Thick points for generalized Gaussian fields under different cut-offs

Alessandra Cipriani¹ Rajat Subhra Hazra²

¹ Weierstrass Institute for Applied Analysis and Stochastics, Berlin ² University of Zurich, Institute for Mathematics, Zurich

June 23, 2014

Hausdorff dimension of the thick points

Table of contents

Generalized Gaussian fields

Approximating the field

Hausdorff dimension of the thick points

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

2/14

Generalized Gaussian fields d > 2. For a Hilbert error H = remainser H

Let $D \subseteq \mathbb{R}^d$, $d \ge 2$. For a Hilbert space H a generalized Gaussian field (GGF) X is a centered Gaussian family $\{(X, f) : f \in H\}$ with

$$E[(X, f)(X, g)] = (f, g)_{H} = (f, \Lambda^{-1}g)_{L^{2}}.$$

Let $D \subseteq \mathbb{R}^d$, $d \ge 2$. For a Hilbert space H a generalized Gaussian field (GGF) X is a centered Gaussian family $\{(X, f) : f \in H\}$ with

$$E[(X, f)(X, g)] = (f, g)_{H} = (f, \Lambda^{-1}g)_{L^{2}}.$$

What do we study?

・ロト ・日 ・ ・ ヨ ・ ・ 日 ・ うへの

Let $D \subseteq \mathbb{R}^d$, $d \ge 2$. For a Hilbert space H a generalized Gaussian field (GGF) X is a centered Gaussian family $\{(X, f) : f \in H\}$ with

$$E[(X, f)(X, g)] = (f, g)_{H} = (f, \Lambda^{-1}g)_{L^{2}}.$$

What do we study?

Logarithmic divergence: formally " $(X(x), x \in D)$ " with

$$\mathsf{E}\left[X(x)X(y)\right] \sim_{x \to y} - \ln \|x - y\|.$$

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・ うへの

Let $D \subseteq \mathbb{R}^d$, $d \ge 2$. For a Hilbert space H a generalized Gaussian field (GGF) X is a centered Gaussian family $\{(X, f) : f \in H\}$ with

$$E[(X, f)(X, g)] = (f, g)_{H} = (f, \Lambda^{-1}g)_{L^{2}}.$$

What do we study?

Logarithmic divergence: formally " $(X(x), x \in D)$ " with

$$\mathsf{E}\left[X(x)X(y)\right]\sim_{x\to y} -\ln\|x-y\|.$$

Examples

• $H = H^{\frac{d}{2}}(\mathbb{R}^d)$, $\Lambda := (m\mathbb{I} - \Delta)^{-\frac{d}{2}} \rightarrow \text{massive Gaussian}$ Free Field on \mathbb{R}^d (m > 0).

Let $D \subseteq \mathbb{R}^d$, $d \ge 2$. For a Hilbert space H a generalized Gaussian field (GGF) X is a centered Gaussian family $\{(X, f) : f \in H\}$ with

$$E[(X, f)(X, g)] = (f, g)_{H} = (f, \Lambda^{-1}g)_{L^{2}}.$$

What do we study?

Logarithmic divergence: formally " $(X(x), x \in D)$ " with

$$\mathsf{E}\left[X(x)X(y)\right]\sim_{x\to y} -\ln\|x-y\|.$$

Examples

- $H = H^{\frac{d}{2}}(\mathbb{R}^d)$, $\Lambda := (m\mathbb{I} \Delta)^{-\frac{d}{2}} \rightarrow \text{massive Gaussian}$ Free Field on \mathbb{R}^d (m > 0).
- $H = H_0^1(D)$, $\Lambda := (-\Delta_{|D})^{-1} \rightsquigarrow$ massless Gaussian Free Field on $D \subseteq \mathbb{R}^2$.

The white noise representation and Green's functions

White noise representation Let W be a standard complex white noise. Then formally

$$X(x) = \int_{\mathbb{R}^d} \mathrm{e}^{-i\pi(x,\xi)_{\mathbb{R}^d}} \sqrt{\widehat{\Lambda}(\xi)} W(\mathrm{d}\xi).$$

Itô ('54), Gel'fand-Vilenkin ('64), Glimm-Jaffe ('87), ...

・ロト ・日 ・ ・ ヨ ・ ・ 日 ・ うへの

The white noise representation and Green's functions

White noise representation Let W be a standard complex white noise. Then formally

$$X(x) = \int_{\mathbb{R}^d} \mathrm{e}^{-i\pi(x,\,\xi)_{\mathbb{R}^d}} \sqrt{\widehat{\Lambda}(\xi)} W(\mathrm{d}\xi).$$

Itô ('54), Gel'fand-Vilenkin ('64), Glimm-Jaffe ('87), ... Green's function

 K₀(||x − y||): Green's function for (mI − Δ)^{d/2} on ℝ^d (Matérn kernel);

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The white noise representation and Green's functions

White noise representation Let W be a standard complex white noise. Then formally

$$X(x) = \int_{\mathbb{R}^d} \mathrm{e}^{-i\pi(x,\,\xi)_{\mathbb{R}^d}} \sqrt{\widehat{\Lambda}(\xi)} W(\mathrm{d}\xi).$$

Itô ('54), Gel'fand-Vilenkin ('64), Glimm-Jaffe ('87), ... Green's function

- *K*₀(||*x* − *y*||): Green's function for (*m*I − Δ)^{*d*/2} on ℝ^{*d*} (Matérn kernel);
- G_D(x, y): Green's function for −Δ on D with Dirichlet boundary conditions.

White noise cut-off

$$X_{\epsilon}(x) := \int_{B(0, \epsilon^{-1})} \mathrm{e}^{-i\pi(x, \xi)_{\mathbb{R}^d}} \sqrt{\widehat{\Lambda}(\xi)} W(\mathrm{d}\xi).$$

White noise cut-off

$$X_{\epsilon}(x) := \int_{B(0, \epsilon^{-1})} e^{-i\pi(x, \xi)_{\mathbb{R}^d}} \sqrt{\widehat{\Lambda}(\xi)} W(\mathrm{d}\xi).$$

ntegral cut-off

•
$$\Lambda(x, y) = \int_1^\infty \frac{k(u\|x-y\|)}{u} \mathrm{d}u \Rightarrow \Lambda_\epsilon(x, y) = \int_1^{\epsilon^{-1}} \frac{k(u\|x-y\|)}{u} \mathrm{d}u.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

White noise cut-off

$$X_{\epsilon}(x) := \int_{B(0, \epsilon^{-1})} e^{-i\pi(x, \xi)_{\mathbb{R}^d}} \sqrt{\widehat{\Lambda}(\xi)} W(\mathrm{d}\xi).$$

ntegral cut-off

•
$$\Lambda(x, y) = \int_1^\infty \frac{k(u\|x-y\|)}{u} du \Rightarrow \Lambda_{\epsilon}(x, y) = \int_1^{\epsilon^{-1}} \frac{k(u\|x-y\|)}{u} du.$$

•
$$G_D(x, y) = \int_0^\infty p_D(t, x, y) dt \Rightarrow G_D^{(\epsilon)} = \int_{\epsilon}^\infty p_D(t, x, y) dt.$$

・ロト ・日 ・ ・ ヨ ・ ・ 日 ・ うへの

White noise cut-off

$$X_{\epsilon}(x) := \int_{B(0, \epsilon^{-1})} e^{-i\pi(x, \xi)_{\mathbb{R}^d}} \sqrt{\widehat{\Lambda}(\xi)} W(\mathrm{d}\xi).$$

ntegral cut-off

•
$$\Lambda(x, y) = \int_1^\infty \frac{k(u\|x-y\|)}{u} \mathrm{d}u \Rightarrow \Lambda_\epsilon(x, y) = \int_1^{\epsilon^{-1}} \frac{k(u\|x-y\|)}{u} \mathrm{d}u.$$

•
$$G_D(x, y) = \int_0^\infty p_D(t, x, y) dt \Rightarrow G_D^{(\epsilon)} = \int_{\epsilon}^\infty p_D(t, x, y) dt.$$

 σ -positive kernel

$$\Lambda(x, y) = \sum_{k \in \mathbb{N}} p_k(x, y) \Rightarrow \Lambda_n(x, y) := \sum_{k \leq n} p_k(x, y).$$

・ロト ・日 ・ モ ・ ・ モ ・ うへの

5/14

White noise cut-off

$$X_{\epsilon}(x) := \int_{B(0, \epsilon^{-1})} e^{-i\pi(x, \xi)_{\mathbb{R}^d}} \sqrt{\widehat{\Lambda}(\xi)} W(\mathrm{d}\xi).$$

•
$$\Lambda(x, y) = \int_1^\infty \frac{k(u\|x-y\|)}{u} \mathrm{d}u \Rightarrow \Lambda_\epsilon(x, y) = \int_1^{\epsilon^{-1}} \frac{k(u\|x-y\|)}{u} \mathrm{d}u.$$

•
$$G_D(x, y) = \int_0^\infty p_D(t, x, y) dt \Rightarrow G_D^{(\epsilon)} = \int_{\epsilon}^\infty p_D(t, x, y) dt.$$

 σ -positive kernel

$$\Lambda(x, y) = \sum_{k \in \mathbb{N}} p_k(x, y) \Rightarrow \Lambda_n(x, y) := \sum_{k \leq n} p_k(x, y).$$

Allez, Kahane, Rhodes, Vargas...

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 - のへの

It is possible to make sense of

$$X_{\epsilon}(x) =$$
 " $\int_{B(x,\epsilon)} X(y) \mathrm{d} y$ ".

Duplantier-Sheffield, Chen-Jakobson...

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 - のへの

It is possible to make sense of

$$X_{\epsilon}(x) = \ "\int_{\mathcal{B}(x,\,\epsilon)} X(y) \mathrm{d} y''.$$

Duplantier-Sheffield, Chen-Jakobson... Difference with other cut-offs:

• the white noise/integral cut-offs act on the covariance function,

・ロト ・日 ・ ・ ヨ ・ ・ 日 ・ うへの

6/14

It is possible to make sense of

$$X_{\epsilon}(x) =$$
 " $\int_{B(x,\epsilon)} X(y) \mathrm{d} y$ ".

Duplantier-Sheffield, Chen-Jakobson... Difference with other cut-offs:

- the white noise/integral cut-offs act on the covariance function,
- the sphere average acts on the geometry

6/14

It is possible to make sense of

$$X_{\epsilon}(x) = \ "\int_{\mathcal{B}(x,\,\epsilon)} X(y) \mathrm{d} y''.$$

Duplantier-Sheffield, Chen-Jakobson... Difference with other cut-offs:

- the white noise/integral cut-offs act on the covariance function,
- the sphere average acts on the geometry
- \rightsquigarrow the sphere average does not have long-range correlations.

・ロト ・日 ・ モ ・ モ ・ ・ 日 ・ つへの

$$T(a, D) = \left\{ x \in D : \lim_{\epsilon \to 0} \frac{X_{\epsilon}(x)}{\operatorname{Var}(X_{\epsilon}(x))} = a \right\}.$$

$$T(a, D) = \left\{ x \in D : \lim_{\epsilon \to 0} \frac{X_{\epsilon}(x)}{\operatorname{Var}(X_{\epsilon}(x))} = a
ight\}.$$

Theorem

 $\dim_H(T(a, D)) = d - \frac{a^2}{2}$ for GGFs with logarithmically diverging variance:

$$T(a, D) = \left\{ x \in D : \lim_{\epsilon \to 0} \frac{X_{\epsilon}(x)}{\operatorname{Var}(X_{\epsilon}(x))} = a
ight\}.$$

Theorem

 $\dim_H(T(a, D)) = d - \frac{a^2}{2}$ for GGFs with logarithmically diverging variance:

• Kahane ('85): lower bound for *σ*-positive kernels,

・ロット 4回ッ 4回ッ 4回ッ 4日マ

$$T(a, D) = \left\{ x \in D : \lim_{\epsilon \to 0} \frac{X_{\epsilon}(x)}{\operatorname{Var}(X_{\epsilon}(x))} = a
ight\}.$$

Theorem

 $\dim_H(T(a, D)) = d - \frac{a^2}{2}$ for GGFs with logarithmically diverging variance:

- Kahane ('85): lower bound for *σ*-positive kernels,
- Hu-Miller-Peres ('10): sphere average planar GFF,

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・ うへの

$$T(a, D) = \left\{ x \in D : \lim_{\epsilon \to 0} \frac{X_{\epsilon}(x)}{\operatorname{Var}(X_{\epsilon}(x))} = a
ight\}.$$

Theorem

 $\dim_H(T(a, D)) = d - \frac{a^2}{2}$ for GGFs with logarithmically diverging variance:

- Kahane ('85): lower bound for *σ*-positive kernels,
- Hu-Miller-Peres ('10): sphere average planar GFF,
- C. Hazra ('13): sphere average 4-d massive GFF,

$$T(a, D) = \left\{ x \in D : \lim_{\epsilon \to 0} \frac{X_{\epsilon}(x)}{\operatorname{Var}(X_{\epsilon}(x))} = a
ight\}.$$

Theorem

 $\dim_H(T(a, D)) = d - \frac{a^2}{2}$ for GGFs with logarithmically diverging variance:

- Kahane ('85): lower bound for *σ*-positive kernels,
- Hu-Miller-Peres ('10): sphere average planar GFF,
- C. Hazra ('13): sphere average 4-d massive GFF,
- Rhodes-Vargas ('13): 7 general conditions to obtain the upper bound (→ Kahane),

$$T(a, D) = \left\{ x \in D : \lim_{\epsilon \to 0} \frac{X_{\epsilon}(x)}{\operatorname{Var}(X_{\epsilon}(x))} = a
ight\}.$$

Theorem

 $\dim_H(T(a, D)) = d - \frac{a^2}{2}$ for GGFs with logarithmically diverging variance:

- Kahane ('85): lower bound for *σ*-positive kernels,
- Hu-Miller-Peres ('10): sphere average planar GFF,
- C. Hazra ('13): sphere average 4-d massive GFF,
- Rhodes-Vargas ('13): 7 general conditions to obtain the upper bound (→ Kahane),
- C-Hazra ('14+) : conditions (A)-(D). □ (@ > (≥

Upper bound

Theorem (C. - Hazra) If $(X_{\epsilon}(x))_{\epsilon \ge 0, x \in D}$, $d \ge 2$, is a centered Gaussian process satisfying

(A) For all R > 0 and for all $x, y \in D$ and $\epsilon, \eta \ge 0$

$$\mathsf{E}\left[(X_{\epsilon}(x)-X_{\eta}(y))^2
ight] \leq rac{\|x-y\|+|\eta-\epsilon|}{\eta\wedge\epsilon},$$

Upper bound

Theorem (C. - Hazra) If $(X_{\epsilon}(x))_{\epsilon \ge 0, x \in D}$, $d \ge 2$, is a centered Gaussian process satisfying (A) For all R > 0 and for all $x, y \in D$ and $\epsilon, \eta \ge 0$

$$\mathsf{E}\left[(X_\epsilon(x)-X_\eta(y))^2
ight] \leq rac{\|x-y\|+|\eta-\epsilon|}{\eta\wedge\epsilon},$$

(B) $E(X_{\epsilon}(x)^2) \sim_{\epsilon \to 0} -\log \epsilon$,

8/14

Upper bound

Theorem (C. - Hazra) If $(X_{\epsilon}(x))_{\epsilon \ge 0, x \in D}$, $d \ge 2$, is a centered Gaussian process satisfying (A) For all R > 0 and for all $x, y \in D$ and $\epsilon, \eta > 0$

$$\mathsf{E}\left[(X_\epsilon(x)-X_\eta(y))^2
ight] \leq rac{\|x-y\|+|\eta-\epsilon|}{\eta\wedge\epsilon},$$

(B) $E(X_{\epsilon}(x)^2) \sim_{\epsilon \to 0} -\log \epsilon$, then almost surely

• for $a \leq \sqrt{2d}$, $\dim_H(T(a, D)) \leq d - \frac{a^2}{2}$,

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・ う へ つ ・

Upper bound

Theorem (C. - Hazra) If $(X_{\epsilon}(x))_{\epsilon \ge 0, x \in D}$, $d \ge 2$, is a centered Gaussian process satisfying (A) For all R > 0 and for all $x, y \in D$ and $\epsilon, \eta > 0$

$$\mathsf{E}\left[(X_\epsilon(x)-X_\eta(y))^2
ight] \leq rac{\|x-y\|+|\eta-\epsilon|}{\eta\wedge\epsilon},$$

(B) $E(X_{\epsilon}(x)^2) \sim_{\epsilon \to 0} -\log \epsilon$, then almost surely

- for $a \leq \sqrt{2d}$, $\dim_H(T(a, D)) \leq d \frac{a^2}{2}$,
- for $a > \sqrt{2d}$ we have T(a, D) is empty.

Kolmogorov-Centsov theorem by (A).

Kolmogorov-Centsov theorem by (A). It works for:

• white noise and integral cut-offs,

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・ つへで

Kolmogorov-Centsov theorem by (A). It works for:

- white noise and integral cut-offs,
- sphere average:

うせん 神 ふゆく ふやく きょうしゃ

Kolmogorov-Centsov theorem by (A). It works for:

- white noise and integral cut-offs,
- sphere average:
 - planar GFF (Hu-Miller-Peres),

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへの

Kolmogorov-Centsov theorem by (A). It works for:

- white noise and integral cut-offs,
- sphere average:
 - planar GFF (Hu-Miller-Peres),
 - 4-d massive GFF.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへぐ

9/14

Lower bound

Theorem (C. - Hazra)

Let $(X_n(x))_{n \in \mathbb{N}, x \in [0,1]^d}$ be a centered Gaussian process with covariance kernel $\Lambda_n(x, y)$ which satisfies:

(C) for $x \neq y$, $\Lambda_n(x, y) \leq -\frac{1}{2} \log ||x - y|| + H(x, y)$ where $\sup_{x \neq y \in [0,1]^d} H(x, y) < C < \infty$,

Lower bound

Theorem (C. - Hazra)

Let $(X_n(x))_{n \in \mathbb{N}, x \in [0,1]^d}$ be a centered Gaussian process with covariance kernel $\Lambda_n(x, y)$ which satisfies:

- (C) for $x \neq y$, $\Lambda_n(x, y) \leq -\frac{1}{2} \log ||x y|| + H(x, y)$ where $\sup_{x \neq y \in [0,1]^d} H(x, y) < C < \infty$,
- (D) there exists a sequence of positive definite covariance kernels $\widetilde{\Lambda}_n(x, y)$ such that $\Lambda_n(x, y) = \sum_{k \le n} \widetilde{\Lambda}_k(x, y)$, with $\widetilde{\Lambda}_k(x, x) = 1$.

▲ロ > ▲母 > ▲目 > ▲目 > ▲目 > ④ < ④ >

Lower bound

Theorem (C. - Hazra)

Let $(X_n(x))_{n \in \mathbb{N}, x \in [0,1]^d}$ be a centered Gaussian process with covariance kernel $\Lambda_n(x, y)$ which satisfies:

(C) for
$$x \neq y$$
, $\Lambda_n(x, y) \leq -\frac{1}{2} \log ||x - y|| + H(x, y)$ where $\sup_{x \neq y \in [0,1]^d} H(x, y) < C < \infty$,

(D) there exists a sequence of positive definite covariance kernels Ã_n(x, y) such that Λ_n(x, y) = ∑_{k≤n} Ã_k(x, y), with Ã_k(x, x) = 1.
 Let 0 < a < √2d and consider

$$T(a) = \left\{ x \in [0,1]^d : \lim_{n \to \infty} \frac{X_n}{n} = a \right\}$$

Then we have $\dim_H(T(a)) \ge d - \frac{a^2}{2}$ almost surely.

Kahane's strategy: Peyrière's or rooted measures.

• Construct the measures $\exp\left(aX_n(x) - \frac{a^2}{2}\Lambda_n(x, x)\right) dx$.

Kahane's strategy: Peyrière's or rooted measures.

- Construct the measures $\exp\left(aX_n(x) \frac{a^2}{2}\Lambda_n(x, x)\right) dx$.
- Break up $X_n(x) = \sum_{k \le n} \widetilde{X}_k(x)$ almost surely.

Kahane's strategy: Peyrière's or rooted measures.

- Construct the measures $\exp\left(aX_n(x) \frac{a^2}{2}\Lambda_n(x, x)\right) dx$.
- Break up $X_n(x) = \sum_{k \le n} \widetilde{X}_k(x)$ almost surely.
- Under the rooted measure, $(\widetilde{X}_k)_k$ are i. i. d. LLN yields $\frac{\sum_{k \le n} \widetilde{X}_k(x)}{n} \to a$ almost surely.

・ロト ・回 ・ ・ ヨ ・ ・ ヨ ・ うらぐ

Kahane's strategy: Peyrière's or rooted measures.

- Construct the measures $\exp\left(aX_n(x) \frac{a^2}{2}\Lambda_n(x, x)\right) dx$.
- Break up $X_n(x) = \sum_{k \le n} \widetilde{X}_k(x)$ almost surely.
- Under the rooted measure, $(\widetilde{X}_k)_k$ are i. i. d. LLN yields $\frac{\sum_{k \le n} \widetilde{X}_k(x)}{n} \to a$ almost surely.
- Conclude by finite energy methods.

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・ うへの

Towards comparison

Theorem (C. - Hazra)

Let X_{ϵ} and Y_{ϵ} be two cut-off families for the same GGF. Call $Z_{\epsilon}(x) := X_{\epsilon}(x) - Y_{\epsilon}(x)$. Suppose there exist constants C, C' such that

- i. $\mathsf{E}[Z_{\epsilon}(x)^2] \leq C$,
- ii. $\mathsf{E}\left[\left(Z_{\epsilon}(x)-Z_{\epsilon}(y)\right)^{2}\right] \leq C' \frac{\|x-y\|}{\epsilon}.$

Then the thick points of X_{ϵ} and Y_{ϵ} have the same Hausdorff dimension almost surely.

・ロト ・日 ・ ・ ヨ ・ ・ 日 ・ うへの

12/14

Final remarks...

 Almost sure equivalence of cut-offs is not obvious f. eg. Liouville Quantum Gravity measure (Kahane, Rhodes-Vargas in law, Duplantier-Sheffield a. s.).

Final remarks...

- Almost sure equivalence of cut-offs is not obvious f. eg. Liouville Quantum Gravity measure (Kahane, Rhodes-Vargas in law, Duplantier-Sheffield a. s.).
- ... and questions.
 - 2-d case: conformal invariance for all (reasonable) cut-offs?
 - Higher-dimensional case: describe cut-offs for GGFs f. eg. Bilaplacian in *d* = 4.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへぐ

Thank you for your attention!

14/14