π
3 ), the weights are positive.

For θ = π
3 the weights can be factorized, i.e.

u2 = v = w1 = (xc)2, u1 = xc =
1√

2 +
√

2− n
and w2 = 0.

This is the critical O(n) model on the honeycomb lattice.

u1 = xc =
1√

2+
√
2−n u2 = x2c w1 = x2cv = x2c
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Remarks about non-flat case

We can add equilateral triangles. The weight of a triangle is
either 1 if it is empty or xc if it contains an arc of the configuration.

This allows us to consider an infinitesimal local deformation of a
triangular lattice. Then we take the derivative of the partition
function and get an observable satisfying some local relations.

The important case for us — inserting conical singularities. This
means that we allow the sum of the angles around some vertices of
the lattice to be equal to 2π ± ε.
The infinitesimal deformation of this sort can be interpreted as a
dicrete analogue of the stree-energy tensor in CFT.
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4 conical singularities

−ε

−ε

+ε

+ε

After such a deformation, we obtain another rhombus — with
another integrable weights.

Consider the derivative of the partition function. It will be function
of a pair of adjacent triangles, i. e. function on edges of the dual
hexagonal lattice.

Hence, each configuration contributes:

ω(conf )·{the logarithmic derivative of its weight in this rhombus at π
3 }

.
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Local relations
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Local relations

G (D)− G (A) = G (B)− G (E ) = G (F )− G (C )

A

B

C

D

E

F
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Ising case

Theorem
Let Ω be a bounded planar simply connected domain
and ϕ : Ω→ H be a conformal map. Then for Dobrushin
boundary conditions

lim
δ→0

G (z)δ−2 = Re(const · Sϕ(z) + const ·
(
ϕ′(z)
ϕ(z)

)2
),

where Sϕ(z) = ϕ′′′(z)
ϕ′(z) − 3

2

(
ϕ′′(z)
ϕ′(z)

)2
— the Schwarzian derivative

of ϕ.
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Thank you for your attention!
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