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Generalized Gaussian fields

Let D C RY, d > 2. For a Hilbert space H a generalized
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The white noise representation and Green's

functions

\White noise representation Let W be a standard complex
white noise. Then formally

X() = [0 [ wae),

1t6 ('54), Gel'fand-Vilenkin ('64), Glimm-Jaffe ('87)
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The white noise representation and Green's
functions

\White noise representation Let W be a standard complex
white noise. Then formally

X() = [0 [ wae),

It6 ('54), Gel'fand-Vilenkin ('64), Glimm-Jaffe ('87), ...
Green's function
o Ko(|lx — yl|): Green's function for (ml — A)g on R?
(Matérn kernel);

* Gp(x, y): Green's function for —A on D with Dirichlet
boundary conditions.
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The white noise/integral cut-offs

White noise cut-off

X(x) = [g(0,1) om0z \ AE)W/(dg).
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The white noise/integral cut-offs

White noise cut-off

Xe(x) == fB(O,e—l) om0z \ MEW(dE).
Integral cut-off
o A(x, y) = floo k(ullx=yll)

u

du= Adx, y) = f; Mgy,
o Gp(x, ¥) = [ pp(t, x, y)dt = G = [ pp(t, x, y)dt.
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The white noise/integral cut-offs

White noise cut-off

X(x) = [g(0,1) om0z \ A(&)W(dg)
Integral cut-off

o A(x, y) = floo k(UII);—yll)

du= Adx, y) = f; Mgy,
© Go(x y) = J5" polt, x, y)dt = G = [* po(t. x, y)dt.
o-positive kernel

A(X7 y) = ZkeNpk(X7 y) = An(X7 y) = Zkgn pk(X7 y)'
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The white noise/integral cut-offs

White noise cut-off

X(x) = [g(0,1) om0z V MEW(AE)
Integral cut-off
o A(x, y) = floo k(ullx=yll)

Q= A (x, y) = ff Kelxrllqy
© Go(x y) = J5" polt, x, y)dt = G = [* po(t. x, y)dt.
o-positive kernel

ANxX, ¥) = D ken P, y) = Na(x, ¥) = D 1c, Pr(X; )
Allez, Kahane, Rhodes, Vargas...
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Sphere averaging

It is possible to make sense of

X(x) =

[ o
B(x,€)

Duplantier-Sheffield, Chen-Jakobson...
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Sphere averaging

It is possible to make sense of

X(x) = / X0

Duplantier-Sheffield, Chen-Jakobson...
Difference with other cut-offs:

e the white noise/integral cut-offs act on the covariance
function,

e the sphere average acts on the geometry

~+ the sphere average does not have long-range correlations.
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Hausdorff dimension of the thick points
The set of a-thick points is

T(a, D):{XED:!E%:‘H}‘
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Hausdorff dimension of the thick points

The set of a-thick points is
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diverging variance:
o Kahane ('85): lower bound for o-positive kernels,
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The set of a-thick points is

T(a, D):{xeozlm%:a}.

Theorem
dimy(T(a, D)) =d — "’32 for GGFs with logarithmically
diverging variance:

o Kahane ('85): lower bound for o-positive kernels,

Hu-Miller-Peres ('10): sphere average planar GFF,

C. - Hazra ('13): sphere average 4-d massive GFF,

Rhodes-Vargas ('13): 7 general conditions to obtain the
upper bound (~ Kahane),

C-Hazra ('14+) : conditions (A)-(D).
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Upper bound
Theorem (C. - Hazra)

If (Xe(X)) >0, xep» d = 2, is a centered Gaussian process
satistying

(A) Forall R >0 and for all x, y € D and e, > 0

o1 _ IIx =yl +1n— €
E [(Xe(x) - Xn()’)) ] < nAe )
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Upper bound

Theorem (C. - Hazra)

If (Xe(X)) >0, xep» d = 2, is a centered Gaussian process
satisfying

(A) Forall R >0 and for all x, y € D and e, > 0

E [(Xe(X) — Xn(y))z] < [x — y71|/—\|-6|77 — €

Y

(B) E(Xe(x)?) ~eso — loge,
then almost surely
o fora<+2d, dimy(T(a, D)) < d—Z,
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Upper bound

Theorem (C. - Hazra)

If (Xe(X)) >0, xep» d = 2, is a centered Gaussian process
satisfying

(A) Forall R >0 and for all x, y € D and e, > 0

E [(Xe(X) — Xn(y))z] < [x — y71|/—\F6|77 — €

Y

(B) E(X(x)?) ~eso — loge,

then almost surely
o fora<+2d, dimy(T(a, D)) < d—Z,
e for a > \/2d we have T(a, D) is empty.
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Sketch of proof

Kolmogorov-Centsov theorem by (A).
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Lower bound
Theorem (C. - Hazra)
Let (Xa(x))nen, xejo,1)¢ be a centered Gaussian process with

covariance kernel \,(x,y) which satisfies:

(C) forx #y, Ma(x,y) < —3log|lx — yll + H(x, y) where
SUPx£yefo,1]¢ H(va) < C <o,
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Lower bound
Theorem (C. - Hazra)

Let (Xa(x))nen, xejo,1)¢ be a centered Gaussian process with
covariance kernel \,(x,y) which satisfies:

(C) forx £y, No(x,y) < —3 log||x — y|| + H(x, y) where
SUP,£yefo1pd H(X,y) < C < oo,

(D) there exists a sequence of positive definite covariance
kernels A,(x,y) such that Ay(x,y) = Y k<n Ae(x, y),
with A(x, x) = 1.

Let 0 < a < v/2d and consider

T(a) = {x €[0,1]¢: lim Xo _ a}.

n—oo N

2

Then we have dimy(T(a)) > d — % almost surely.
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Sketch of proof

Kahane's strategy: Peyriére's or rooted measures.
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Sketch of proof

Kahane's strategy: Peyriére's or rooted measures.

o Construct the measures exp (aX,,(x) - %An(x, x)) dx.
e Break up X,(x) =>_, ., Xi(x) almost surely.
o Under the rooted measure, ()?k)k are i. i. d. LLN yields

Ekgn )?k(x)

e Conclude by finite energy methods.

— a almost surely.
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Towards comparison

Theorem (C. - Hazra)

Let X. and Y. be two cut-off families for the same GGF. Call
Z(x) = X(x) — Ye(x). Suppose there exist constants C, C'
such that

L E[Z(x)?] < C,
i E[(Z(x) - Z(y))}] < ¢k,

Then the thick points of X, and Y, have the same Hausdorff
dimension almost surely.
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Final remarks. ..

e Almost sure equivalence of cut-offs is not obvious f. eg.
Liouville Quantum Gravity measure (Kahane,

Rhodes-Vargas in law, Duplantier-Sheffield a. s.).
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Final remarks. ..

e Almost sure equivalence of cut-offs is not obvious f. eg.
Liouville Quantum Gravity measure (Kahane,
Rhodes-Vargas in law, Duplantier-Sheffield a. s.).

. and questions.

e 2-d case: conformal invariance for all (reasonable)
cut-offs?

e Higher-dimensional case: describe cut-offs for GGFs f. eg.
Bilaplacian in d = 4.
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Thank you for your attention!
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