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Generalized Gaussian fields
Let D ⊆ Rd , d ≥ 2. For a Hilbert space H a generalized
Gaussian field (GGF) X is a centered Gaussian family
{(X , f ) : f ∈ H} with

E [(X , f )(X , g)] = (f , g)H =
(
f , Λ−1g

)
L2 .

What do we study?
Logarithmic divergence: formally “(X (x), x ∈ D)” with

E [X (x)X (y)] ∼x→y − ln ‖x − y‖.

Examples

• H = H
d
2 (Rd), Λ := (mI−∆)−

d
2 ; massive Gaussian

Free Field on Rd (m > 0).
• H = H1

0 (D), Λ := (−∆|D)−1 ; massless Gaussian Free
Field on D ⊆ R2.
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The white noise representation and Green’s
functions

White noise representation Let W be a standard complex
white noise. Then formally

X (x) =

∫
Rd

e−iπ(x , ξ)Rd

√
Λ̂(ξ)W (dξ).

Itô (’54), Gel’fand-Vilenkin (’64), Glimm-Jaffe (’87), ...

Green’s function
• K0(‖x − y‖): Green’s function for (mI−∆)

d
2 on Rd

(Matérn kernel);
• GD(x , y): Green’s function for −∆ on D with Dirichlet
boundary conditions.
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The white noise/integral cut-offs

White noise cut-off
Xε(x) :=

∫
B(0, ε−1)

e−iπ(x , ξ)Rd

√
Λ̂(ξ)W (dξ).

Integral cut-off

• Λ(x , y) =
∫∞
1

k(u‖x−y‖)
u du ⇒ Λε(x , y) =

∫ ε−1

1
k(u‖x−y‖)

u du.
• GD(x , y) =

∫∞
0 pD(t, x , y)dt ⇒ G (ε)

D =
∫∞
ε pD(t, x , y)dt.

σ-positive kernel
Λ(x , y) =

∑
k∈N pk(x , y)⇒ Λn(x , y) :=

∑
k≤n pk(x , y).

Allez, Kahane, Rhodes, Vargas...
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Sphere averaging

It is possible to make sense of

Xε(x) = “

∫
B(x , ε)

X (y)dy ′′.

Duplantier-Sheffield, Chen-Jakobson...

Difference with other cut-offs:

• the white noise/integral cut-offs act on the covariance
function,

• the sphere average acts on the geometry
; the sphere average does not have long-range correlations.
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Hausdorff dimension of the thick points
The set of a-thick points is

T (a, D) =

{
x ∈ D : lim

ε→0

Xε(x)

Var (Xε(x))
= a
}
.

Theorem
dimH(T (a, D)) = d − a2

2 for GGFs with logarithmically
diverging variance:

• Kahane (’85): lower bound for σ-positive kernels,
• Hu-Miller-Peres (’10): sphere average planar GFF,
• C. - Hazra (’13): sphere average 4-d massive GFF,
• Rhodes-Vargas (’13): 7 general conditions to obtain the
upper bound (; Kahane),

• C-Hazra (’14+) : conditions (A)-(D).
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Upper bound
Theorem (C. - Hazra)
If (Xε(x))ε≥0, x∈D , d ≥ 2, is a centered Gaussian process
satisfying
(A) For all R > 0 and for all x , y ∈ D and ε, η ≥ 0

E
[
(Xε(x)− Xη(y))2] ≤ ‖x − y‖+ |η − ε|

η ∧ ε
,

(B) E(Xε(x)2) ∼ε→0 − log ε,
then almost surely

• for a ≤
√
2d, dimH(T (a, D)) ≤ d − a2

2 ,

• for a >
√
2d we have T (a, D) is empty.
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Generalized Gaussian fields Approximating the field Hausdorff dimension of the thick points

Sketch of proof

Kolmogorov-Centsov theorem by (A).

It works for:

• white noise and integral cut-offs,
• sphere average:

• planar GFF (Hu-Miller-Peres),
• 4-d massive GFF.
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Lower bound
Theorem (C. - Hazra)
Let (Xn(x))n∈N, x∈[0,1]d be a centered Gaussian process with
covariance kernel Λn(x , y) which satisfies:
(C) for x 6= y , Λn(x , y) ≤ −1

2 log ‖x − y‖+ H(x , y) where
supx 6=y∈[0,1]d H(x , y) < C <∞,

(D) there exists a sequence of positive definite covariance
kernels Λ̃n(x , y) such that Λn(x , y) =

∑
k≤n Λ̃k(x , y),

with Λ̃k(x , x) = 1.
Let 0 < a ≤

√
2d and consider

T (a) =

{
x ∈ [0, 1]d : lim

n→∞

Xn

n
= a
}
.

Then we have dimH(T (a)) ≥ d − a2
2 almost surely.
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Generalized Gaussian fields Approximating the field Hausdorff dimension of the thick points

Sketch of proof

Kahane’s strategy: Peyrière’s or rooted measures.

• Construct the measures exp
(
aXn(x)− a2

2 Λn(x , x)
)

dx .

• Break up Xn(x) =
∑

k≤n X̃k(x) almost surely.

• Under the rooted measure,
(
X̃k

)
k
are i. i. d. LLN yields∑

k≤n X̃k(x)
n → a almost surely.

• Conclude by finite energy methods.

11 / 14



Generalized Gaussian fields Approximating the field Hausdorff dimension of the thick points

Sketch of proof

Kahane’s strategy: Peyrière’s or rooted measures.

• Construct the measures exp
(
aXn(x)− a2

2 Λn(x , x)
)

dx .

• Break up Xn(x) =
∑

k≤n X̃k(x) almost surely.

• Under the rooted measure,
(
X̃k

)
k
are i. i. d. LLN yields∑

k≤n X̃k(x)
n → a almost surely.

• Conclude by finite energy methods.
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Towards comparison

Theorem (C. - Hazra)
Let Xε and Yε be two cut-off families for the same GGF. Call
Zε(x) := Xε(x)− Yε(x). Suppose there exist constants C , C ′

such that
i. E [Zε(x)2] ≤ C,

ii. E [(Zε(x)− Zε(y))2] ≤ C ′ ||x−y ||
ε
.

Then the thick points of Xε and Yε have the same Hausdorff
dimension almost surely.
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Final remarks...

• Almost sure equivalence of cut-offs is not obvious f. eg.
Liouville Quantum Gravity measure (Kahane,
Rhodes-Vargas in law, Duplantier-Sheffield a. s.).

... and questions.
• 2-d case: conformal invariance for all (reasonable)
cut-offs?

• Higher-dimensional case: describe cut-offs for GGFs f. eg.
Bilaplacian in d = 4.
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Thank you for your attention!
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