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Abstract

Given a quiver flag variety Y equipped with a tilting bundle E, a construction of
Craw, Ito and Karmazyn [CIK18] produces a closed immersion fg: Y — M(E),
where M(FE) is the fine moduli space of cyclic modules over the algebra End(E).
In this thesis we present two classes of examples where fg is an isomorphism.
Firstly, when Y is toric and F is the tilting bundle from [Crall]; this gen-
eralises the well-known fact that P" can be recovered from the endomorphism
algebra of @,.,;.,, Opn(i). Secondly, when Y = Gr(n,2), the Grassmannian of
2-dimensional aliotients of k™ and FE' is the tilting bundle from [Kap84]. In each
case, we give a presentation of the tilting algebra A = End(FE) by constructing a
quiver Q" such that there is a surjective k-algebra homomorphism ®: kQ’ — A,

and then give an explicit description of the kernel.
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Chapter 1
Introduction

We begin by briefly outlining some background material before discussing the
main results. Throughout, let k be an algebraically closed field of characteristic

Zero.

Let @ be a finite acyclic quiver with a unique source, vertex set Qg = {0, ..., ¢}
and arrow set Q;. Let r := (1,71,...,7) € N1 and denote by Rep(Q,r) the
space of representations of () with dimension vector r, of which the isomorphism
classes are precisely the orbits under the action of the group G := []r_, GL(r;)

induced by conjugation.

Definition 2.1. The quiver flag variety associated to the pair (@,r) is the GIT
quotient

Y :=Rep(Q,r)/, G
for the special choice of linearisation x := (— Zle ri,1,...,1) € GY.

Craw [Crall] showed that the variety Y is non-empty if for all i € Qy we
have r; <s; := Z{atelh(a):i} Tt(a), and in this case proved that Y has many nice
properties: it is a smooth, projective Mori Dream Space, and has an iterative
structure as a height ¢ tower of Grassmann-bundles; this motivates the termi-
nology quiver flag varieties. Additionally, these varieties are the framed quiver
moduli of Nakajima [Nak96]. Examples of quiver flag varieties include Grassman-
nians, (partial) flag varieties of type-A and (towers of) certain projective space
bundles.

Many properties of an algebraic variety X can be studied via its bounded
derived category of coherent sheaves, D°(Coh(X)). Typically this category is
difficult to work with, but the key results of Baer [Bae88] and Bondal [Bon90]
prove that if X carries a tilting bundle E (see Definition 2.6) and Rmod(A)



is the category of finitely generated right modules over the endomorphism al-
gebra A = Endp, (F), then there is an equivalence of triangulated categories
D*(Coh(X)) = D*(Rmod(A)). Hence, there is a strong motivation to find tilt-
ing bundles for varieties. Beilinson [Bei78] gave a tilting bundle for projective
space and Kapranov [Kap84] gave one for the Grassmannian. Craw [Crall] then
generalised these results to give a tilting bundle for any quiver flag variety Y:
let Wy, ..., W, be the globally generated vector bundles given by the pullbacks
of the tautological quotient bundles on each variety in the tower structure of Y;
let Young(n,r) denote the set of Young diagrams with at most n columns and r

rows, and for a Young diagram X let S*W; be the image of the Schur functor on
Wi,

Theorem 2.9 ([Crall, Theorem 4.5]). The vector bundle on'Y given by

P @ 8weevw,

1<i<l, XD cYoung(s;—r;,mi)

1s a tilting bundle. In particular, the bounded derived category of coherent sheaves
on'Y is equivalent to the bounded derived category of finite-dimensional modules

over the endomorphism algebra Ende,, (E).

In general, let A be a finite dimensional associative k-algebra and let v be an
indivisible dimension vector. King [Kin94] defined a certain #-stability criterion
for A-modules and showed it is equivalent to Mumford’s; see [MFK94, Section 2].
He was therefore able to construct the fine moduli space of #-stable A-modules
with dimension v, denoted M(A,v,0), as a GIT quotient. Now, generalising
work of Craw-Smith [CS08] and Craw-Winn [CW13], given a scheme X with a
collection of globally generated vector bundles Ej,..., E,, Craw, Ito and Kar-
mazyn [CIK18] construct the universal morphism fz : X — M(A,v,0), where
A is the endomorphism algebra of the bundle E = @, E; with Ey = Ox. This
generalises the classical morphism from a scheme with a basepoint-free line bun-
dle into its linear series. Hence, they call M(A, v, 8) the multigraded linear series
and define

M(E) == M(A,v,0).

By considering the case that X is a quiver flag variety Y and F is the tilting
bundle from Theorem 2.9, using [CIK18, Theorem 2.6, Remark 2.8] we are able
to deduce the following.



Theorem 2.11. The universal property of M(E) gives a morphism

which s a closed immersion.

Hence we may embed Y, itself a moduli space, into M(F), another ambient
moduli space.

It is natural to ask when fg is an isomorphism, thereby providing a recon-
struction of the quiver flag variety from a tilting bundle. This thesis provides two
classes of examples: when Y is toric, and when Y = Gr(n,2), the Grassmannian
of 2-dimensional quotients of k™. The main tool is to define a quiver ()’, which
we call the tilting quiver, such that there is a surjective k-algebra homomorphism
®: k@)’ — A defined by mapping concatenations of arrows to compositions of
maps. Since k@Q'/ker(®) = A, we may regard points of M(E) as 6-stable rep-
resentations of )’ with dimension vector v subject to the relations induced by
ker(®).

Reconstructing toric quiver flag varieties from a tilting
bundle

The following result is from the paper [CG18], of which the author of this thesis

15 a co-author. Please see the declarations on the preliminary pages.

Fix a quiver @ with vertex set {0,...,¢} satisfying the conditions prior to
Definition 2.1. When the dimension vector r = (1,...,1), the group G is an
algebraic torus and we therefore call Y a toric quiver flag variety. In this case,
E is a direct sum of line bundles and the Grassmann-bundle tower structure

becomes a tower of projective bundles. The main result is as follows.

Theorem 3.2. LetY be a toric quiver flag variety. Then the morphism fg: Y —
M(E) from (1.1) is an isomorphism.

A special case of Theorem 3.2 is that when Y = P we recover the result of
Beilinson [Bei78] where P" is reconstructed from the tilting bundle @, ., ,, Opn (7);
see Example 3.4. This theorem therefore provides further evidence_ t_hat toric
quiver flag varieties provide good multigraded analogues of projective space.

To prove Theorem 3.2 we give an alternative description of M(FE) using the
results of Craw and Smith [CS08]. In the toric setting, the tilting quiver @' is
given by the bound quiver of sections of E. We prove that the vertices of @)’



correspond to the integer points of a certain /-dimensional cuboid in Z‘; that
the original quiver @) forms a full sub-quiver of )’; and that the arrow set @] is
given by translating the arrows of () to everywhere they fit inside that cuboid.

To borrow from Example 3.7, the toric quiver flag variety with original quiver

(a) below has tilting quiver (b), and ey, e, e3 denotes the standard basis of Z3.

e —O®

FIGURE 1.1: Example of a quiver @ (a) with tilting quiver @’ (b).

Each arrow of )’ carries a label corresponding to a torus-invariant divisor
D,, where p € ¥(1) is a ray of the toric fan for Y'; this is represented by the
different coloured arrows in the above figure. These labels determine the relations
Ir C k@ on @'. Let By be the irrelevant ideal that cuts out the #-unstable locus
of Aﬂ? ' Then [CS08, Proposition 3.8] implies that M(E) is equal to the geometric
quotient of V(Ig)\ V(Bg) by the action of G. Using [CS08, Proposition 4.3], we
can also describe the image of Y under fz as a geometric quotient. The proof of

Theorem 3.2 then follows by showing that these geometric quotients coincide.

A presentation of Kapranov’s tilting algebra for Gr(n,2)

For the remainder of this thesis we analyse the case that Y = Gr(n, 2) := Gr(V, 2),

the Grassmannian of 2-dimensional quotients of V' = k", although we do give



some minor results for Gr(n,r) in general where stated. Chapter 4 begins with
some background material on Schur powers, Littlewood-Richardson numbers and
skew-Schur powers.

The tilting bundle E from Theorem 2.9 becomes

E= pH sw,

A€Young(n—2,2)

where W is the rank 2 tautological quotient bundle of Y. This tilting bundle was
originally given by Kapranov [Kap84], and as such we refer to A = Endo, (F) as
Kapranov’s tilting algebra. Like in the toric case, the first step towards proving
that Y = M(FE) is to write down a presentation of A as a quiver with relations. In
particular, we want to define the tilting quiver @)’ such that there is a surjective k-
algebra homomorphism ®: k@) — A. The ideal ker(®) then defines the relations

on the quiver.

Important note: Such a presentation was given by Buchweitz, Leuschke and
Van den Bergh in [BLV16]. While they give the tilting quiver with spaces of
relations for Gr(n, ) in general, their indirect approach to computing Ende, (E)
relies on heavy machinery and furthermore they do not give explicit generators
for the kernel. Since we need these relations to prove that Y = M(FE) in Chap-
ter 6, in this thesis we give a new proof which produces an entirely self-contained
description of A for the Gr(n,2) case and an explicit list of elements that gen-
erate the ideal ker(®) C k@'. We consider the advantages and disadvantages of
this approach compared to [BLV16] in more depth in Section 5.3. For now, we
continue to give an overview of the approach used in this thesis.

We begin by simplifying a result of Kapranov in the general case. For two

Young diagrams A,y with A contained in u (write A < p), denote by S¥/*V the
skew-Schur power of V' corresponding to the skew diagram /A (see Section 4.3).

Proposition 4.24. Let W be the rank r tautological quotient bundle of Gr(V,r)
and let A < o € Young(n —r,7). Then

Homo,, (S*W, SFW) = SHAV

Let eq,..., e, be the standard basis of Z". Then an immediate corollary of
Proposition 4.24 is that for all A\, u € Young(n — r,r) C Z" with u = XA + ¢; for
1 <i <, we have Homp, (S*W, S¥W) = V; see Corollary 4.25.

Now fix r = 2. Writing B = {us,...,u,} for a basis of V|, we get a basis
of each of the homomorphism spaces Home,, (S*W, S} W) which we denote by

5



A

TR

We then write down these maps explicitly and use them to prove the following

Lo ifi=1org),..., g, ifi=2; we call these f-type and g-type maps.

key surjectivity result. Given A < p € Young(n — 2,2), define my; = pu3 — A\
and my = o — Ao, and for 0 < k < my + my define the sequence of partitions
Tk = At+kep if 0 <k <my and 7, = A+mye; + (k—my)es if my < k < my+ms.

Proposition 4.30. Let Y = Gr(n,2) and let A < p € Young(n — 2,2). Let 7y be

the sequence of partitions defined above. Then the composition map

mi+ma
Oxu: (X Homp, (S™ W, S™W) — Homo, (SW, S*W)

k=1
18 surjective.

Proposition 4.30 implies that any homomorphism in A may be decomposed
as a linear combination of f-type and g-type maps. In light of this, we define the
tilting quiver @’ to have vertex set corresponding to the irreducible summands
of E, namely S*W for each \ € Young(n — 2,2), and arrow set corresponding to
the collection of f-type and g-type maps between each summand. This produces
a staircase-like diagram for @)’; see Figure 4.2. Then we can define a k-algebra
homomorphism

O: k@ — A

by mapping each arrow to the appropriate f-type or g-type map, extending this
by mapping paths to compositions of these maps, and finally extending linearly
to all of kQ'. We then prove the following.

Theorem 4.34. Let Y = Gr(n,2). Then the k-algebra homomorphism ®: k@' —

A is surjective.

Hence we have kQ)'/ker(®) = A, which concludes Chapter 4. The goal of
Chapter 5 is to describe the ideal ker(®) explicitly, which determines the relations
on ). By observing that elements of ker(®) are relations between paths with
the same head and tail and length at least two, it is enough to find a basis K ,

for the kernels of the induced maps
D, e,kQ' ey —» Homop,, (S*W, S"W),

where e, ey are idempotents corresponding to the length zero paths at the vertices
11, A € Qf respectively. Define P := {(\,u) € Q4> | A <, |u| > |\ +2}. Then



we have
ker(®) = U Ky,
(Ap)epP

In Section 5.1 we consider the subset Py := {(A\, 1) € Q4> | X < i, |u| = |\ +2} C
P and write down each set K , for (A, ) € P, explicitly. Then we define the
ideal

It = |J K

(A )Py

It is clear that I C ker(®), and by considering the remaining pairs (A, u) € P\ P,
in Section 5.2 we prove that I = ker(®). Denote the arrows of Q" by their images
under ® (the f-type and g-type maps). The main result is as follows.

Theorem 5.10. Let Y = Gr(n,2), let E be the tilting bundle (4.1) and let
A = Ende, (F). Let Q' be the quiver defined in Definition 4.31. Then the k-
algebra A is isomorphic to kQ'/I for the ideal

I=| |J K.

where

() i =+ 2.0), Kn = {fu £~ fufly | 105 <.

(i) if p= (A, Aa +2), Ky, = {gujgﬁi — Guga, | 1<4,5 < n}

(ili) of A= A2 and p= (M +1, A +1), Ky, = {gujfﬁi +gufa, [ 1<i,5 < n}
(iv) if My > Xgand p= (A + 1, + 1),

g = {0 = 2) gu, £ = Ou = Do +1) fug + fu, 0, | 105 <n.

We conclude Chapter 5 with an example. For Y = Gr(5,2) we write down
the tilting quiver and the relations described by I explicitly. We observe that
the tilting quiver for Gr(4,2) forms a full sub-quiver and the relations form a
sublist of those for Gr(5,2); this data recovers the example given by Buchweitz,
Leuschke and Van den Bergh in [BLV15, Example 8.4].



Reconstructing Gr(n,2) from a tilting bundle

For Y = Gr(n,2), Theorem 5.10 gives us an explicit presentation of the endo-
morphism algebra A = kQ'/ker(®). Hence points of M(E) = M(A,v,0) are
f-stable representations of ()" with dimension vector v which satisfy the relations

induced by ker(®). Using this presentation we prove the following.

Theorem 6.1. Let Y be the Grassmannian Gr(n,2). Then the morphism
fe: Y — M(E) is an isomorphism.

By considering a particular sub-bundle E’ of the tautological bundle on the
moduli space M(E), we use the same multigraded linear series technology as in
Theorem 2.11 to write down a morphism fz: M(E) — M(E'’) where our choice
of £ yields M(E') = Y. The approach is then to demonstrate that fg is an
inverse morphism for fz, and this requires a technical result using induction as
follows.

Begin by considering Y = Gr(4,2). Using the presentation above and con-
sidering [Crall, Section 2|, we can write down points of w € M(FE) using two
overlapping systems of matrices: one matrix per arrow of ' satisfying the rela-
tions in ker(®) given by Theorem 5.10, the orders of which are determined by
v, and one matrix per vertex of (' given by concatenating the matrices corre-
sponding to the arrows with head at that vertex, which by #-stability must be
full rank.

Now fix w € M(FE). Using the constraints on the systems of matrices defining
w, namely f-stability and the relations induced by ker(®), we prove w is equiva-
lent to a point (modulo the group action) where every entry of each matrix is a
polynomial in the entries of the single matrix corresponding to the arrows of @,
the original quiver for Y which is a full sub-quiver of (). Once we have done this
for Gr(4,2), we use induction to prove the same property holds for Gr(n,2). It

is then possible to show that fg/ is the inverse morphism for fg.

Future directions

We conclude with a discussion about the potential to generalise the methods of

this thesis in order to prove the following.

Conjecture 7.1. For any 1 < r < n let Y = Gr(n,r). Then the morphism
fe Y — M(E) is an isomorphism.

While Buchweitz, Leuschke and Van den Bergh provide the tilting quiver

for any Gr(n,r), considerable combinatorial work must be undertaken in order

8



to write down explicit generators for ker(®). The difficulty is two-fold: first,
write down a ‘Pieri system’, i.e. a collection of maps S*\W — SMeW for \ €
Young(n — r,r) and 1 < ¢ < r (when ¢ = 1,2 these are the f-type and g-type
maps described above). Secondly, use this system to describe the relations of
the titling algebra in the style of Chapter 5. We discuss this in more detail in
Section 5.3 and Section 7.1.

Without completing the above, it is hard to say anything definitive about
generalising the proof of Theorem 6.1 using the methods in Chapter 6. However,
different strategies altogether may provide further insight, in particular the work
of Bergman and Proudfoot [BP08] which identifies any quiver flag variety Y with
a connected component of M(E). Given the evidence in this thesis, we therefore

conjecture the following.

Conjecture 7.2. Let Y be any quiver flag variety and E the tilting bundle from
Theorem 2.9. Then the morphism fg:Y — M(E) is an isomorphism.



Chapter 2
Background

We begin by recalling some basic definitions and the construction of quiver flag
varieties. Then we present a tilting bundle for these varieties and define the
corresponding tilting algebra. From this we create a second moduli space, the
‘multigraded linear series’, and write down a closed immersion from the original

quiver flag variety to the multigraded linear series.

Throughout, let k be an algebraically closed field of characteristic zero.

2.1 Quiver flag varieties

The background material presented in this section mostly follows [Crall, Sec-
tions 2, 3].

A quiver @ = (Qo, Q1) is a directed graph with vertex set @)y and arrow set
Q1. For each arrow a € )3 we denote by h(a),t(a) € Qo the vertices at the
head and tail of a respectively. We say that @) is finite if Qo and ) are finite;
connected if the underlying graph is connected; acyclic if there exists a labelling
of vertices Qp = {0,1,...,¢} C N such that for all a € @; we have t(a) < h(a).
Unless stated otherwise, we hereafter suppose that @) is finite, connected, acyclic
and has a unique source vertex 0, i.e. 0 is the only vertex ¢ € g such that there
are no arrows a € 1 with h(a) = i.

A representation W of @) consists of a vector space W; for all i € Qg and a
linear map w,: Wiy — Wi for all a € Q1. Denote r; := dim(W;) and define
the dimension vector of W to be r := (rg,...,r,) € N1

Henceforth fix a dimension vector r = (r;) € N satisfying 1y = 1 and denote

10



the space of representations of () with dimension vector r by

Rep(Q,r) == @ Hom (k™ k™). (2.1)

aeQn

[somorphism classes of representations with dimension vector r are precisely the

orbits under the action of the group

G =[] GL(r) (2.2)

induced by conjugation, i.e. change of basis.

Definition 2.1. The quiver flag variety associated to the pair (Q,r) is the GIT
quotient

Y :=Rep(Q,r)/, G
for the special choice of linearisation x := (— Zle ri,1,...,1) € GY.
Remark 2.2. It will sometimes be more convenient to consider a coarser de-
composition of Rep(Q,r) than (2.1). For each 1 < ¢ < ¢ define the subspace

Rep(@? E)z = ®{a€Q1:h(a):i} Hom<krt(a) y kri)’ glVlng

Rep(Q,7) = €D Rep(Q, ). (2.3)

1<i<e

We may write points of Rep(Q,r) as a tuple of matrices (w;), 1 < i < ¢, where

each w; has r; rows.

By [Crall, Lemma 2.1], a point (w;) is x-stable if and only if it is y-semistable
if and only if each matrix w; satisfies rank(w;) = r;. Thus, Craw observed that

the quiver flag variety Y is non-empty if and only if the inequality

r; < 8= Z Tt(a) (2.4)

{aeQi|h(a)=i}

holds for all ¢ > 0. Moreover, by [Crall, Propositions 2.2, 3.1], Y is equal to
the fine moduli space M, (Q),r) of x-stable representations of () with dimension
vector 7, and is also a smooth Mori Dream Space of dimension S0_ 7;(s; — 7).
For more on Mori Dream Spaces, see [HK00].

We now state the main structure theorem of quiver flag varieties.
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Theorem 2.3 ([Crall, Theorem 3.3]). For any quiver flag variety Y, there is a

tower of Grassmann-bundles
Y =Y,—Y,_— - - —Y — Y, = Speck, (2.5)

where at each stage, Y; is isomorphic to the Grassmannian of rank r; quotients
of a fized locally-free sheaf of rank s; on Y;_1.

We therefore see that quiver flag varieties have an iterative structure as a
tower of Grassmann-bundles. Hereafter we assume that the inequality (2.4) is
strict for each ¢ > 0 to avoid degeneracy in the tower.

Following [Crall, Equation 2.4|, we see that quiver flag varieties naturally
carry a collection of vector bundles Wy, ..., W, that determine many of their
algebraic invariants. Indeed, for ¢ > 0, the Grassmann-bundle Y; over Y;_; carries
a tautological quotient bundle V; of rank r;, and we write W; := 7(V;) for the
bundle of rank r; on Y obtained as the pullback under the morphism m;: ¥ — Y]
in the tower. Define W, := Oy and let k(@) be the path algebra of (). Then there
is also a universal k-algebra homomorphism k@ — End(D,c,, Wi) obtained

associating compositions of morphisms Wy — Wh(a) to paths of arrows a € Q.

Proposition 2.4 ([Crall, Corollary 3.5, Lemma 3.7]). Let Y be a quiver flag

variety with non-trivial tautological bundles Wy, ..., Wi.

(i) The vector bundles Wi, ..., W, are globally generated.

(ii) The line bundles det(WVy), ..., det(Wy) are globally generated and provide
an integral basis for Pic(Y).

(ili) The universal k-algebra homomorphism kQ — End(@,cq, Wi) induces an
isomorphism of vector spaces e;kQeq = HO(Y, W) for each i € Qo, where
e; are the orthogonal idempotents of kQ).

Examples 2.5. (i) [CS08, Example 3.6] Consider the quiver in Figure 2.1 with
dimension vector (1,1, 1). Using the tower structure given in (2.5), we see that YV’
is a projective bundle over P!. Moreover, using [Crall, Theorem 3.3] it is possible
to calculate the locally-free sheaf of rank s, = 2 in Theorem 2.3 to be Op, Op, (1).
Therefore, we have Y = Pp1(Op, @ Op,(1)) = Fy, the first Hirzebruch surface.

For more on Hirzebruch surfaces, see [CLS11, Example 3.1.16].

(ii) [Crall, Example 2.4] Consider the quiver in Figure 2.2 with dimension vector
(1,7) and let |@Q4| := n > r so that (2.4) is satisfied. Then the tower from (2.5)

is height one and so Y is simply Gr(n,r), the Grassmannian of r-dimensional

12



FIGURE 2.1: The quiver for Y = Fy, the first Hirzebruch surface.

quotients of k™. Alternatively, observe that points of Y as given by the decompo-
sition (2.3) are r x n matrices; the discussion following Remark 2.2 implies that
a point is y-stable if and only if it is full rank, and furthermore after identifying
matrices that are equivalent under the group action (change of basis), points of Y
therefore correspond one-to-one with surjective linear maps k™ — k", or in other

words, r-dimensional quotients of k”.

FIGURE 2.2: The quiver ) with n arrows such that Y = Gr(n,r).

(iii) The quiver with n arrows 0 — 1 and one arrow ¢ - i+ 1 for 1 <i < /{—1
with dimension vector satisfying n > r; > --- > r, makes Y into a (partial) flag

variety of type-A; see [Crall, Example 2.6].

2.2 Tilting bundles

We now move on to the definition of a tilting bundle. For a smooth projective
variety X, write Coh(X) for the abelian category of coherent sheaves on X and
D?(Coh(X)) for the bounded derived category of coherent sheaves on X.

Definition 2.6. A coherent sheaf E on X is tilting if:

(i) the algebra Ende, (£) has finite global dimension, i.e. the maximal projec-
tive dimension of any module over Endp, (F) is finite.
(ii) Extg (E,E) =0 for all k > 0.
(iii) E classically generates D’(Coh(X)), i.e. we have (E) = D°(Coh(X)) where
(E) is the smallest triangulated subcategory of D’(Coh(X)) containing F

and all of its direct summands.

13



For a tilting sheaf E, we write A := Ende, (E) for its tilting algebra.

Remark 2.7. It was noted by Hille and Van den Bergh [HV07] that when X is

smooth, conditions (ii) and (iii) together imply (i) in the definition.

The motivation for finding tilting bundles stems from the following impor-
tant theorem, which gives a nice description of the bounded derived category of

coherent sheaves for varieties with a tilting sheaf.

Theorem 2.8 ([Bae88][Bon90]). Let X be a smooth projective variety with tilting
sheaf E and tilting algebra A, and write Rmod(A) for the category of finitely
generated right A-modules. Then the functor

Homp, (E, —): Coh(X) — Rmod(A)
induces an equivalence of triangulated categories
R Homop, (F, —): D’(Coh(X)) — D’(Rmod(A)).

When a tilting sheaf is also a vector bundle we call it a tilting bundle. The
results of Beilinson [Bei78] and Kapranov [Kap88] provide tilting bundles for
projective space and Grassmannians respectively. In order to describe the gen-
eralisation to quiver flag varieties, we first establish our conventions for Young
diagrams.

Let r be a positive integer and A € N” a weakly decreasing finite sequence
of non-negative integers \; > --- > A\, > 0. We call such \ a partition with r
parts, even if X ends in a trail of zeroes. We can represent partitions pictorially
using Young diagrams; these are finite collections of boxes arranged into left-

justified rows in descending order. For example, the Young diagram representing
A=(4,3,1,1) is

Denote the number of boxes in a Young diagram by |A| := 37 | A;. As an abuse
of notation we hereafter consider partitions and Young diagrams as one and the
same. Denote by Young(n, ) the set of Young diagrams with at most n columns

and r rows. In other words,

YOU_Ilg(TL,T) :{)\:<)\177)‘7">€Nr’n2>\122)\7120}
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Recall that for any vector bundle V of rank r and for A € Young(n,r), we
obtain a vector bundle S*V whose fibre over each point is the irreducible GL(r)-
module of highest weight \. We may equivalently view S*V as the image of the
Schur functor on VP more on this in Chapter 4.

The following theorem provides a tilting bundle for any quiver flag variety Y
with tautological bundles Wy, ..., W,.

Theorem 2.9 ([Crall, Theorem 4.5]). The vector bundle on'Y given by

E = ) SOW, @0 SOW, (2.6)

1<i<e, XD €Young(s;—ri,r;)

is a tilting bundle. In particular, the bounded derived category of coherent sheaves
on Y is equivalent to the bounded derived category of finitely generated right
modules over A = Endp, (F).

Remark 2.10. This result answered affirmatively the question of Nakajima [Nak96,
Problem 3.10].

2.3 Multigraded linear series

Consider a quiver flag variety Y with tilting bundle E given by (2.6) and let
Ey, ..., E, be the indecomposable summands of E with £y = Oy. Denote by
v := (v;) € N the dimension vector satisfying v; := rank(F;) for all0 < j < n.
Following [CIK18, Section 2] and the summary given in [CG18, Section 2|, we
now briefly describe the construction of a fine moduli space M(A, v, 0) called the
multigraded linear series.

Multigraded linear series are examples of moduli spaces originally constructed
by King [Kin94]. To introduce our choice of stability condition 6, first set
0 = (=i v, 1,1,...,1) € Hom(Z"*',Q). An A-module M = P, M,
of dimension vector v is #’-stable if and only if M is generated as an A-module
by any nonzero element of Mj; any such stability condition is called 0-generated.
Since v is indivisible, King [Kin94, Proposition 5.3] constructs the fine moduli
space M (A, v,0’) of isomorphism classes of §'-stable A-modules of dimension vec-
tor v as a GIT quotient. In particular, M(A,v,#') comes with an ample bundle
O(1). Let k > 1 denote the smallest positive integer such that O(k) is very

ample. Then 0 := k6’ is also a 0-generated stability condition, and we write
M(E) .= M(A,v,0)
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for the fine moduli space of #-stable A-modules of dimension vector v. The

universal property of M(FE) determines a morphism
fe:Y — M(E) (2.7)

and moreover we have the following.
Theorem 2.11. The morphism fg: Y — M(E) is a closed immersion.

Proof. Each W; is globally generated by Proposition 2.4, and hence so is every
indecomposable summand E; of E from (2.6). Therefore det(E;) is also globally
generated for each Ej; see [Sno86, Section 4]. By [Crall, Lemma 3.7] the line
bundle L := ®:!_, det(W);) is ample. Hence, the line bundle Qo< j<n det(E;),
which is a tensor product of L and other globally generated bundles, is also ample
by [Har77, Exercise I1.7.5(d)]. The result now follows from [CIK18, Theorem 2.6].

[

Remark 2.12. Work of Bergman-Proudfoot compares any smooth projective
variety admitting a tilting bundle to a fine moduli space of modules over the
endomorphism algebra. In fact, [BP08, Theorem 2.4] implies that fg identifies Y
with a connected component of M(E), because Y is smooth, F is a tilting bundle,
and our stability condition 6 is ‘great’ (see the discussion prior to Proposition 2.2
in [BP08]).

Theorem 2.11 implies that M(E) may be realised as an ambient space for
Y'; this generalises the classical morphism to the linear series of a basepoint-free
line bundle. It is natural to ask when fg is an isomorphism, thereby providing a
reconstruction of the quiver flag variety from a tilting bundle. This thesis provides
two classes of examples: when Y is toric (Chapter 3), and when Y = Gr(n, 2), the
Grassmannian of 2-dimensional quotients of k™ (Chapter 6). The main tool is to
define a quiver ', which we call the tilting quiver, such that there is a surjective
k-algebra homomorphism

O:k@Q —» A

defined by mapping paths to compositions of maps. Since kQ'/ker(®) = A,
we may regard points of M(E), or more specifically §-stable A-modules with
dimension vector v, as f-stable representations of )’ with dimension vector v

subject to the relations induced by ker(®).
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Chapter 3

Reconstructing toric quiver flag

varieties from a tilting bundle

The content of this chapter is taken from the paper [CG18], of which
the author of this thesis is a co-author. Please see the declarations on

the preliminary pages.

3.1 Statement of the main result

We continue to use the notation introduced in Chapter 2. Let @ be a finite,
connected, acyclic quiver with unique source and vertex set Qo = {0,...,/¢}.
This chapter considers quiver flag varieties with dimension vector r = (1,...,1);
in this case, the group G from (2.2) is an algebraic torus and so the quiver flag

variety Y is a toric variety. As such, we make the following definition.

Definition 3.1. A toric quiver flag variety is a quiver flag variety Y with di-

mension vector r = (1,...,1).

The toric fan ¥ can be described directly in this case (see [CS08, p1517]), and
therefore Y is a tower of projective space bundles via Theorem 2.3. Moreover,

the tilting bundle from (2.6) is simply the direct sum of line bundles

E= P wme--owm™ (3.1)

1<i<e, 0<m;<s;
on Y, where s; is defined in (2.4). The main result is as follows.
Theorem 3.2. Let Y be a toric quiver flag variety. Then the morphism fg: Y —

M(E) from (2.7) is an isomorphism.
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As a result, toric quiver flag varieties provide a new class of examples where
the programme of Bergman-Proudfoot [BP08] can be carried out in full, enabling
one to reconstruct the variety from the tilting bundle. The special case where
Y is isomorphic to projective space recovers the well-known result that P" can
be reconstructed from the tilting bundle &, .,,, Op~ (i) of Beilinson [Bei78]; see
Example 3.4. Theorem 3.2 therefore provide; Eurther evidence that toric quiver

flag varieties provide good multigraded analogues of projective space.

3.2 The reduction step

The method of proof for Theorem 3.2 is as follows. Set n+1 :=[],.,., s; and list
the indecomposable summands from (3.1) as Ey, ..., E, with Ej 2_(’)_;/. The fact
that Qo< ;<, det(E)) = Qo< j<n, Ly is very ample and f5 is a closed immersion
puts us in the situation studied by Craw—Smith [CS08], where it is possible to
give an explicit GIT quotient description for both the moduli space M(FE) and
the image of the universal morphism fz. Theorem 3.2 will follow once we prove

that these two GIT quotients coincide.

To describe M(FE) as a GIT quotient, we first present the algebra A =
Ende, (F) using the bound quiver of sections (@', R) as follows. The quiver
@' has vertex set @, = {0,1,...,n} and an arrow from vertex ¢ to j for each
irreducible, torus-invariant section of F; ® £, ! i.e. the corresponding homomor-
phism from E; to E; does not factor through some Ej with k& # 4,j. To each
arrow a € ()] we associate the corresponding torus-invariant ‘labelling divisor’
div(a) € N*() | where (1) denotes the set of rays of the fan of Y. The two-sided
ideal

R:=(p—qekQ'|p,q share the same head, tail and labelling divisor)

in k@' satisfies A = kQ'/R (see [CS08, Proposition 3.3]). Denote the coordinate
ring of Agll by k[y.], where a ranges over Q). The ideal R in the non-commutative

ring k@' determines an ideal in k[y,] given by

p, q share the same head,
[ = 0 = . 6 k \ : 32
! H )y H )y e tail and labelling divisor (3:2)

a€supp(p a€supp(q

where the support of a path supp(p) is simply the set of arrows that make up the
path. This ideal is homogeneous with respect to the action of 7" := [ ], GL(1)
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by conjugation. It now follows directly from the definition of King [Kin94] that

M(A,v,0) = V(I) J, T == Proj € (klyal /Ir) o, (3.3)

k>0

where (k[ya] /IRr)ke denotes the kf-graded piece. In fact, [CS08, Proposition 3.8]
implies that M(E) = M(A, v, 0) is the geometric quotient of V(Ig) \ V(By/) by

the action of T', where

n

By =) (va € klya] | h(a) = j) (3.4)

Jj=1

is the irrelevant ideal in k[y,] that cuts out the #-unstable locus in Au? L

Our task is to compare (3.3) with the GIT quotient description of the image
of fp. For this, define a map 7: Z% — Z% @ Z*W by setting m(xa) = (Xn(a) —
Xt(a), div(a)), where x, for a € Q| and x; for i € @ denote the characteristic

functions. The T-homogeneous ideal

Io = (y" — v’ €klya) | u — v € ker(m)) (3.5)

contains I from (3.2), and [CS08, Proposition 4.3] establishes that the image of
the universal morphism fg is isomorphic to the geometric quotient of V(Zg/) \
V(Bg) by the action of T

Proposition 3.3. Suppose that the T-orbit of every closed point of V(Ig)\V(Bg)
contains a closed point of V(Ig) \ V(Bg). Then Theorem 3.2 holds.

Proof. The inclusion V(Ig) C V(Ig) always holds, and the assumption ensures
that V(1) /, T € V(Ig)/, T, so the closed immersion fg is surjective. O

In Section 3.4 we prove that the assumption of Proposition 3.3 holds for every
toric quiver flag variety Y. To illustrate the strategy, we recall the following well-

known construction of P" using Beilinson’s tilting bundle.

Example 3.4. For the acyclic quiver () with vertex set Qo = {0,1} and n + 1
arrows from 0 to 1, the toric quiver flag variety Y is isomorphic to P” and the
quiver of sections Q' for the tilting bundle P, Op» (i) is shown in Figure 3.1;
note that @) is a sub-quiver of (). For each 1 < m < n and each ray p € X(1)
in the fan of P" defining a torus-invariant divisor D,, let a;' denote the arrow
with head at m and labelling divisor div(a}') = D,. Wmtmg Y, € k[ya] for the
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OEO= - =00

FIGURE 3.1: The tilting quiver for P".

variable associated to the arrow a7, we have

Ir = (yglﬂygl — yperlme € klya] ’ I1<m<n-1; poée E(l)). (3.6)

We claim that a point (w}') € V(Iz)\ V(Bg) C Aﬁ(nﬂ) lies in the same T-orbit

as the point (v;”) with components v} := w}) forall 1 < m < mnand p € %(1).

Clearly (v)') € V(Ig) \ V(Bg), so the claim and Proposition 3.3 show that

Theorem 3.2 holds for P".

To prove the claim, note that since (w}') & V(Bg), the T-action allows us
=1.
Then v, ) = 1, and (3.6) implies that w?, v, = w? for all p € ¥(1). The case

to assume that for all 1 < m < n there exists p(m) € X(1) such that wy

m)

w’ = v;(w;@))_l = w;(w;(z))_l for all p € 3(1).

Let the one-dimensional subgroup k* C T' scale by w})@) at vertex 2 to obtain a

m
p

for m = 1,2. Repeating at each successive vertex shows that (v}') and (w}") lie

point in the same T-orbit as (w)') whose components agree with those of (v}')

in the same T-orbit as claimed.

3.3 The tilting quiver

Before establishing that the assumption of Proposition 3.3 holds for every toric
quiver flag variety, we describe the tilting quiver ()’ in detail (see Example 3.7).

For the vertex set (), recall that the line bundles Wi, ..., W, provide an
integral basis for Pic(Y) = Z*. Since Q) is defined by the summands W™ ®
@ W™ of the tilting bundle E from (3.1), it is convenient to realise @) as
the set of lattice points of a cuboid in Z‘ ®z R of dimension ¢ with side lengths
s1—1,...,8,—1. Welabel the vertex for W™ - - ~®W§9W by the corresponding

lattice point (my, ..., my) € Z*, giving

ng{(ml,...,mg)EZZ|O§m¢<Si}.
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We introduce a total order on Qf: for k = (ki,...,k¢),m = (mq,...,my) € QF,
write k < m if k; < m; for the largest index i satisfying k; # m;.

For the arrow set (), first note that the arrows in ) correspond precisely
to the torus-invariant prime divisors in Y because @) is the quiver of sections
of {Oy, Wh,...,W,}, [CS08, Remark 3.9]. For p € X(1) we write a, € @)y for
the arrow corresponding to the divisor of zeros D, of a torus-invariant section
of Whi(a,) ® Wt’(;p). Each a, may be regarded as an arrow in ), so we may
identify ) with a complete sub-quiver of ) that we call the base quiver in ('.
More generally, translating each a, around the cuboid described in the preceding
paragraph (so that the head and tail lie in @Q))) produces arrows in @’ that we

denote a;' € @) for m = h(a}') and D, = div(a]'). In fact, we have the following:

m

Lemma 3.5. Fvery arrow a € ()} is of the form a = a}’,

D, = div(a).

where m = h(a) and

Proof. Fora € @}, write h(a) =m = (my,...,my) and t(a) = m' = (mf,...,m}),
so div(a) is the divisor of zeros of a section of &),.,., Wl@(mi*mi). In terms of

prime divisors, we have

div(a) = Y AD, for), €N
)

peX(1

Let 1 <k < ¢ be the largest value such that A\, # 0 for some p € ¥(1) satisfying
k = h(a,) € Qo. Note that 0 < mj < my, and moreover, j := t(a,) < k.
Since div(a) is irreducible, translating a, so that the tail is at vertex m' forces
the head to lie outside the cuboid, giving m}; = 0 or mj, = s — 1; similarly,
translating a, so that the head is at m forces the tail to lie outside the cuboid,
giving m; = s; — 1 or my, = 0. Since 0 < mj < my, both m}; =0 and m; = s; — 1
must hold, so m/; < m;. As a result, there must exist o € (1) satisfying A\, # 0
for j = h(a,). If we set i := t(a,) and repeat the argument above, we deduce
that m; < m;. Continuing in this way, we eventually find 7 € ¥(1) such that
A # 0 with h(a,;) = 1 and t(a,) = 0. But then 0 = m} < m; = s; — 1, so we can
place a translation of a, with head at m and tail in the cuboid (or tail at m’ and

head in the cuboid). This shows div(a) is reducible, a contradiction. O

Remark 3.6. Since @ is the quiver of sections of {Oy, Wy, ..., Wy}, the vertices
of the base quiver are the vertices eg, ey, ..., e, € Q) C Z*, where e; denotes the

i standard basis vector for i > 0, and where ¢ := (0, ...,0).

The next example illustrates how the base quiver sits inside Q.
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Example 3.7. The quiver () shown in Figure 3.2(a) defines the toric quiver flag
variety Y = Pz(O(1,0) @ O(0,1)) where Z = Pp2(O & O(1)); the colours of the
arrows indicate the distinct labelling divisors. We have s; = 3 and sy = s3 = 2,

so the tilting quiver @’ has 12 vertices shown in Figure 3.2(b) using the ordering

described above. Note that the base quiver is the complete sub-quiver of ()’ whose

—

FIGURE 3.2: Quivers for Y: (a) original quiver Q; (b) tilting quiver Q.

vertices are shown in bold in Figure 3.2(b). The colour of each arrow of Q' is

determined by its unique translate arrow from the base quiver.

3.4 Proof of Theorem 3.2

In light of Lemma 3.5, each point of Agl is a tuple (w)') where w' € k for
p € (1) and for all relevant m € Q. Motivated by Example 3.4, we associate to
(w)') € Agl an auxiliary point (v]") € V(Igr) C Agl whose components satisfy

vy == w, for p € X(1) and all relevant m € Q, (3.7)

where for p € (1) we write w, € k for the component of the point (w}") corre-

sponding to the unique arrow a, in the base quiver satisfying div(a,) = D,.
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Lemma 3.8. [f (w;”) Q V(BQ/), then (U;n) € V(BQ/).

Proof. Fix m = (my,...,my) € @ and let 1 < j < ¢ be minimal such that
m; # 0. Then for all p satisfying h(a,) = j € Qo, the arrow @' obtained by
translating a, until the head lies at m is an arrow of (). At least one of the
values {w, | h(a,) = j} is nonzero by assumption, and hence for this value of p

m .
we have v' = w, # 0 as required. 0]

We now establish notation for the proof of Theorem 3.2. For any vertex
k= (ki,...,ke) € Qp, let (Q'(k), R(k)) denote the bound quiver of sections of
the line bundles W™ ®- - -@W,;”™ on Y with (my, ..., m) < k. Explicitly, Q' (k)
is the complete sub-quiver of @' with vertex set Q'(k)o := {m € Q@ | m < k},
and the ideal of relations R(k) := kQ'(k) N R satisfies

kQ' (k
Q<)%End< ar) W?W@---@WE’W).

As in Section 3.2, the coordinate ring k[y7" | p € X(1),m < k] of the affine space
Ag(k)l contains ideals Ir(, Bo/x) and Ig () defined as in equations (3.2), (3.4)
and (3.5) respectively, each of which is homogeneous with respect to the action
of T(k) := [[y<;<x GL(1) by conjugation. The projection onto the coordinates

indexed by arrows a;" satistying m < k, denoted
T Aﬂcjll — Aﬂcjl(k)l, (3.8)

is equivariant with respect to the actions of T and T'(k). Notice that m(V(Ig)) C
V{Irw). m(V(Bg)) € V(Bow) and m(V(I)) € V(Ig)

Proof of Theorem 3.2. Fix a point w = (w}') € V(Ig) \ V(Bg) and the
corresponding point v = (v}') € V(Ig) \ V(Bg/) whose components are defined
in equation (3.7). Since w ¢ V(B¢ ), the action of T enables us to assume that
for all m € @ there exists p(m) € ¥(1) such that wyy, = 1. In particular,
Upimy = 1 for all relevant m € Q. Now, for 0 < k < (s1 —1,...,s — 1), the

morphism 7 from (3.8) sends the points w and v to
mi(w) € V{Ira) \ V(Boay) and m(v) € V(o) \ V(Bow)

respectively. We claim that i (v) lies in the T'(k)-orbit of 7, (w). Given the claim,
the special case k = (s; —1,..., s, — 1) shows that the point v lies in the T-orbit

of the point w, so Theorem 3.2 follows immediately from Proposition 3.3.
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We prove the claim by induction on the vertex k = (ki,...,ks) using the
total order on () from Section 3.3. The case k = ey is immediate, and for
(1,0,...,0) <k < (s1—1,0,...,0) the claim follows from Example 3.4; hereafter
we assume that ¢ > 2. Suppose the claim holds for all m < k, so we may assume
that w' = w, for all m < k. It is enough to show for all p € X(1), that w,x) # 0
and

wy = wp(Wo() (3.9)

because then we may let the one-dimensional subgroup k* C T'(k) scale by w)
at vertex k. Before establishing the claim (3.9), we introduce some notation that

we use in the proof.

Notation 3.9. 1. Recall from Section 3.3 that vertices of the tilting quiver
Q' are elements k = (ki,..., k) in the lattice Z*, so k; € Z for 1 < i < /.
Note also (see Remark 3.6) that the standard basis vectors ey, ..., e, of Z*
denote certain vertices of )'. This notation is standard and we hope that

no confusion arises in what follows.
2. It is convenient to distinguish certain elements of @, and Z¢.

e First we distinguish certain elements of the vertex set Qg = {0, 1, ..., ¢}
of the original quiver. For the ray p(k) appearing in (3.9), define
0<a<p</lhby

o= t(ap(k)) and f:= h(ap(k))7

where a, is the arrow in the original quiver @) satisfying div(a,m)) =
D). Also, let 1 < 6 < ¢ be minimal such that the induction vertex
k = (ki,..., ko) satisfies ks # 0, and define 0 < v < § by setting

Y= t(ap(eé)).

Minimality of § implies that either v = 0 or k, = 0 and, moreover,
that § < 3.

e Next we introduce certain elements of Z*. For any ray p € 3(1), define

d(p) = en(a,) — €t(a,) € L,

where a, is the arrow in the original quiver satisfying div(a,) = D,

(recall that eg := 0). In particular, by the previous bullet point we

24



have
d(p(k)) = 5 — ca and  d(p(es)) = cs — .

We now return to the proof of the claim (3.9), treating the cases § <  and
0 = [ separately.
CASE 1: Suppose first that 0 < 5. In this case we proceed in three steps:

STEP 1: Show that equation (3.9) holds for p = p(es) when v = a = 0 or

v # a. We use generators of the ideal Ip(;) corresponding to pairs of paths in
Q' (k) with head at k. Consider paths of length two as in Figure 3.3, where for

now we substitute p(k) and p(es) in place of p; and ps. In this case, we claim

P1

k—d(p1) k
" o
P2
k—d(p) — d(p2) —— k — d(pa)

FiGURE 3.3

that each vertex in Figure 3.3 lies in the quiver @'(k). Indeed, a';(k) € Q'(k)1, so
its head k and tail k — eg + e, lie in @Q'(k)o; this implies kg > 0 and either v = 0
or ko < 5o — 1. Also, ks > 0 and either v =0 or k, =0, so k — d(p(es)) is equal
to k —es + €., which lies in the quiver @)'(k). For the fourth vertex in Figure 3.3,

either:

(i) v =a =0, giving e, = e, = 0, and the inequalities kg, ks > 0 imply that

the fourth vertex k — e — es lies in @Q'(k)q as claimed; or

(ii) v # a, and since 7 < 0 < 3, the fourth vertex k — eg + e, — €5 + €, lies in
Q' (k)o because kg, ks > 0, either « = 0 or k, < s, — 1 and either 7 = 0 or
k, = 0.

Figure 3.3 therefore determines a binomial in /gy which implies that

k—d(p(k)) &k _  k—d(p(es)) k
Wotes)  Wotk) = W) Wo(es)-

Our induction assumption gives wy* = w, for all m < k, and since wy(,) =1 =

k

w’;(k), we have 1 = Wo(k)Wp( )

. In particular, w,;) # 0 and
k —
Wetes) = (W) ™"

which establishes equation (3.9) for p = p(es) when v = a =0 or v # «a.
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STEP 2: Show that equation (3.9) holds for p = p(es) when v = a # 0. Since
ko = k, = 0, the method from STEP 1 applies verbatim unless s, = 2. In this
case, define 0 < e < v by

£ = t(ap(ev)),

giving d(p(e,)) = e, — e.. Consider paths of length three as in Figure 3.4, where
for now we substitute p(k), p(es) and p(e,) in place of p1, p2 and ps. Again, we

k—d(pr) — d(ps) —>— k— d(p1) noy

n T

k=S d(p) 2 k= d(pa) — d(ps) —22— ki — d(p)

FIGURE 3.4

claim that each vertex in Figure 3.4 lies in the quiver @Q'(k); the proof is similar
to that from STEP 1 (here, minimality of ¢ implies ¢ = 0 or k. = 0, and we

use the inequalities € < v < 0 < ). Thus we obtain a binomial in Iy which,

m

applying the inductive assumption wy

= w, for all m <k, gives

k k
Wp(es)Wpley) Wty = Wolk) Woler) Wp(es)*

Since Wy(e;) = Wy(e,) = w’p“(k) =1, we have w,) # 0 and w¥_, = (wyu))~" which

ey ples)
implies that equation (3.9) holds for p = p(es).

STEP 3: Show that equation (3.9) holds for all p € 3(1). Consider any arrow
ak in Q" with head at k. The vertices
A:=t(a,) and p:=h(a,)
satisfy d(p) = e, — ey with 0 < A < < £. We proceed using the approach from
STEPS 1-2:

(i) If u # 8, then we substitute p and p(k) in place of p; and py in Figure 3.3
as in STEP 1, unless A = a # 0 and s, = 2 in which case we substitute
p(eq) in place of p3 in Figure 3.4 as in STEP 2. In either case, we obtain
an equation relating components of w, which, after applying the inductive

hypothesis if necessary, becomes
k k
wp(k)wp = wpwp(k).
STEPS 1 and 2 established w, # 0, and w’;(k) = 1, so equation (3.9) holds.
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(ii) Otherwise, u = 5. Substitute p(es) and p in place of p; and ps in Figure 3.3
as in STEP 1, unless A = 7 # 0 and s, = 2 in which case we substitute
p(e,) in place of ps in Figure 3.4 as in STEP 2. As in part (i) above, we

obtain an equation which simplifies to
w = w,wk (3.10)

STEPS 1 and 2 established w';(%) = (wyk)) ", so equation (3.9) follows.

This completes the proof of equation (3.9) in CASE 1.

CASE 2: Suppose instead that 6 = §. If ks > 1 then the proof is identical to
CASE 1. If on the other hand ks = 1, then the vertex k — d(p(es)) — d(p(k)) =
k — 2e5 + e, + e, that plays a key role in CASE 1 does not lie in @'(k)o. In the
special case that k = es, making k a vertex of the base quiver, then we have
w’pC = w, for all relevant p € ¥(1) and there is nothing to prove. If k # es, we
introduce another useful vertex of the original quiver: let £ be minimal such that

0 <& </land ke #0, and define 0 < 7 < £ by setting

= t(ap(es))

giving d(p(e¢)) = e¢ — e,. We treat the cases 1 # § and 7 = 0 separately.

SUBCASE 2A: If n # 6(= [3), then either n = 0 or k, =0, so k — d(p(e¢)) =
k — ec + e, is a vertex of Q'(k)o. We may now proceed just as in CASE 1 except
that p(eg) replaces p(es) throughout (so & and 7 replace § and v respectively).

SUBCASE 2B: Suppose instead that n = §(= ). We've already reduced to
the case ks = 1. If s5 > 2 then once again, k — d(p(e¢)) = k — ec + €5 is a vertex
of Q'(k)o and we proceed as in CASE 1 with p(e¢) replacing p(es) throughout. If

ss = 2, then we proceed as follows:

STEP 1: Show that w,x) # 0. If ¥ # a or v = a = 0, then we use Figure 3.4
with p; = p(k), p2 = p(es) and p3 = p(eg) to obtain the equation

k k
L = Wp(es) Wo(ee) Wok)y = Wok)Wp(ee) Wp(es)

which gives w,) # 0. Otherwise, v = o # 0, giving d(p(k)) = es —e, = d(p(es)).
It may be that p(k) = p(es), in which case wp) = wpy(e;) = 1 and hence w,y # 0
as required. If p(k) # p(es), then consider the pair of paths of length four as in
Figure 3.5, where we substitute p(k), p(es), p(e¢) and p(e,) in place of py, ..., ps

(in fact, both paths pass through the same set of vertices in this case).
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p P p
k= dp) Bt k= d(p) — d(ps) e k—d(py) —— &

s e

B dip) D k=, d(p) 2 k= dps) — d(ps) -k — d(pn)

FiGure 3.5
We obtain the equation

k k
L = Wp(es) Wp(ey) Wolee) Wo(k) = Wolk) Wp(er) Wolee) Wo(es)

which gives w,) # 0 and completes STEP 1.

STEP 2: Show that equation (3.9) holds for all p € 3(1). For any af € @/,
the vertices

A:=t(a,) and p:=h(a,)
satisfy d(p) =e, —ey with 0 < A < pu < L.

(i) If u >, use Figure 3.3 with p; = p(k) and py = p, unless A = a # 0 and
S = 2 in which case use Figure 3.4 with the addition of p3 = p(e,). Either
way, we obtain the equation wp(k)wf; = wpw’;(k) which, since w,) # 0 by

STEP 1, gives (3.9).

(ii) If p = 6, use Figure 3.4 with p; = p(k), po = p and p3 = p(ee) unless
A =a # 0 and s, = 2 in which case use Figure 3.5 with the addition of

k k

p1 = p(eq). Either way, we obtain W)Wy = Wyl gy which, since wy) # 0

by STEP 1, gives (3.9).
This concludes the proof in CASE 2, and completes the proof of Theorem 3.2. [

Remark 3.10. Our approach relies on the explicit description of the image of
the morphism fr in Theorem 3.2 as the GIT quotient V(Ig)/, T, see [CS08,
Theorem 1.1]. We do not at present have a similar description in the non-toric

setting.

Example 3.11. We conclude with an example to illustrate the proof of The-
orem 3.2. Let @ and @' be the quivers in Figure 3.2, so { = 3. Suppose
k= (0,1,1) € Qp, so 6 = 2. The three arrows with head at k have tails
at (1,1,0) (light blue), (0,0,1) (red) and (1,0,1) (blue),and we label the cor-

responding rays pp, p2 and ps respectively. We now illustrate in two different

k

b = wy(wpry) ™" from (3.9)

situations why w,x) # 0 and why the equation w

holds for p = p1, p2, ps.
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s ,0):’
i'\\

(2,0,0)

(0,0,0)

F1GURE 3.6: The tilting quiver for @ from Figure 3.2.

1. Suppose that p(k) = p;. Then = 3 and a = 1 (see Figure 3.2(a)), and

wk = 1. Suppose p(es) = p(e2) = pa so that v = 0 and w,, = 1. This is an

example of CASE 1 as d < (3, and since 7 = 0 we require only STEP 1. In

this case Figure 3.3 becomes

k
p2°

implies w,, # 0 and wk = (w,,)”" which establishes (3.9) for

k
p

and in this case for p = p3 we have g = 2 and A = 1. Since g # [ and

k _ k
pr = Wp Wpy-

. . . k _
and the relation gives the equation wy,w; = w,w

k
p1

p = p1,p2- The remaining arrow a

Moreover, w,, =
1 =w
, with head at k requires STEP 3,

So = S1 7 2, we require STEP 3(i) to deduce w,,w This implies

wh = w,,(w,, )", establishing (3.9) for p = ps.

3

2. Suppose p(k) = p3, so f =2, a =1 and w’,j3 = 1. Suppose that p(ez) = po,
so v =0 and w,, = 1. Since § = 8 and ks = ky = 1, this is an example of
CASE 2. Since k # ey, we compute £ = 3. Write p4 for the label of the pink
arrow with head at (0,0,1) and tail at (0,1,0), and suppose p(ez) = ps.
Then n = t(a,,) = 2 and w,, = 1. Since n = 0 and s5 = 2, we require
SUBCASE 2B. Following STEP 1, since v = 0 we use Figure 3.4 as shown
below. This yields the equation w,,w,,w"

p3
1= wpgw’p“2, giving w,, # 0 as required. STEP 2 of SUBCASE 2B establishes

. k/. . . .
= Wy, wp,w,, which simplifies to

(3.9) for p = p1, p2, p3: we already know this for p = p3 by assumption; the

case p = py is provided by STEP 1 since wfk, = (wp,)™"

p = p1 is a simple application of STEP 2(i), where we apply Figure 3.3 to

; and the case
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P4

(1,1,0) (1,0,1) -
o e
(1,0,0) Ps 0,1,0) pa (0,0,1)

the rectangle with vertices (2,0,0), (1,1,0),(1,0,1), k and arrows labelled
p1 and p3.
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Chapter 4
The tilting quiver for Gr(n,2)

The remainder of this thesis considers the case where Y is the Grassmannian of
2-dimensional quotients of a n-dimensional vector space, though we begin in this
chapter with some minor results for the general case when Y = Gr(n,r) for any
n>r>2.

Let r,n be positive integers satisfying 1 < r < n and hereafter fix V' = k".
Let @@ be the quiver with two vertices 0,1 and n arrows from 0 to 1 as in Fig-
ure 4.1. With dimension vector r = (1,7) and xy = (—1,1), the quiver flag
variety Y = Rep(Q,r)/, G is isomorphic to Gr(n,r) = Gr(V,r), the Grass-
mannian of r-dimensional quotients of V| as shown in Example 2.5(ii). Note
that since Chapter 3 covers the case where Y is projective space, and because
Gr(n,r) = Gr(n,n — r), we hereafter assume that n >4 and 1 <r <n/2.

FIGURE 4.1: The quiver Q with n arrows such that Y = Gr(n, ).

In this case, the tower of Grassmann-bundles from Theorem 2.3 is height one

and so we define W := W, the rank r tautological quotient bundle on Y. Recall

that
S1 = Z Tt(a) =n,
{acQi|h(a)=1}

so the tilting bundle from (2.6) is given by

E= P sw (4.1)

A€Young(n—r,r)
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This tilting bundle was first introduced by Kapranov in [Kap84], and as such we
refer to A = Endo,, (F) as Kapranov’s tilting algebra.

As in the toric case, we aim to present A using (Q', a quiver with relations
that we call the tilting quiver. Since the indecomposable summands of E need
not be line bundles, the process of determining @)’ is much more involved than in
the toric case. In this chapter we will describe the structure of the tilting quiver
Q' for Y = Gr(n,2), which has vertex set given by the irreducible summands of
E and arrow set corresponding to the homomorphisms between these summands,

and use this to define a surjective k-algebra homomorphism

O: kQ' —» A.

4.1 The Schur functor

In this section we use [Ful97, p.104-7] to construct S*W, the vector bundle whose
fibre over each point is the irreducible GL(r)-module of highest weight A, as a
quotient of W We will do this using the Schur functor.

Let V be a finite-dimensional k-vector space and A be a partition. Whereas
the Cartesian product of n copies of V' is denoted V" =V x --- x V, we write
V> for the Cartesian product of |\| copies of V labelled by the boxes of the
Young diagram of . We will consider maps ¢: V** — U, where U is a k-vector

space, satisfying three properties:

(i) ¢ is multilinear.
(ii) ¢ is alternating in the entries of each column of A.

(ili) p(v) = > p(w), where the sum is taken over all w obtained from v by an
exchange (see below) between two fixed columns and a fixed subset of boxes

in the right hand column.

The process of an exchange is defined as follows. Given a Young diagram A, fix
two columns ¢y, ¢ with ¢; to the left of co with ny > no > 1 the number of boxes
in each column respectively. Let d be a set of ng < ny boxes in ¢;. Swap the ng
boxes of d with any ng boxes of ¢; whilst maintaining the vertical order of each
subset of boxes; this is called an exchange. The sum ¢(v) = > @(w) is taken over
all such exchanges, i.e. each combination of choosing n3 boxes of ¢; after fixing

c1,c2 and d. Given v, ¢y, co, d, there are (Z;) many w in the sum @(v) = > p(w).
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Example 4.1. Suppose A = (3,3,2) and fix the first and last columns of A.
Suppose that the fixed subset of boxes in the right hand column is simply the
top box. Then the sum p(v) = > p(w) becomes

T1Y1~1 21|Y1|T1 T1\Y1|T2 T1|Y1|T3
@ | |T2Y2|22 =@ | [T2y222 +¢ 21|Y2|22 +o | |[220y2|22
T3|Ys T3|Ys T3|Y3 21Y3

Now suppose we fix the same columns but select both boxes in the right hand
column as the fixed subset. Being careful to maintain the vertical order of the

boxes, the sum p(v) = > p(w) becomes

T1Y1|%1 £11Y11T1 £11Y11%1 T1|Y1|T2
P | |T2Y2|22 =@ Z9|Y2|T2 + @ | |xoy2|Ts + 21\Y2|T3
T31Y3 T31Y3 221Y3 221Y3

Definition 4.2 ([Ful97, p.106-7]). Let V be a finite-dimensional k-vector space
and A = (\,...,\,) a partition. The Schur power S*V is the universal target

vector space for maps ¢ as described above. Explicitly, S*V is the quotient space
of V&M given by

)\rfl_Ar)

R ® (/\2 V)®(>‘2_)‘3) ® VeAi—r2)
B\

oy - WV e ()

where F)y is the subspace generated by all possible exchanges on the Young dia-
gram A as described above. We call the elements of E\ exchange relations. The
map V** — SMV/ is given by taking the wedge product of entries in each column

from top to bottom and then tensoring these together.

Theorem 4.3 ([Ful97, Theorem 2, p.114]). Let V be a finite-dimensional k-
vector space and X\ be a partition with at most dim(V') parts. Then S'V is the
irreducible polynomial representation of GL(V') with highest weight A. Moreover,
these are all of the irreducible polynomial representations of GL(V).

Definition 4.4. The functor of finite-dimensional k-vector spaces S$*: Vect —
Vect, V +— SMV/, is called the Schur functor. While we have defined this functor
on Vect, it may also be defined on many other categories, in particular vector

bundles and G-modules.

Examples 4.5. (i) If A = (1,...,1) with |[A\] = & > 1 then the Young diagram

of A has only one column and so E, is trivial, therefore SV = AF V.

(NV)E2 NV
E\

(ii) Suppose A = (3,3,2) as in Example 4.1. Then S*V = and
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the map V** — S*V is given by

LYz
Tolyo|za] M TINT2NT3 R Y1 NY2 N Y3 ® 21 A 2a.

T31Y3

(iii) If A = (k) then SHV = V®/E,,. However, every column of A contains
only one box and so the exchange relations are reduced to simply permuting the
boxes. This implies S®V = Sym* V.

Remark 4.6. As a result of Example 4.5(iii), it will be more convenient to
identify the V®*1=*2) term in the definition of S*V with Sym™1 =) V" after taking
the quotient by E). Henceforth we write

N V) @ (NTV) M g g (N2 V)P g gy v

N —
SV o= E,

(4.2)

4.2 Littlewood-Richardson numbers

By Theorem 4.3, S*V is irreducible and so products such as SV ® S*V are in
general reducible. The Pieri rule gives us the irreducible decomposition of a

Schur power multiplied by a symmetric power or alternating power.
Proposition 4.7 (Pieri rule [FHI1, Eqn 6.8-9]). Let A be a partition and m € N.

(i) We have
SV @ Sym™V = (HSV
v
where v ranges over all partitions formed by adding m boxes to X with no

two new boxes in the same column.
(ii) We have
sVe A\V=Psv
¥

where v ranges over all partitions formed by adding m boxes to \ with no

two new boxes in the same row.

In this section we will see how to decompose the product of any two Schur
powers using the Littlewood-Richardson rule. To do this we define Littlewood-

Richardson numbers and present the rule following mostly [Ful97, Chapter 5].

34



Let A, u be partitions with r parts and suppose u contains A, i.e. \; < p; for
all i = 1,...,7, and we write A < pu. Note that A < u = |\ < || but the
converse is not true in general. We write A < p for strict containment.

The skew diagram /X is given by the Young diagram p with A removed from
the top left corner. For example, if A = (3,2,2,1) and u = (6,4,4,2) then /X is

as follows:

L] L]

0 A /A

Observe that any Young diagram p is also a skew diagram g /A where A = (0).

A filling of a skew diagram is the insertion of a positive integer into each box.
A (semi-standard) skew tableau is a skew diagram with a filling such that:
(i) each row is weakly increasing.
(ii) each column is strictly increasing.
We say that a skew tableau u/\ has content v = (y1,...,7) € NFif u/)

contains 7y, 1’s, v 2’s, and so on up to v, k’s. For example, taking A and p as

above, one possible skew tableau with shape p/A and content v = (4,2, 2) is

1/1]3]
12
213

N

The sequence of integers given by concatenating the rows of a skew tableau
from top to bottom and in reverse order is called the reverse word of the tableau,
e.g. the reverse word of the tableau above is 3,1,1,2,1,3,2,1. We say that a
word is a lattice word if the content of every initial sequence is a partition, i.e.
for every initial sequence of the word there must contain at least as many 1’s as
2’s, at least as many 2’s as 3’s, and so on. The reverse word above is not a lattice
word, for example, as the first number is a 3 so there are more 3’s than 1’s in the
first letter of the reverse word. However, if we swap the 3 in the top right box
with the 1 in the bottom left box as follows,

1]1]1]
12
2[3 ’
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we now have a tableau whose reverse word 1,1,1,2,1,3,2,3 is a lattice word.
This leads to the following definition.

Definition 4.8. A Littlewood-Richardson tableau is a skew tableau whose reverse

word is a lattice word.

Remark 4.9. Due to the lattice word condition, the rightmost box of the top
row of a Littlewood-Richardson tableau must contain a 1. Since we require rows
to be weakly increasing, this implies that the entire top row must contain only
1’s. This observation extends to the fact that any integer £ may not appear above

the k-th row in the skew diagram.

Definition 4.10. Let A, i,y be partitions such that A < g and |A| + || = |u|.
The Littlewood-Richardson number cf(j7 € Nis equal to the number of Littlewood-

Richardson tableaux of shape p/\ and content .

Proposition 4.11 ([Ful97, §5.2 Corollary. 2]). Let A\, ui,y be partitions such that
Al + |y = [ul. Then ., = c,. Moreover, ¢\ = 0 if either A or v is not

contained in .

Remark 4.12. We observe some useful facts for some basic Littlewood-Richardson

numbers.

(i) If A, v, p have at most two parts then c’;ﬁ is equal to either 0 or 1. This is
because only 1’s may be placed in the top row of u/\, and all the 2’s must
be right aligned in the bottom row. The remaining 1’s must then be placed
left of the 2’s.

(ii) When the skew diagram p/\ consists of a single row or column of size k,
the reverse lattice word condition implies that ¢y = 1 when vy = (k) or

v=(1,...,1) € Z* respectively, otherwise ¢} = 0.

It turns out that Littlewood-Richardson numbers determine the multiplicity
of summands in the decomposition of a tensor product of Schur powers into

irreducibles.

Proposition 4.13 ([FHI1, §6.1 Eqn. 6.7: Littlewood-Richardson rule]). Let V
be an r-dimensional vector space and let \,~ be partitions with at most r parts.
Then
SV @ SV = (V)N
1

where j ranges over all partitions satisfying |p| = |\ + 7).
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Remark 4.14. In Proposition 4.13 we needn’t insist g has at most r parts
because when dim(V) = r, we have S*V = 0 whenever p,; > 0, see [FHI1,
§6.1, p.76].

4.3 The skew-Schur functor

We now construct the skew-Schur functor, which generalises the Schur functor
defined in Section 4.1. The following strategy can be found in [FH91, Ex 6.19].

Notation 4.15. Hereafter we fix a basis B = {uy,...,u,} of V. When choosing
an arbitrary collection of these vectors, possibly with multiplicity, we will use the
letters v; € B. We do this to avoid writing u,; for elements of B, for example, as

later we will need space for multiple other subscripts.

Fix partitions A < p with at most r parts and set d = || —|A|. For any filling
of the skew diagram p/\ with entries in {1,...,n}, there is a corresponding basis
vector of V® given by reading the content of the boxes from left to right, top to
bottom. For example, if /A = (3,2)/(1,0) and n = 4 then

31
1413

¢ U3 @ Uy @ uy ® uz € VL

Consider the action of Sy, the permutation group on {1,...,d}, on V¥4 by per-
muting the indices, i.e. for 0 € Sy and v; € B we have (v, ® -+ ® vq) - 0 =

Ug(1) @+ + @ VUg(aq). Define the subgroups

Pow = {0 € Sy | o preserves the content of each row of pu/A},

P.oy = {0 € Sy | o preserves the content of each column of u/A}.

Now consider the group algebra kS; with generators e, and define the elements

Qu/x = E €o,

UEProw

bu/x = Z sgn(o)e,.

UePcol

These define endomorphisms on V®¢ by setting e, (v) = v - o, and we have
im(a,/,) & Sym" MV ® - @ Sym" MV,
Hi—A My =N
mb,n) = \ Voo A\ V.
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where X,y are the conjugate partitions to A, p (list the heights of the columns
left to right instead of the lengths of the rows top to bottom).

Definition 4.16. The Young symmetrizer with respect to the skew diagram g/
is defined by

Cu/x = DAty

The image of ¢,y on a vector in V@4 ig given by summing over the symmetrization
of rows followed by the anti-symmetrization of columns. This defines an endo-
morphism on V®? and we call its image the skew-Schur power, denoted SV,

le.
SHAV = im(c, ).

As in Definition 4.4, the skew-Schur functor S*/* may be defined on many other

categories.

Proposition 4.17 ([FHI91, Ex 6.19]). Let A < p with d = |u| — |A| and let
B ={uy,...,u,} be abasis of V.. Then for each semi-standard skew tableau with
shape /X filled with integers from {1,...,n}, the images of the corresponding

basis vectors in V& under cu/x form a basis of SHAV .

Example 4.18. Let A = (1,0), p = (2,2) and B = {uy,us,u3} be a basis of V.

We have d = |u| — |\| = 3. Consider the semi-standard skew tableau B 4, which

corresponds to the basis vector u; ® us ® uz € V3. Symmetrizing the rows, we

_ 1
have a,/) = P

51 t 3 Ll and now anti-symmetrizing the columns gives

2

G\ 1l 3], [ [2]
C“/A(zg)_Q?, ol Y32 T3
ThU.S, CH/V(U1®U2®U3):U1®U2®U3—U3®U2®U1+U1®U3®U2—U2®U3®U1.

In general therefore, SZ2/10V is the subspace of V&3 spanned by vectors of the

form

Uiy @ Uy @ Uiy — Uiy & Ujy @ Uy + Uy @ Ujy O Ujy — Ujy @ Uiy K Uy
[i1]
i3

where i

is a semi-standard skew tableau with each i; € {1, 2, 3}.

Remark 4.19. When A\ = (0) the skew-Schur functor coincides with the Schur
functor. In this case, we write ¢, (rather than c,/\) for the corresponding Young

symmetrizer. An important application of Young symmetrizers of the form ¢, is
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that it allows us to describe SV from (4.2) as a subspace of V@l rather than

as a quotient.

As a consequence of Theorem 4.3, skew-Schur powers are not irreducible in

general. Their decomposition is given by the following proposition.

Proposition 4.20 ([FHI1, §6.1 Ex. 6.19]). Let V' be an r-dimensional vector
space and let A\, be partitions with at most r parts satisfying X < p. Then

SHMAV s a polynomial representation of GL(V) with irreducible decomposition

AV = PETV)*,

v

where 7y ranges over all partitions satisfying |v| = |p| — ||

4.4 Generators for Kapranov’s tilting algebra

For Y = Gr(n,r) = Gr(V,r), recall the tilting bundle F from (4.1). Kapranov’s
tilting algebra A = Ende, (F) may be decomposed as the collection of spaces
Home,, (S*W, SKW) for all pairs A, 4 € Young(n — r,7). In this section we give
a presentation of these spaces and describe them explicitly in some simple cases.
The key tool for this will be a result from Kapranov’s presentation of D?(Coh(Y)).
Unless stated otherwise, we hereafter identify S*W with the quotient of W@

given by the expression in Remark 4.6.

Theorem 4.21 ([Kap84, p.189 3.0]). Let W be the rank r tautological quotient
bundle of Gr(V,r) and let A\, u € Young(n — r,r). Then

Homo, (S*W, S"W) = EH SV, (4.3)

Y

We will analyse this result more closely, in particular concentrating on finding
precisely the multiplicities of each « in (4.3). Firstly, for partitions with negative
entries we use the identity [Kap84, Eqn 0.1],

S(Arsees —)q)W ~ SA(WV) o~ (SA)/\J)\/’ (44)

where WY denotes the dual bundle of W. Moreover, Kapranov explains that

Schur powers of bundles with negative entries may be dealt with by multiplying
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and then dividing by a line bundle ([Kap84, 2.1, p.187]). For m € Z, this implies
the identity

SW 22 det(W) " @ SPatm Aty (4.5)

Lemma 4.22 ([Kap88, Lem 3.2a]). Let W be the rank r tautological quotient
bundle of Y = Gr(V,r) and let X\ € 7" be weakly decreasing. Then

SMVif A\ >0 VY,
HO(Y,S'W) = Pz 0w
0 otherwise.

Lemma 4.23 ([Kap88, 3.5, p.490]). Let A\, i be partitions with at most r parts.
Then

(i) Homo, (S*W,S*W) > k.
(ii) Home,, (S*W,SFW) £ 0 only if \; < u; for all i.

We are now able to prove a more concise version of Theorem 4.21.

Proposition 4.24. Let W be the rank r tautological quotient bundle of Gr(V,r)
and let A < p € Young(n —r,7). Then

Homo, (S*W, SFW) = SHAV. (4.6)

Proof. As a consequence of [Har77, Proposition 3.6.7], since S*W is a vector

bundle we have the isomorphism
Homoy (S*W,S$"W) = H(Y, (S'W)" ® S“W).

By combining (4.4) and (4.5) with m = Ay, we have

> det(W)™ @ (S'W @ S"W)

where \ := (A=A AL —= A1, .-, A1 — A9, 0). The decomposition of SW @ SHW
into irreducibles ranges over partitions of size |X| + ||, but then multiplying back
by det(W) ™ results in partitions 7 of size || — |\, many of which contain neg-
ative entries. However, when taking global sections these vanish by Lemma 4.22,

and so we are left with those v containing only non-negative entries and satisfying

v =[] = [A]-
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It remains to find the multiplicities of each summand. The multiplicity of
STW in (S*W)Y @ SKW is given by

dim(Home, (SYW, (S*W)Y @ S*W)) = dim(Home,, (STW & S*W, S¥W))
= dim Hom@Y(@M/(S"/Wﬁc‘;y, SEW))

= dim(®,, Homo,, (S* W, S“W)@ci,w)

(
(
— dim(6, Homo, ((S¥W)®5a SFW))
(
= dim(Homo, (S*W, S"W) &%)

o
= Oy

where p/ ranges over || = |y| + |A| = |u| and the fifth and sixth equalities
follow from Lemma 4.23 (ii) and (i) respectively. Thus, we have shown that
Homo, (S*W, SEW) = @,Y(SVV)@C&LN, and the identity from Proposition 4.20
completes the proof. O

Corollary 4.25. Let A\ € Young(n — r,r) and let eq,. .., e, denote the standard
basis of Z". Then for all 1 <i <r and all m > 0 such that A+ me; € Young(n —

r,r), we have

Home,, (S*W, S W) =2 Sym™ V.

In particular,
Homg,, (S*W, S}“W) = V.

€4

Proof. By Proposition 4.24 we have Homep,, (S*W, SMmeip) o @W(S”’V)@Cﬁm :
where v ranges over all partitions with m boxes. The skew diagram (A 4+ me;)/A
however is just a single row of length m, hence by Remark 4.12(ii) the only
non-zero Littlewood-Richardson number in this decomposition occurs when v =
(m), in which case cizrs)e = 1. Therefore Home, (S*W, SMmeiWw) = Sty =
Sym™ V. The second statement follows immediately. [

As aresult of Proposition 4.24, Home,, (S*W, S#WW) depends only on the shape
of the skew diagram p/A and so we are able to deduce some simple invariance
results. We may add redundant rows both above and below A and p without
changing 11/ and therefore also without changing Home,, (S*W, S#W). Similarly,
we may add or remove redundant columns to the left of both A and p. We state
this more precisely in the following corollary, but first set some notation. Let
vy, V9, /3 be partitions such that for ¢ = 1,2, the bottom row of v; is at least as

long as the top row of ;1. Denote by (11 : s : v3) the Young diagram formed by
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gluing each of these diagrams on top of one another, keeping all rows left-aligned.

Note that this is also well-defined if any of the v; are empty.

Corollary 4.26. Let A\, i € Young(n — r,r) with A < p. Let v be either empty
or a Young diagram with bottom row greater than or equal to py, and o be either
empty or a Young diagram such that its top row is less than or equal to \,. Let
c € 7 such that ¢ > —\,.

(i) If both (v: A :6),(v:p:6) € Young(n —r,r), then

HOHI@Y (S)\W, S“W) ~ HOH]@Y (S(V:)\:(s)W’ S(V:/“;)W)_

(ii) If both (M +c,...., A\, +¢), (1 + ¢, ..., + ¢) € Young(n —r,r), then

4.5 Homomorphisms of adjacent summands

Hereafter we restrict to the case where Y = Gr(n, 2), i.e. r = 2 and all partitions

considered have at most two parts.

Fix a basis B = {uy,...,u,} of V. In this section we write down explicitly
the homomorphisms between adjacent summands in the tilting quiver, i.e. those
defining Home, (S*W, SM€W) for all pairs \, A + ¢; € Young(n — 2,2) with
i € {1,2}; by Corollary 4.25 these spaces are all isomorphic to V. Using (4.2),

the tilting summands S*V are of the form

(A*W)®* @ Sym™M 2 W

A ~
SW = E, ,

(4.7)

where F), is the sub-bundle of exchange relations.

Remark 4.27. We have A>W = det(W) = Oy (1), but rather than writing S\W
as some twisting of Sym™* 2 W we will use the presentation in (4.7) so that we

can make use of the exchange relations, described explicitly, in various proofs.

First consider A = (0,0) and i = 1, so A+ ¢; = (1,0). Then
Home, (Oy, W) = HY(Y, W) &V, (4.8)

so given v € B there is a homomorphism s,: Oy — W and a uniquely determined
global section z, := s,(1). Next suppose A = (1,0) and A +¢; = (1,1). We also
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have Homp, (W, /\2 W) = V by Corollary 4.25, so there is a homomorphism
s W — AW which we can define using the same section: s,,(z) =z A z,.
Unfortunately, writing down homomorphisms S*W — S*€W is in general
not as straightforward as adding in a new variable z, where required; we need
to consider well-definedness with respect to the exchange relations E) (recall

Section 4.1 and Example 4.1). In general, write sections of S*W as
W =2 AT @ @ Ta1 A Ta2 @ YL Yny Ao (4.9)

Since r = 2, the Young diagram for A has at most two rows, therefore all exchange

relations on S*W may be characterised as one of the following two types:

(E1): We may take a single box from any column (remember that the symmetric

(M-

part Sym™ 2 W counts as A\ — Ao distinet columns) and perform an

exchange with any height two column to the left of it.
(E2): We may take both boxes in a height two column and exchange with a
column of height two to the left of it.

As an example of (E1), from (4.9) choose y; and the first column (containing
11 A Z12) to get
Wiy = Y1 AT12 @ @ Tag 1 Alrg2 @ T11Y2* Yay—rg

F T I NAYI Q- R Xny1 N Tay2 @ T12Y2 " Yrj—Ao-

Then modulo the exchange relations, we have w* = wy,.

As an example of (E2), from (4.9) choose the first column and the one con-

taining xy, 1 A Ty, 2 to get

A
Why = Tag1 N T2 @ - QL1 ANT12 @Y1 Yrj—Ao-

A A

Then modulo the exchange relations, we have w* = wg,.

Proposition 4.28. Let A\, A\ + ¢; € Young(n — 2,2) where i € {1,2} and let
w € SMW be as in (4.9). Let v € B and z, be as above.

(i) Ifi =1, then the map f): S*W — SMAW given by
fo @) =210 A2 ® -+ @ Try1 Aag2 @ Y1+ Yay Ao 2o

15 a well-defined linear homomorphism.
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ii) Ifi =2, then the map g): S’W — SMW given by
(ii) g

A1—Ae
g;\(wA) = Z TINNL12® @ Trg1 NTry2 @ Yp N2y @ Hyj
k=1 Ak

1s a well-defined linear homomorphism.

Moreover, fo.,....fo or gy, ...,gs form a basis for Home, (S*W,SMW)

ui? ’Jun

where i = 1 or 2 respectively.

Proof. The maps are clearly linear so we just prove they are well-defined with
respect to the exchange relations on S*W. Using w? from (4.9) and w,, wi,

defined above, we will show that f)(w?) = fMwy,) = fM(wy,) and g (w) =
gr(wy,) = gMwp,). Any other choice of exchange is of the form (E1) or (E2)
and the proof is identical.

(i) If i = 1, the symmetric power in S* W compared to S*VV is increased by one
while the alternating part is left unchanged; see (4.7). It turns out that simply

inserting z, into the symmetric part is well-defined. Firstly, we have

Al
JoWg) = AT12® - @ Txy 1 ATay2 @ T11¥2 - Yry—re 20
FT1IANYPI Q- R Ta, 1 NTxy2 QL1 2Y2 " Yr—rp 20
=T11NL12Q - QXxy1 NTxy2 O Y1 Ynj—2p2v

- R

where for the second equality we perform the inverse to an (E1) exchange. Sec-
ondly, since the exchange defining w3, has no effect on the symmetric part where
2, is added, fMwyy) = fN(w?) is immediate.

(ii) If = 2, the symmetric power in S* 2 decreases by one while the alternat-
ing power increases by one. The new height two column in A + e; requires two
variables; one of these will be z, while the other will be a variable removed from
the symmetric part. To make this well-defined with respect to the exchange rela-

tions, we must sum over every choice of variable we remove from the symmetric
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part to pair with z,, which leads to the definition of g)'. For wy,, we have

AL—As
gu(w?ﬂ) = Z YPINANLT12@ - QTa,1 ATy 2 @UYr A 2y @ T11 H Y
k=1

Jj#k,1
AL—Ao
+ Z TIINANY1L Q- ®Tag1 AN Txy2 @Y N 2y @ T12 H Y
k=1 k1

AL—As
= Z TIANT12@ - QT NTry 2 @ Yr N 2y ®Hyj
k=1 J#k

= g, (w?),

where for the second equality we perform the inverses to the (E1)-type exchanges
that move y; into the first column on each pair of terms from the two sums in
turn. As for wg,, this is similar to (i) because the exchange in question occurs
left of the column where g inserts z,, hence g} (wp,) = g} (w?) is immediate.
Finally, using the basis B and (4.8), we get a basis s,,,1 < p < n of
Home,, (Oy, W) and in turn a collection of linearly independent global sections

Zy,-

Then for any given A\ the maps fsp (or gi‘p) are also linearly independent:
for 1 < p < n the images of w* under each fﬁ\p (or gép) are pairwise distinct, the
sections z,, may not be written in terms of one another, and no sequence of ex-
changes will produce a linear dependence relation since exchanges never introduce

new variables, only move around the existing ones. [

The maps constructed in Proposition 4.28 are all of the maps between adjacent

tilting summands. We will hereafter refer to them as ¢ f-type’ and ‘g-type’ maps.

Remark 4.29. As an example of the danger of defining g-type maps by simply
adding in z, without summing over each choice of y; to pair with it, consider the
case when gf,z’o) :Sym? W — A°W@W. Suppose we were to define 91(,2’0) (y1y2) =
2y ANY1 @ Y. Now Y192 = yoy1 and using this definition of gf’o) we would have

920 (o) = 2 Aypa @ 11
=N NY2 @2+ 2 ANY1 @ Yo
=1 AYs @ 2 + 920 (y110)

# 91()2’0) (y1y2)

where for the second equality we perform an (E1)-type exchange to move g, into

the other column.
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4.6 Structure of the tilting quiver for Gr(n,2)

We now construct the tilting quiver @' for Y = Gr(n,2) and use it to define a
surjective k-algebra homomorphism &: k@)’ — A.

The vertex set () will be given by the irreducible summands of E, namely
SMW for all A € Young(n — 2,2). Note that we will sometimes directly refer to
vertices by A rather than S*W.

Recall that A = Ende, (E) may be decomposed as the collection of spaces
Home,, (S*W, SEW) for all pairs A, u € Young(n —r,r). The arrow set @} will be
given by a minimal set of generators for the spaces satisfying A < p. By Corol-
lary 4.25, for adjacent vertices we have Home, (S*W, S* W) = V; depending
on 7, these spaces are spanned by a collection of f-type or g-type maps defined
in Proposition 4.28. Hence, for all pairs A\, A + ¢; € Young(n — 2,2) we will have
n arrows in Q) from S*W — SM W corresponding to the f-type or g-type basis
of Homo, (S*W, S*€W) as appropriate.

Claim: For any pair A < u € Young(n —2,2), every map in Homo, (S*W, SPW)
may be written as a linear combination of compositions of f-type and g-type

maps.

A proof of this claim implies that the collection of f-type and g-type maps
constitutes a minimal set of generators for the spaces Home,, (S*W, SKW) with
A < p. Therefore, the arrows between adjacent summands described above form
the complete arrow set ). We actually prove a stronger statement than in the
claim, which is that the compositions formed strictly by a sequence of f-type
maps followed by a sequence of g-type maps is enough. In other words, given
A < p define my = gy — Ay and my = s — Ao, and for 0 < k < my + my define

the sequence of partitions

)\+k€1 lfOSkSml;
Ty = (4.10)
A+ mye; + (k—my)ex if my <k < my+ mo.

Then the claim follows from the following proposition.

Proposition 4.30. Let Y = Gr(n,2) and let A < p € Young(n — 2,2). Let 7 be
the sequence of partitions defined in (4.10). Then the composition map

mi1+m2

Onp: ® Homep,, (S™'W, S™W) — Homo, (S*W, S*W),

k=1
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where

Tmq— 1 Tml Tmq+mg—1 Tmq+mg—1 Tmq+mg—1 Tmq— 1
f Q- - ®f Um1+l® ®gvm1+m2 = g'Um1+m2 ©---0g Um1+nL2 f v17
18 surjective.

The proof is technical and we postpone it until Section 4.7. Assuming Propo-
sition 4.30, we can now introduce the tilting quiver )’ and establish the main

result of this chapter.

Definition 4.31. For Y = Gr(n, 2), define the tilting quiver @)’ by

={NeZ’|n—22> X\ 2>\ >0},
1<p<n
Q) = a/’)’i ie{1,2}, M, A+e €Qf
t(ay’) = X, h(ay’) = A+ e

See Figure 4.2. Note that when drawing the tilting quiver we will use the pre-
sentation of SV given in (4.7) to label the vertices. Observe that the notation
for the arrows is consistent with Chapter 3, where the superscript records the
location of the arrow and the subscript records the label corresponding to a basis

vector in B.

Remark 4.32. Observe that, as in the toric case, the original quiver () may be
identified with a complete sub-quiver of @)’ that we call the base quiver in Q’;
this is the sub-quiver with vertex set {Oy, W}, positioned at (0,0) — (1,0). See

example 3.7.

For each A € Qf let ey € k@' denote the idempotent corresponding to the
path of length zero at that vertex. For all A\, u € @ satisfying A < pu, with
the convention that we traverse paths from right to left (the same way that
composition of maps is performed), e, k@’e, denotes the space of paths A\ — p.
Recall the basis B = {u1,...,u,} of V.
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(N> w)@n=2
2))®(n—3)
2 - (A°W)
w ®Mm=3)
(A )A W
|
|
|
| }
L, NMwElh (AP w)Eee
RW ® Sym? W
w w
| |
| |
| |
| |
| |
WW)e2 -
| |
| |
| |
| |
| |
2 2
w AW
2y —— A2 ----3 -- = A
AW N wew ®Sym™ 4 W ®Sym™ 3 W
Oy w Sym?W ----- > ----% Sym™ %W Sym™ 2 W

FIGURE 4.2: The tilting quiver @’ for Gr(n,2). Each arrow in the figure represents n
arrows in the quiver corresponding to B. The sub-bundle of exchange relations E) (see
(4.7)) is implicit.

Definition 4.33. Let Y = Gr(n,2). We now define a k-algebra homomorphism
O kQ — A. (4.11)

By definition of @} and Corollary 4.25, when u = A + e; for i € {1,2}, we have
extekQex 2V = Homp, (SW,SMW), and by Proposition 4.28 the latter
1;\1,...,]”3” ifi=1or g;}l,...,g;}n if © = 2. Thus, for

all A € Q',1 < p<nandie€ {1,2} as appropriate, we define:

space has a basis given by

®(ey) = idy € Homp, (S*W, S*W) =k,
fa, € Homo, (SW, W) if i = 1,
ga, € Homo, (S*W,SMW) if i = 2.

The images of the horizontal (and vertical) arrows in ()} are therefore exactly the
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f-type (and g-type maps) defined in Proposition 4.28. We extend ® to any path
in (' by mapping the concatenation of arrows a/’}’i to the composition of maps in

A as appropriate. Finally, we extend ® linearly over k to combination of paths
in kQ'.

Theorem 4.34. Let Y = Gr(n,2). The k-algebra homomorphism ®: k@' — A

18 surjective.

Proof. Firstly, whenever ) is not contained in y we have Home, (S*W, SKFW) = 0
by Lemma 4.23(ii), thus surjectivity is trivial in these cases; indeed, we defined
no arrows in @’ for such pairs A, u. As a consequence, @)’ is acyclic and (0,0) is
the unique source vertex.

Now suppose A < p € Q) and h € Home,, (S*W, S¥W) C A. Proposition 4.30
implies that h may be factorised as a linear combination of compositions of f-
type and g-type maps. Therefore the corresponding linear combination of paths

Al A2

given by concatenating arrows of the form a3, a; maps to h under ®. Hence,

® is surjective. O]

Remark 4.35. Theorem 6.1 provides a new proof of [BLV16, Theorem 6.9] in the
case Y = Gr(n,2). We discuss this result and the methods used in Section 5.3.

4.7 Proof of Proposition 4.30

For convenience we restate Proposition 4.30 here:

Proposition 4.30. Let Y = Gr(n,2) and let A < p € Young(n —2,2). Let 1 be

the sequence of partitions defined in (4.10). Then the composition map

mi-+ma
X) Homo, (S™'W,S§™W) — Homo, (S'W,S"W),
k=1
where
0 Tmq— 1 Tml Tmq+mg—1 Tmq+mg—1 Tmi+mg—1 Tmq — 1 0
fvl - - ®f Um1+1®' ) '®gU7YL1+MQ = gU"L1+'rn2 O---0g vm1+m2 f ' V1

18 surjective.

First of all, due to the invariance result Corollary 4.26(ii), it is enough to

consider the special case where Ay = 0; the general case follows immediately
since Homo, (SA1A2W Sk1#20) = Home,, (SP1—220W S—Azmz=32))))) - and
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we adjust the sequence v, accordingly. We therefore assume Ay = 0 throughout

the entirety of the proof, and in turn we have m; = p; — Ay, mg = po.

We first consider the domain and codomain of O, ,. By Corollary 4.25, the
domain of O, , is isomorphic to VE(™1+m2) and by Proposition 4.24, the codomain
is isomorphic to S#*V. Both of these spaces have an irreducible decomposition
in terms of Schur powers of V, and we see in Section 4.3 that S*/*V is a GL(V/)-

submodule of V®(mitm2)

Lemma 4.36. The irreducible decomposition of Home, (S*W, SPW) is given by

sV s, (4.12)

'YEFM/)\
where

o if iy < Xy, T'y)n consists of the partitions (max{my, ma}, min{my, ms}),

(max{my,ma} + 1, min{my, mo} — 1),..., (my + mo,0).

o if iy > Ay, I'yn consists of the partitions (max{mi, ms}, min{my, ms}),

(max{my,mo} + 1, min{m, ma} — 1),..., (1, 2 — A1).

Proof. The main tool for this is Proposition 4.20, which tells us that

SHAV = (HSV) N

Y

where v ranges over all partitions satisfying |y| = |u| — |A\] = m1 + ma. By
Proposition 4.11 we have c&”ﬂ #0 = v < pu, hence we only need to consider
~v with at most two parts that satisfy v; < puy and v, < ps. Additionally, cf{v7 is
equal to either 0 or 1 by Remark 4.12(i).

The set I,/ is given by the collection of such v satisfying c’;ﬁ =1, i.e. those
such that the skew diagram /A filled with content v is a Littlewood-Richardson
tableau. First suppose that ps < A;, which means the two rows of u/A do
not overlap. Since there are no columns of height two, the strictly increasing
columns condition cannot be broken and so a filling consisting of only 1’s, i.e.
v = (my + my,0), is permissible. By Remark 4.12(i), 2’s may only be placed
in the right of the bottom row; therefore, to avoid breaking the reverse lattice
word condition, the number of 2’s we may use is bounded above by the length
of the top row, i.e. 75 < my. Since we must also have v < s = mo, we have

min{my, ma} > 5 > 0 as required.
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The argument for the case when py > Ay carries over from above, except we
now also have a positive lower bound for 5 because columns of height two exist
in p1/A. We therefore require at least s — A; many 2’s to place in the height two

columns, and this gives the second case in the statement of the lemma. [

We now outline the strategy of proof for Proposition 4.30. Fix A < pu. We
will show that the restriction of ©, ,, to the submodule SHIAY of V®mitm2) g an
isomorphism. It therefore follows that ©, , is surjective.

To do this we take advantage of Schur’s lemma (see [FH91, Lemma 1.7]): if
p: Wy — Wy is a G-module homomorphism of irreducible G-modules, then ¢
is either an isomorphism or the zero map. Recall I';/) from Lemma 4.36. We
have that SYV is irreducible over G = GL(V) for all v € T',/y and ©,, is a
GL(V)-module homomorphism. Since every summand in (4.12) appears with
multiplicity one, Schur’s lemma implies that it is enough to show ©, , is non-
zero when restricted to SYV C V®m+m2) for each v € I',/y. In summary, the

proof of Proposition 4.30 is completed by the following lemma.
Lemma 4.37. Let v € I'y/\. Then G,W‘SW # 0.

The strategy for the proof of Lemma 4.37 is as follows. For each v € I,/ we
first write down an element h., in y@mtme) the domain of © au- We then get an
element ¢, (h,) of SYV by applying the Young symmetrizer ¢, : V&M — §7V/;
see Example 4.18. Then, by formulating the evaluation of a section w* under the
map O, ,(cy(hy)), we show this is non-zero to complete the proof. In order to

implement this strategy we need some new notation.

Notation 4.38. (i) Fix a basis B = {uy,...,u,} of V and let A < € Young(n—
2,2). Recall m; = p; — Ay and ms = py (we are assuming Ay = 0), so that
= X+ mie; + maes. In this section we always consider compositions of maps

given by the image of ©, ,, i.e. those of the form

Tmq+mg—1 Tmq+mo—1 Tmq—1 o o 0

© 0 Gumym,y Umy v1

Umy+mg

where each v; € B. Because the domain of each map in this composition may be
derived from whether the previous map is f-type or g-type, we will suppress the

superscript of all maps but the first and instead write the above as

A
g'Um1+'m2 o”‘ogvm1+lofv'm1 ©---0 v1°*

(ii) We require the notion of multisets; these are sets with possible multiplicities of

elements, and we distinguish multisets from sets by using square brackets [ |. The

51



cardinality of a multiset counts these multiplicities, e.g. [1, 1, 2] has cardinality 3.
Denote ordered multisets using [ |°, and given a multiset M define O (M) to be the
collection of all ordered sub-multisets of M with cardinality k. If the cardinality of
M is m > 0, then the size of the collection Oy (M) is m!/(m —k)!. For example, if
M =[1,1,2] then Oy(M) is the collection [1,1]°,[1,1]°,[1,2]°,[1, 2], [2,1]°, [2, 1]°.

For every v € T,/5, we now define our candidates h, € V®™+m2) that we
use in the proof of Lemma 4.37. Recall Section 4.3: the Young symmetrizer c,
is defined by b,a., so c¢,(h,) will be a double sum taken over all ways of first
symmetrizing the rows of v, followed by anti-symmetrizing the columns. We will
simplify matters by defining h. such that a, is trivial. The simplest such map is
the basis vector of V®(™1+m2) corresponding to the skew tableau of shape v with
the top row filled with 1’s and the bottom row filled with 2’s; i.e.

BN
Llaj1f1]1]1]1]
21222 g
mi 1m2\ ,

SN—— N ~~ v
72 7 "2

-~

4 11\1®®fu1®gm®®gu1®guz®®gu%:h7

Thus, there are m; f-type maps followed by mqy g-type maps, the first 7, of which
are defined using the basis vector u; and the last v, defined using the basis vector
uy. By the conditions on vy € T'/», we always have v, < min{m,, msy}.

We now write down ¢, (h,) = bya,(hy). By construction, a, acts trivially on
h~ so it remains to sum over all ways of anti-symmetrizing the height two columns

of 7. Therefore

which, since v has 75 columns of height two, is a sum of 272 terms. Each o defines

a unique ordered multiset

Eo = [V1,...,0,]°,

where each v; is equal to either u; or us as given by the top row of the height two
columns in h, - 0. Define a, and 3, to be the number of v;’s and vy’s appearing
in §, respectively; then a, + 3, = 7, and we have sgn(c) = (=1)%. Given &
define v for 1 < i < 75 to be the vectors on the bottom row of the height two
columns in h - o, i.e. if v; = uy then v; = uy and vice versa. This yields ¢, (h,)
equal to

Z(—l)ﬁo 31®~~®va2®fu1®"-®ful®gul®~"®gu1®gvg®"'®guf

Y2
0€P,
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and therefore ©, ,(c,(h,)) is given by

Z(_1)60‘911%2O...ogviogulo...ogulofulo...ofulofvw2o...o o

UEPCOI

(4.13)

Notation 4.39. Before detailing the evaluation of a section w* = y; -+ -y, €
SMW 22 Sym™ W under the above sum, we will first describe the evaluation of w*
under a single composition gy,, .,.,°* " “©Gu,,, 19 fo,, 0 0 > € Homo, (S*W, SPWV)
where each v; € B; this will also be useful in Chapter 5. Using Proposition 4.28,

evaluating the composition of the f-type maps is easy: we simply have

Jomy 00 fo (W) =41+ Yny 20y 2, -
The evaluation of a g-type map is the sum over each way of pairing a variable
in the symmetric part with the new variable introduced by the map, hence the
evaluation of a succession of g-type maps is given by summing over all ordered
ways of doing this. Thus, define the multiset M = [y1, ..., Yxn,, Zuy, - - - ,val], and
recall that O,,,, (M) is the collection of ordered sub-multisets of M with cardinality

msy. Then the image of w” under the composition above is given by

w>\ — Z 21 A va1+1 R ® Ty A va1+m2 X H zZ. (414)
X=[21,Tmy]° ze M\ X
€0m, (M)

Proof of Lemma 4.37. Now recall (4.13); the goal is to find a section w* such
that ©y ,(c,(h,))(w?) # 0. Define ¢ to be the number of g-type maps in each

term of ¢, (h,) with fixed defining basis vector uy, i.e. § = my — 2. Set

R L)

w w1 e

Note that this choice of section is possible because v € I';;/n == 72 > o — A\ =
Mo — A = Ay > My — Y = 0.

Since ©,, is linear we will analyse the evaluation of w” under each term
Oy u(h, - o) in the sum (4.13) separately; we will deal with the sign (—1)% at
the end. Thus, fix 0 € P and consider &, a,, B, as defined above. Following
Notation 4.39, the composition of the f-type maps in O, ,(h, - o) contributes
z{ﬁl_ﬁ" and zf; to w?, bringing the total exponent of Zuy oM —0+my — By, =

{1 — po + o, and the total exponent of z,, to d + B, = s — v2 + B,. Hence, the
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multiset M in (4.14) is given by

M = [Zuyy s Zurs Zugy « -+ Zus)-

- 4

Vv Vv
p1—p2+os p2—y2+ B0

After composing the remaining g-type maps, Oy ,(h, - o)(w?) is equal to

> TUN 20y @+ @ Ty A 2wy @ Ty gyt 1 N2y @ @y Azy, ® [ =
X=[T1,,Tmy]° zEM\X

(4.15)

Every variable in this sum is either z,, or z,,, thus the only X € O,,,(M)
that produce a non-zero term are those with xy, ..., Zy,—, equal to z,, and for

!/

my— v+ 1< 75 <mg, x; =2y 0, .,

= Zzy, and vice versa. Hence every
ordered sub-multiset X that produces a non-zero term is identical, and consists
of o, many z,,’s and uy — 72 + B, many z,,’s. Define the total number of such
X to be n,; this is given by the number of ordered ways of choosing a, many
Zy, s from M, multiplied by the number of ordered ways of choosing ps —v2 + S5

many z,,’s from M, i.e.

(12 — 72 + Bo) (11 — p2 + )
(1 — p2)! '

g

The sum (4.15) therefore simplifies to
NoZuy N Zuy @+ @ Zyy N Zyy @ 2, A 2yt R--® 2y, A Zut, X 2511_112.

We now use anti-symmetrization in the columns with content z,, A Zy to ensure
that the first entry is z,, while the second is z,,. There are a, many columns
that are not in this order, since this is the number of z,; terms that are equal to
zu,- Hence, rearranging each column so that the content reads z,, A z,,, means we

must multiply by (—1)® . Therefore we simplify the above once more, yielding

Oyl - ) (W) = (—1)% N2y A 2y @ -+ @ 2y A 24y @ 211712
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In conclusion, using (4.13) we have

@Ayﬂ(cv(h“/))(wA) - Z <_1)BU(_1)aanazu2 A Zuy Q& Rug A Zuq ® 2511_#2

UePcol

= (_1)W2 Z NoZug N Zuy @ =+ @ Zyy N\ 2y @ Z'Z‘ll_u2

UEPCOI

7&07

since 2y, A 2y, @ -+ @ Zuy A 2y, ® 2172 £ 0, (=1)7 is constant, and 7, > 0 for

all o. This completes the proof of Lemma 4.37, and hence Proposition 4.30. [
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Chapter 5

The ideal of relations for the

tilting quiver of Gr(n,2)

Let Y = Gr(n,2). In this chapter we identify the kernel of the k-algebra ho-
momorphism ® : k@' — A from Theorem 4.34. The ideal ker(®) then induces
relations on the tilting quiver ’. Having completed our presentation of the tilting
algebra for Y = Gr(n, 2), we compare this with the work of Buchweitz, Leuschke
and Van den Bergh in Section 5.3.

Throughout, let B = {uy,...,u,} be a basis of V' and recall Notation 4.15:
when choosing an arbitrary collection of these vectors, possibly with multiplicity,
we will use the letters v; € B. Our convention is to write angle brackets ( ) for

linear subspaces and round brackets () for ideals.

Strategy for finding ker(®): Recall that for each A € @y, e € k@' denotes
the idempotent corresponding to the path of length zero at that vertex. Then for
all pairs A < p € @, we denote by @, , the induced k-linear map obtained by
restricting ® to the subspace spanned by paths with tail at A and head at p, i.e.

@y, e,kQ'ex —» Homp, (SPW, SFW) = SHAV,

Note that @), , is surjective by Proposition 4.30. Now, @) is acyclic and there are
no relations involving paths of length one. Indeed, relations only arise between
paths that share the same head and tail, and for all a € @) the only paths p
in Q' satisfying t(a) = t(p) and h(a) = h(p) are the arrows between the same
two vertices, and these have linearly independent images under the map ®. It

therefore suffices to find ker(®, ,) for every pair (A, 4) in the set
Pi={(\n) €Qy’ | A< lul = A +2}

o6



Denote by K, a set of basis vectors for the subspace ker(®, ,). Then ker(®) is
the ideal generated by the union of these bases:

ker(@) = [ | K, |- (5.1)

(Ap)epP

We divide this chapter into two main steps. Define

Poi={Oum) € QP A< plul =N +2} C P, (5.2)

the pairs of vertices separated by paths of length two. The first step is to find
ker(®, ,), and therefore K ,, for all (A, 1) € P,. We identify elements of ker(®, ,)
by studying various compositions of the f-type and g-type maps defined in Propo-
sition 4.28 evaluated on an arbitrary section w? of S*\W. We use to define the
ideal

I=| |J K| ckQ (5.3)

()‘Hu) €EP2

generated by the relations of length two. Then we have I C ker(®), and by

considering longer paths in k@’ the second step is to show that I = ker(®).
Note that in the case of Y = Gr(4,2), the ideal I was written down by

Buchweitz, Leuschke and Van den Bergh in [BLV15, Example 8.4]. We recover

this example in passing in our discussion of Gr(5,2) in Example 5.11.

5.1 Relations between paths of length two

In this section we identify the vector spaces ker(®, ,) for all (A, 1) € P», and then
extract bases K, in order to define the ideal I C ker(®) from (5.3). For each
(A, ;) € Py, after finding a certain collection of relations we will perform a di-
mension count to prove these relations span ker(®, ,). Hence, we first decompose
the codomain Homp,, (S*W, SFW) 22 S#AV into a sum of irreducibles.

It will be useful to recall the construction of Sym?*V and A*V as subspaces
embedded in V®2. We have the quotients

ye?
(v1®v2—v2®vl|vi68)

Sym? V :=
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and
2

ye?
Av - |
<’U1®’U2+UQ®U1‘%€B>

and there is a natural isomorphism V®2 — Sym?*V @& /\2 V' given by

1
V1 ® Vg > 5(1)1 ® vy + Uy @1, V] ® Uy — vy Q1) =: (V102, V1 A Va), (5.4)

which enables us to identify Sym?V and /\2 V as subspaces of V2,
Proposition 5.1. Let (A, pu) € Ps.
(1) If p = (\ + 2, X2) then Home, (S*W, SFW) = Sym? V.

(ii) If u = (M, A2 +2) then Home,, (SPW, SFW) = Sym? V.

(i) If A\ = Ay and = (A + 1, A\, + 1) then Home, (S*W,S¥W) = A* V.

(IV) ]f )\1 > )\2 and n = ()\1 + 1, )\2 + 1) then HOH]OY (S)\W, SMW) = V®2.
Proof. For (i) and (ii) this is just Corollary 4.25. For (iii) and (iv) fix p = (A +
1, A2 +1), and using the notation of Lemma 4.36, let I',,/» be the set of partitions
7 corresponding to the irreducible summands of Home,, (S*W, SFW) = SHAV
By Lemma 4.36, we have v € T',/» if and only if |y| = 2 and Ay +1 — A\ <
Yo < 1. If Ay = Ay then the only v € T,y is (1, 1), giving Home, (S*W, SFW) =
SEDYV = A’V as required. If A; > Xy then both (2,0),(1,1) € T/, hence
Homop, (S*W, S*W) = Sym? V @ AV = VE2,

U

Remark 5.2. In the following four subsections we describe ker(®, ,) for the four
cases of Proposition 5.1 respectively. To do this, we will find relations by evalu-
ating elements of im(®y ,) on an arbitrary section w* of S*W. Such elements are
given by compositions of the f-type and g-type maps defined in Proposition 4.28.

In the first three cases there is only one route from A to p so the domain of
®, , satisfies e, kQ'ey = V&2, Since @, , is surjective and V&2 2 Sym? V @ AV,
we just need to find relations that span a space isomorphic to the irreducible sum-
mand in the decomposition of V®2 that is complement to the summand given by
Homo, (S*W, S#W) in Proposition 5.1; these relations must then span ker(®, ).
Case (iv) is slightly different and we deal with that in Section 5.1.4.

Notation 5.3. (i) Let w” be a section of S*W as in (4.9). In each of the
following subsections, the 211 Az 2 ® -+ @ Ty, 1 A Ty, 2 Part of w? is never
altered so we simplify the notation by denoting z := 2, 1 AZ12® - -@xx, 1 A

Tx,2. Thus we have

w)\ :£®y1"'y)\1—)\2'
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(i) When writing down the subspaces ker(®, ,), we will abuse notation slightly

A1
P

the symbols fi‘p, gqj‘p are juxtaposed to denote paths in k@', but separated

by writing fﬁ‘p and gép for the arrows a’" and af;’Q respectively. Henceforth

by o for homomorphisms in A.

(iii) Particularly in figure environments, we will use e as a place-holder for vec-

tors in B.
5.1.1 Paths of two horizontal arrows
Here we consider paths of the form
StApy —y gt ANy sy st Ay

as shown in Figure 5.1. Denote v = (A\; + 1, Ag).

(/\2 W)@ JA (/\2 W)Ee fv (/\2 W)@
® Sym™M 2 W ® SymM Yy ® SymM 22 W

e ATy e

F1GURE 5.1: Paths of two horizontal arrows with relations given by the dashed arrow.

For all vy, vy € B we have

v A A\ . pv

Vo © U1 (w ) — Ju2 (£® yl o .y)\lf)\QZUI)
=T QY1 Yn —2oRv; Zuy
=Ty “Yhi =X Rvo Ruy

== vVl (g ® Y- y)q—)\zzvg)

v A A
= fo o fo,(w?)
and so f2 o f) — f¥ o f = 0. Using (5.4) and identifying the tensor product

with composition of maps, we may write down an isomorphism

2
/\V — (fo, o o = fo o fo, | vi,v2 € B)

where v1 Avy = f7 0 A fro qj\2 We have Home,, (S*W, SAi+2A) W) = Sym? V

v1 v1
by Proposition 5.1(i); hence, it follows from Remark 5.2 that this is the entire

Y

subspace of relations because the domain of @, , satisfies e, kQ'e) = V&? =
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Sym?V & /\2 V. Thus we may conclude
ker CI)A# <f1)2 ;1f1?2|U17U2€B>'

Note that in the original notation used in Definition 4.31, this subspace is given
by ker(®y,) = (aylay! —astay! | 1< py,pa < n).

5.1.2 Paths of two vertical arrows
Next we consider paths of the form
SArApy oy Pty oy g2ty

as shown in Figure 5.2. Denote v = (A, A2 + 1).

(N W)
0%y Sym’\rAT2 w

/ v

! Je

2 Ao+1
2 (A" W)=
AV ggymhi ety

\
A
N e

(/\2 W)@Ag
® Sym™M 2 W

FIGURE 5.2: Paths of two vertical arrows with relations given by the dashed arrow.
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For all v, vy € B we have

A1—A2
G, © G (W) = gy, ( Y rOu Nz, @ Hyj)
k=1

ik
A1—A2
=> <£®yk Az, ®Hyj>
k=1 £k
A1—A2
=) (Zz@ykml Dy Az, ® [ ] yj>
k=1 \i#k Gk,
A1—A2
= Z <Z£®ymzv2 Q Yk N 2py & H yj>
=1 ki J#k,i
A1—A2
=> g <£®yz A 2z, ® Hw)
i=1 j#i

=g/ ogp ()

where in the fourth equality we use an (E2)-type exchange to swap the column
containing y; Az,, with the column containing y; /A z,,, and the order of summation
is swapped. Therefore gy, o g;\1 — gy © 95‘2 = 0, so like the previous case, using

Proposition 5.1(ii) and Remark 5.2 yields
ker(®y ) = (g, g0, — GGy | V1,02 € B).

5.1.3 Paths between vertices on the diagonal

Next we suppose A\; = Ay and consider paths of the form
S(>\1,>\1)W — S(M—H,M)W — S(A1+1,>\1+1)W

as shown in Figure 5.3. Denote v = (A + 1, \y).

Since S*W has no symmetric part w* = z. Then for all v1,v, € B we have

oy 0 foy (W) = gy, (2 ® z,,)
=r® 2y A Zug
= =2 Q) 2y, N\ 2y,
=~ (2@ 2,)

= —g5 o fo(w)
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(N Wy

s
s

Sym? V e

s

A

(N W) (A2 @ W

FIGURE 5.3: Paths between vertices on the diagonal with relations given by the dashed
arrow.

A
ve

and so g4 o f + g4 © 0. Again, using (5.4) and identifying the tensor

product with composition of maps, we may write down an isomorphism
Sym*V —— (gy, © foy + gy, 0 fo, | vi,v2 € B)

where vjvy 5 g% o f2 + g% o 2. We have Home, (S*W, SA+t Aty = A2y
by Proposition 5.1(iii); hence, it follows from Remark 5.2 that this is the entire
subspace of relations because the domain of @, , satisfies e, kQ’e\ = Ve ~
Sym?V & A’ V. Thus we may conclude

ker(®y ) = (g0, £y + 90, foy [ 0,02 € B).

5.1.4 Paths around a square

Now we suppose A\; > Ao and g = (A + 1, Ay + 1), and consider paths around
a square as in Figure 5.4. In this case there are two routes from A\ to u, so
we have e, k@Q'ey = V2 @ V. Akin to Remark 5.2, surjectivity of @, , and
counting dimensions implies that ker(®, ,) = V*? since Home, (S*W, S*W) =
V@2 by Proposition 5.1(iv). Thus, we are looking for relations that span a space

isomorphic to V&2,

Lemma 5.4. Denote v = (A+1, ) and 6 = (A1, Aa+1). Then for allvy, vy € B,

we have

M=) g ofd =M —da+1)fogh —fog). (5.5)

v1 v1
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NPy (AP

& Sym)‘l_&_1 w X Sym’\l_A2 w

o1

Ny e (AT
® Sym)\l—)\z W ® Symh—)\z-i-l W

FIGURE 5.4: Paths around a square, with space of relations isomorphic to V®2, gen-
erated by (5.5).

Proof. Starting with the right hand side, we have
(/\1 /\2 + 1) U1 o g’U2< )\) gg © gvl( )\)

=N\ —A+1) <Z x®yk/\zUQ®Hyj> (Z w®yk/\zU1®Hyj)

J#k Jj#k
=AM =X +1) Zx@yk/\zw@zmnyj Zx@yk/\zm@zwnyj
J#k J#k

The left hand side becomes

(/\1 /\2) gU2 © vy (IU)\)
= (/\1 - >\2) g’[}2 (£ & Yr - 'y>\1—)\22v1>

)\17/\2 )\1*)\2
=(=X) ) <£®yk A Zuy @ 2y, H%) + M =M)z®@zy Az ® ] us

k=1 j#k j=1

Now subtract the left hand side from the right hand side to give

(>\1 >\2 =+ 1) vy © gv2 - gg o gv1 (Al - )\2) g’Zz © z:\l

Zl’@ykAzyQ@zley] Zx@)yk/\zm@zvznyj
Jj#k J#k
A1—A2

- ()\1 - )\2>£® Zuy A 2y & H Yj = (T)

Jj=1

We now perform slightly different exchanges with each of the A\; — Ay copies of
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TR 2y N2y, ® H;\;)‘Q y; defining the last term of (f). With the first copy, perform

an (E1)-type exchange by moving into y; the column containing z,, A z,,, yielding

A1—A2
T X 2y N 2py @ H Yi =L QY1 A 2o, ®ZU1Hyj +I® 2y, /\y1®zv2Hyz-
j=1 j#1 i#1
= 2@z, A @ 2, [[o5 2@ 20 Atn @ 2, [ [ s
#1 #1

Now perform a similar exchange with the second copy using y,, and in general

with the k-th copy using y,. Adding these all together, we get

A1—A2
()‘1 - >‘2)£®ZW1 N 2y, @ H Y
j=1
:_Zx(gzvg/\yk@ZUlHy] ng)zvl/\yk@zvgnyj
J#k J#k

Finish by substituting the right-hand side of this identity into the last term of
(1) to get zero. O

Since

VE 2 (A = M) gy o fo — (M= Xa+ 1) fy oo, + £, 09, | vi,05 € B),
the discussion prior to Lemma 5.4 implies

ker(®y,) = (M — A2) giy o — (M = A+ 1) fo,90, + fo,00, | 01,02 € B) .

Remark 5.5. Consequently, because each path going in one direction around
the square may be written as a linear combination of paths going the opposite

way, there are no relations amongst paths traversing in the same direction.
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(N2t e (AT (N W)=t

® Syrrl’\l_’\2_1 w ® Symh_)‘2 w ® Sym/\l_b w
21 1
g 0 0 g
(/\2 W)@A; (/\2 W)@’)‘; JA (/\2 W)@
® Sym)q*)q w ® Sym)q*)\z W ® Sym)q*)\frl W

FIGURE 5.5: There are no relations between paths going the same direction around
the square.

We now present the ideal I C ker(®) as defined in (5.3). Recall the basis
B={uy,...,u,} of V.

Proposition 5.6. For each (A, ) € P, let v,0 be the vertices that lie on paths
A and (v as defined in Sections 5.1.1-5.1.4. Define the sets K, as follows:

(i) if p= (A1, A2 +2), Ky, = {gzjgﬁi — 90, | 1<i,5 < n}
(ili) f M =X and p= (M +1, A +1), Ky, = {gzj o T fo 11<i,5 < n}
(1V) Zf/\l > Ay and n = ()\1 + 1,)\2 + 1),

() if = (M +2, M), KM:{ v — L | 1§z’,j§n}.

Ko = {0 = X) g f = On = X+ 1) fo00 + .0 | 1< 05 <nb.

Then each Ky, is a basis of ker(®y,,) and the ideal

I'=| |J K| Cker(®)

(A p)EP;

contains all of the relations in Q' generated by paths of length two.

Proof. Sections 5.1.1-5.1.4. O
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5.2 Relations between longer paths

Having described the ideal I C ker(®) in Proposition 5.6, we now prove that [ =
ker(®). Recall from equation (5.1) that we have ker(®) = (U ep Ky ,). Since
the ideal I is taken over P, a subset of P, we must show that ker(®, ,) = e, e,

for all pairs (A, 1) in the complement of Ps, i.e. the set

PBri={ O m) € Q0% | A < gl > 1A + 2}

where we write [ simply to mean ‘longer’.

We do this in two propositions. First we compute ker(®, ,) in the special
cases that all paths A\ — p are straight lines in @, i.e. (A, ) € P, where p is of
the form either (11, A2) or (A1, u2). Then we deal with the remaining cases where
both A\; < p1 and Ao < puo.

Prior to the first of these propositions, recall from Example 4.5(ii) that the

k-th symmetric power of V' is given by

V®k
(’Ul®"'®Uk—’ug(1)®"'®vg(k)IOGS/C,UZ-GB>’

Sym* V = (5.6)
where S, is the permutation group on {1,...,k}. We write v --- v, € Sym*V
for the equivalence class containing v; ® - -+ ® vg. Following [Wey03, §1.1.1 p.3],

there is a natural embedding given by

JAVR Symk Ve Yok

5.7
Ul"'vk'—>_ZUU(1)®"’®UU(k)- ( )

Notation 5.7. We will make use of Notation 5.3(ii) again: when writing down

the subspaces ker(®, ,), we will abuse notation slightly by writing f;\p and g{)p

Al
p

juxtaposed to denote paths in k@', but separated by o for homomorphisms in A.

for the arrows a’" and a;"Q respectively. Henceforth the symbols f;\p, g{)p are

In addition, we will use some notation from Section 4.7; denote m; = ;3 — Ay
and mg = s — A2, and since we are using the f and ¢ notation for arrows in @,
without ambiguity we may drop the superscript on all arrows in a path except
the first as in Notation 4.38(i).
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Proposition 5.8. Let (A, u) € P, and suppose p is of the form either (py, A2) or
(A1, p2). Then

(Fomg =+ I = Py Foy |0 € S € BY - if p= (s, Do),

<gva oy T Doy Gy | T € Simgy 05 € B> if = (A, o).
(5.8)

ker(®, ,) =

In particular, ker(®, ,) = e,ley.

Proof. The fact that the subspaces (5.8) are contained in ker(®, ,) follows from
straightforward induction arguments on the results of Sections 5.1.1-5.1.2. We
claim that these relations span ker(®, ,) by dimension count. The domain of the
surjective map @, ,, is e, k@’ey, which is isomorphic to either V™ or V™ when
w is equal to (pg, A2) or (Mg, pe) respectively. Taking the quotient of these spaces
by the appropriate subspace in (5.8) gives Sym™ V' or Sym™? V' respectively by
(5.6). Since the codomain of @, , is Homo, (S*W, S#W), which is isomorphic to
Sym™ V' or Sym™? V respectively by Corollary 4.25, the claim follows from the
first isomorphism theorem.

For the final statement, first suppose © = (p1,A2). The subspace e,ley
consists only of the relations amongst straight line paths A — pu, and all of
these are generated by those in Proposition 5.6(i), specifically those of the form
{foufi = for [0 | vi,v2 € B} where 7 = X +ie; for 0 < i < my — 2. Hence,
define ST, C S,,, to be the subset of adjacent transpositions, i.e. o € ST if for
some 1 <k <my —1 we have o(k) =k+1, o(k+1) =k, and o(j) = j for all
j #k,k+1. Then

— by A T
e ley = <fvm1 o = Fogmyy oy 1 0 € S v € B> :

Hence we have e, /ey C ker(®, ,), but since S,,, is generated by the elements of
ST , the reverse inclusion follows simply by performing a sequence of permutations

in S} . The proof is similar for u = (A, y12). O

Proposition 5.9. Let (\,u) € P and suppose Ay < p1 and Ay < po. Then
ker(®,,) =e,le,.

Proof. First of all, as in Section 4.7, it is enough to consider the special case that
A2 = 0 as each of the spaces e,kQ’ey, e,/e, and Home,, (S*W, S¥W) is unchanged
if we replace (A1, A2) and (1, p2) by (A — Aoy Ao — Ao) and (g — Ao, e — Ao)
respectively. See, for example, Corollary 4.26(ii).
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There is a commutative diagram

Dy

M

e kQ'ey

Home,, (S*W, SEW)

e kQ'ey
e ey

where 7 is the quotient map. The goal is to show that W, , is injective: then
ker(U, ,) = 0 and so ker(®,,) = 7 1(0) = e, e, as required.

Consider a path (or more generally, a linear combination of paths) p € e,kQ’e,
and let v be the vertex (i1, A2). If at any point on the path(s) p there is a vertical
arrow immediately before a horizontal arrow, it is possible to use relations from
I, namely those of Proposition 5.6(iv), to rewrite those two arrows as a linear
combination of arrows around the same square in )’ that instead go horizontally
before vertically. We can repeat this process until p has been rewritten completely
as linear combination of paths that all go strictly horizontally before vertically;
in other words, there exists an element p, ®y p1 € e,kQ’e, @i e,kQ’ey such that
[p] = [pap1] € e,kQex/e le.

Now, in k@'/I we have [pap1| = [p2][p1] where

/
e kQ'e,
e,le,

equle)\

>~ Sym™ V,
ym™V, [p] € -

[p] € = Sym™ 'V,
and we have used the isomorphisms from Proposition 5.8 with m; = u; — A; and
mg = po. Since every [p] € e,kQ’ex/e ey can be written in the form [pop],

there exists a surjective homomorphism

k /
& Sym™ V @, Sym™ V. —» cuk@er
e e
where [po] ®x [p1] = [p2p1] = [p]. We now split into two subcases according to

the decomposition of Home, (S*W, S#¥W) into irreducibles.
(i): po < 1. In this case Home, (S*W, S#W) is isomorphic to Sym™? V @y
Sym™* V; this follows from Lemma 4.36 and the first Pieri rule (Proposition 4.7(i)).
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We have the diagram
Sym™ V ® Sym"™* V P Homo, (S*W, SFW)
& id

/
Gqu €\ \I])\,u
e dey

HOIH@Y (S)‘W, SMW)

and therefore {; and V¥, , must be bijections. In particular, ¥, , is injective as

required.

Note that the relations between paths on the main diagonal of ()’ i.e. those of
Proposition 5.6(iii), are absent in case (i). Indeed, any vertex v on a path A —
satisfies 0 < 75 < py and Ay < 73 < py. Vertices on the diagonal also satisfy
v = 72, and when ps < A; the only such possible vertex is (A1, p2). Thus, with
at most one vertex on the diagonal on any path A — pu, Proposition 5.6(iii) plays

no role in e, kQ’ey/e, ey in this case. The next case is different.

(ii): o > ;. The irreducible summands of Home,, (S*W, SFW) form a proper
subset of those in the irreducible decomposition of Sym™? V' &, Sym™! V; again
this follows from Lemma 4.36 and the first Pieri rule (Proposition 4.7(i)). Indeed,
as hinted above we must now also consider the possibility of relations between
vertices along the diagonal. Let d = pus — Ay > 0. Then the vertices (A\; +
k, A1+ k) for all 0 < k < d may appear on paths A\ — u. Previously, we used
the relations around squares to rewrite p as a linear combination of paths going
strictly horizontally before vertically. While we may also do that here and the
surjective map &; still applies, we can also use the relations around squares to

rewrite p as a linear combination of paths that take the route
(A1, 0) = (A, A) = (ML A1) = - = (Aidd, Aitd) = (p2, p2) = (o, p2),

in other words, paths in p travel vertically from A to the diagonal and then
staircase along it as much as possible, exiting horizontally towards p at height
2. Define the sequence vy = A\, v; = (A +i— 1, A\ +i—1) forall 1 <i<d+1,

and v4.9 = p. Then there exists an element ¢ Qi 24 Rk - - - R 21 Rk 1 In
d+1

X ev. kQe, (5.9)

=0
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such that [p] = [g2za- - 21q1] € e,kQ'er/e,ley.

Following the strategy above, we take the quotient of each subspace in (5.9)
by the appropriate graded slice of I. For i = 0 we have straight vertical paths
(A1,0) = (A1, A1) and for ¢ = d + 1 we have straight horizontal paths (g, pe) —

(1, p12). Hence, using Proposition 5.8 we have

e, kQ'ey

e, kQ'e,

d
H +1 NSy ni— [LQ‘:
en ley

enley,

[a2] € ] € = Sym™ V.

Each of the remaining subspaces, e,,, ,kQ’e,, for 1 < i < d, is spanned by paths
starting at a vertex on the diagonal and going horizontally then vertically to
the next vertex on the diagonal. These are precisely the paths considered in

Section 5.1.3 and therefore we have

/
6Vz+1 kQ eVz ~

2] € o To, /\V 1<i<d.
Vit1

Consider the quotient
d+1

Do @il
Cuin I €y,
Then by the prior discussion, there is a surjective homomorphism

e kQ'ey

9 ®d
& D = Sym" T2V @ (/\V) ®kSym)‘1V—»
e dey

where [g2] ®x [24] ®k - - - @k [21] @k [@1] = [g22a- - 211] = [p].

We must now find the irreducible decomposition of D, which we accomplish
using the Pieri rules; see Proposition 4.7. We first decompose the central col-
lection of terms (A\”V)®? The second Pieri rule states that tensoring a Schur
power SV by /\2 V yields a direct sum taken over the ways of adding two new
boxes to distinct rows of . Starting with S™DV = A®V and applying this rule

d — 1 times, we have

9 ®d
</\ V) =5V X,

where X is a direct sum of Schur powers of V' defined by Young diagrams with
at least three rows.

Next we tensor S(4DV @ X by the Sym™ V term. By the first Pieri rule this
has decomposition given over the ways of adding A\; boxes to each partition in

the sum SS9V @ X with no two in the same column. By adding \; boxes to
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the top row of (d, d) we have the term SM1+&dY = §l2:#2=A) Y hut again, every
other term has at least three rows in this second decomposition. Amending X
to X’ (we don’t care exactly what these terms with at least three rows are), we

have

9 ®d
</\ V) Qi Sym™ V = S22y gy X7

Lastly, we must tensor this decomposition by Sym**~#2 V. Using the first Pieri
rule again and focusing only on the terms that will produce Young diagrams
with at most two rows, we have D = (€, S"V) & X" where v ranges over
the partitions (max{my, mo}, min{my, mo}), (max{my, ms} + 1, min{my, ms} —
1),...,(p1, e — A1). By Lemma 4.36 these partitions are precisely those that
describe the irreducible decomposition of Homp, (S*W, S¥W). Therefore,

D = Homop,, (S*W,S"W) @ X”.

Hence, we have a diagram of surjective maps

Sym™ V ®, Sym™ V
&1

% eu[e/\

D = Homep,, (S*W, SFW) & X"

Home, (S*W, SKW)

Since & and & are surjective, e, kQ'ey/e,ley must be isomorphic to a sub-
space of the direct sum of the summands that appear in both the irreducible
decompositions of Sym™?V ® Sym™ V and D. Since the decomposition of
Sym™2 V &, Sym™! V' consists of only partitions with at most two rows, of which
those comprising Home,, (S*W, S¥W) form a proper subset, we conclude that
e, kQ'ex/e,ley is isomorphic to a subspace of Home, (S*W, S#W). This forces
the surjective map W), to be an isomorphism, and in particular is injective as

required. O

We now conclude Chapters 4 and 5 with the full presentation of Kapranov’s

tilting algebra for Gr(n, 2).
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Theorem 5.10. Let Y = Gr(n,2), let E be the tilting bundle (4.1) and let
A = Endo, (F). Let Q' be the quiver defined in Definition 4.31. Then the k-
algebra A is isomorphic to kQ'/I, where

and
(1) Zf:u = ()\1 +2’)\2)? K)\7u = {fuj 15\1 - fUZf’li\j | 1<4,5< n}
(H) Zf,u = <)\1> A + 2)7 K)\,u = {gujgi\z - guigi\j | 1<4,5< n}

iii Zf)\lz)\g and,u: )\1+1,)\1+1 ,K)\ = gqu+gqu 1§l,j§n .
N 3 J ug iJuj

(IV) Zf)\l > /\2 and n = (/\1 + 1,)\2 + 1),
K)\,u = {()‘1 - )\2> guiji\z - ()‘1 - )\2 + 1) fuzgi\] +fu]g1);l ‘ 1< 27] < n} .

Proof. In Chapter 4 we defined a k-algebra homomorphism ®: k@)’ — A and
proved it is surjective. After establishing that ker(®) = (Up nep Kop)s we
presented the ideal I = (U ep, Kau) € ker(®) in Proposition 5.6. Propo-
sitions 5.8 and 5.9 then prove that (K, ,) = ker(®,,) = e,lex C I for all
(A, ) € P\ P,. This completes the proof that ker(®) = I. O

Example 5.11. Let Y = Gr(5,2). The tilting quiver is given by Figure 5.6, and
below we list the relations that span I = ker(®). Following Notation 5.7, we only
require a superscript for the first arrow in a path since the f and g-type notation

determines the remaining arrows. For all 1 <4, 5 <5, we have the following.

e Horizontal paths: for A = (0,0), (1,0), (1,1) we have
f , A f . A )
e Vertical paths: for A = (2,0), (3,0), (3,1) we have
Gu, G, = GuiGa
e Paths on the main diagonal: for A = (0,0), (1,1),(2,2) we have

A A

guj u; = _guZ uj
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e Lower-left and upper squares: for A = (1,0),(2,1) we have
G fy = 2F G, — fus G-

e Lower-right square: for A = (2,0) we have
29u; for = 3Fus0, — Jus G-

Oy (3)

(3,2)

Oy(2) ———— Oy(2) @ W

) 3,1
o £

(1,1) (2,1)
ov(t) — " opmyew I

Oy(l) ® Sym2 w

gsl,ﬂ) g£2,0) g£370)
f.(0,0) f.(l,O) .(2,0)
Oy w Sym?*W ———— Sym* W

FIGURE 5.6: The tilting quiver for Y = Gr(5,2). Each arrow represents 5 arrows
corresponding to the basis B of V.

Remark 5.12. Following Example 5.11, consider the full sub-quiver of @) for
Gr(5,2) defined by deleting the vertices (3,0),...,(3,3) € @ and any arrows
with head or tail at those vertices. By also removing all arrows associated to
us € B, we recover the tilting quiver for Gr(4,2); see Figure 6.1. In particular,
the relations defining ker(®) for Gr(4,2) form a sublist of those in the above
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example; these were calculated by Buchweitz, Leuschke and Van den Bergh in
[BLV15, Example 8.4].

5.3 Comparison with the work of Buchweitz,
Leuschke and Van den Bergh

First of all, given the tilting quiver for Gr(n,2) in Figure 4.2 it is easy to predict
the tilting quiver for Gr(n,r): we have a vertex per indecomposable summand
of the tilting bundle (one for each A € Young(n — r,7)) and n arrows A\ — p
corresponding to a basis of V when A < p € Young(n — r,r) differ by one box.

More precisely, we have the definition below.

Definition 5.13. For Y = Gr(n,r), define the tilting quiver ' by

Qo=AN€Z |n—r>X\>--->\ >0},
I1<p<n

Qr=qay | ie{l....;r}, A\ +e € Q)
t(a)’) = A, h(a)’) = A+ e

Similar to the r = 2 case, @)’ is acyclic and (0, ..., 0) is the unique source vertex.

One can reconstruct the quiver @' in Definition 5.13 from the quiver in
[BLV16, Theorem B] by removing any arrows labelled by the space ‘G’ (these
all go in the opposite direction). Recall that we have A = Endp, (E) where E is
the tilting bundle (4.1) on Y = Gr(n, 7).

Theorem 5.14 ([BLV16, Theorems B, 6.9]). Let Q' be the quiver in Defini-
tion 5.13. Then there exists an ideal J C kQ)' such that kQ'/J = A.

Example 5.15. Suppose Y = Gr(6, 3). The indecomposable summands of £ are
given by S*W where A € Young(3,3), and following Definition 5.13 the tilting
quiver for Y is given by Figure 5.7.
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7 | (A2W)E2 @ W
1 Wwper \
i \ 3 I A2 W@ Sym? W

Oy

FIGURE 5.7: The tilting quiver @’ for Gr(6,3) drawn in Z3. Each arrow in the figure
represents 6 arrows in the quiver. The sub-bundle of exchange relations E) (see (4.2))
is implicit.
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Our construction of the map @, the proof of Proposition 4.30 (surjectivity),
and our description of the kernel in Theorem 5.10 gives us a deep understanding
of the isomorphism k@'/ ker(®) = A in the Gr(n,2) case. In the general case for
Gr(n,r) with r > 2 however, this success is limited by the surjectivity argument.
Besides not knowing the form of the homomorphisms YW — S7t%W for i > 2,
the problem with generalising the proof of Proposition 4.30 to r > 2 is that
we may no longer take advantage of Schur’s lemma; indeed, the multiplicity of
each irreducible summand of STV C S¥/*V, which is given by the Littlewood-
Richardson number c‘)fﬁ, may be greater than one.

We now briefly describe the method of proof behind Theorem 5.14. Unlike
our direct calculations of the spaces Homp, (S*W, SFW) for all pairs A < p €
Young(n — 2,2) in Lemma 4.36, the indirect approach of Buchweitz, Leuschke
and Van den Bergh instead computes the internal Ext groups of vertex simple
modules.

Define a quiver with vertices A\ € Young(n — r,r) and let Sy be the simple
module associated to the vertex A. Define the set of arrows from A to u by a
basis for Ext}(Sy,S,)". The calculations in [BLV16, Section 5.5] yield

Vit A < powith |p| = |\ + 1,
Bxtl (S, 5)) = 0 1] = [Al
0 otherwise.

The tensor algebra then determines the resulting quiver which is equal to the
tilting quiver )" from Definition 5.13.
Since A admits a grading by N, the A, structure on Ext% (®S), ®S)) defines

a map

Ext} (S, ®S))Y — €D (Extl(®Sx, ©53)")" (5.10)
k>2

whose image is an ideal J C k@Q'. Theorem 2.13 of [Seg08] now implies that
the quiver @)’ with relations J satisfies kQ)/J = A; for further reference, see
[BPO8, Section 1]. Therefore in order to present the ideal J, Ext?(S,,, Sy) must
be calculated for all A\, u € Young(n — r,r). We have the following,.
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Proposition 5.16 ([BLV16, 5.5]). Let A\, € Young(n — r,7) with n —r > 1.
Then

Sym? V' if = A + two boxes in a column,
Ext} Sy, S)) = /\2 V if = X\ + two boxes in a row, (5.11)
VeV if p= X+ two disconnected boxes.

Observe that these are the same spaces calculated in Sections 5.1.1-5.1.2, 5.1.3
and 5.1.4 respectively. With these calculations in mind, Buchweitz, Leuschke and
Van den Bergh construct J as an ideal generated by a collection of kernels of cer-
tain linear maps; see [BLV16, Definition 5.5]. By demonstrating that the degree
2 graded slice of this ideal is equal to (5.11) as A and p vary, they conclude
by observing that J generates all the necessary relations of k@' by comparison
with the dimension of Ext%(®Sy,®S,)Y in the proof of [BLV16, Theorem 6.9].
Indeed, they point out in [BLV16, Proposition A.10] that the relations are gener-
ated quadratically. While this approach has the clear advantage of being able to
state the spaces of relations for the tilting quiver of Gr(n,r) for any n > r > 1,
the drawback is that these relations are not given explicitly, though a recipe is
provided for how these relations can be calculated. This is essential for Chapter 6,
and we do this for Gr(n,2) in Theorem 5.10.

In Proposition 4.28 we write down maps S*W — SM¢W for i = 1,2 where
W is the tautological bundle of Gr(n,2); the fact we did this explicitly was key
to describing I = ker(®) in Theorem 5.10. An important point is that there is
no canonical way to write down these maps: they form an example of what is
known as a Pieri system (actually, they form part of what Buchweitz, Leuschke
and Van den Bergh call a compatible Pieri system, since maps are required for
the arrows going in the opposite direction that also satisfy various commuting
diagrams). Given a (compatible) Pieri system and a collection of scalars which
must be calculated as a result of the choice of system, [BLV16, Theorem 7.18]
tells us that the generators for J are given by the kernels of certain linear maps.
Unfortunately, even writing a compatible Pieri system is not at all trivial, so
to exhaustively find relations for k@)” when r > 2 turns out to be an extensive

combinatorial exercise. We discuss this further in Chapter 7.
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Chapter 6

Reconstructing Gr(n,2) from a
tilting bundle

Given our presentation of A = kQ)'/ker(®) from Theorem 5.10, we are now in a

position to prove the following:

Theorem 6.1. Let Y be the Grassmannian Gr(n,2). Then the morphism
fe:Y = M(E) from (2.7) is an isomorphism.

To prove Theorem 6.1 we first prove a more technical result using induction in
Sections 6.1 and 6.2; see Lemma 6.5. Then we complete the proof in Section 6.3.
Due to the notation involved, rather than state Lemma 6.5 immediately it will
be easier to prove the base case Gr(4,2) as an example first, and only after that

state the induction hypothesis in the following section.

6.1 Base case: Gr(4,2)

Begin by fixing a basis uq, us, us, uy of V. By Theorem 5.10 we have the tilting
quiver given in Figure 6.1 and for all 1 < i, j < 4 the ideal of relations is generated

by the following.

. g&? V00 4 gfbo) fi00)
1, O)fUO 0) _ f( )f(O ,0)

w; u;
. gfu VL0 = 2f D0 4 fiD gl (6.1)
o g2V fibY 4 g f{bD
o g2V gl0 — gD g0
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(N W)®?

g£2,1)
f.(l,l)
AW ANWeWw
SI,O) g£2,0)
f(0,0) f.(l,O)
Oy w Sym? W

FIGURE 6.1: The tilting quiver for Gr(4,2). Each e varies independently across
Uty ..., ,U4.

Once and for all fix a point w € M(E) = M(A,v,0). Then w is a f-stable
representation of (' with dimension vector v subject to the relations given by
(6.1), and as such, we may decompose w into two distinct collections of matrices

as follows.

Notation 6.2. (i) Firstly, as a matrix for each a € @) as per (2.1). Denote the
matrix of f by F}, and define the matrix of g, by G?. Since w € M(E),
these matrices must satisfy the matrix relations corresponding to those in
(6.1).

(ii) Secondly, by grouping together the matrices in (i) as per (2.3). Write W,
for the matrix defined by concatenating, side by side, the columns of the
matrices whose corresponding arrows have head at A to form a single long
matrix (formally, this new matrix is the co-product); see Wy ) below, for
example. Hereafter we will simply use the term ‘concatenation’ to describe
this process. Since w € M(A,v,#), O-stability implies that each W) must
be full rank ([Crall, Lemma 2.1}).

Remark 6.3. In order to know what the orders of the matrices F}* and G? are
we must calculate the dimension vector v. This is given by the ranks of the
vector bundles at each vertex. Using the formula [FH91, Theorem 6.3(1)], we
have rank(S*122)W) = \; — A, + 1. This means that the bundles on the diagonal
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have rank 1, the bundles just below that have rank 2, and so on until reaching
the bottom right corner Sym” 2 W, which has rank n — 1. More precisely, all
bundles along the diagonal line \; = Ay + k£ have rank &k + 1.

For the matrices corresponding to the arrows between Oy and W we write

(05} b2 Co d2

Then for A = (1,0) we have

b d
W(1,0) _ a 01 G 4y ,
a9 bQ Co dg
which must be full rank; without loss of generality, re-index the basis of V if

necessary so that F1(0,0)7 FQ(O’O) (the first two columns of W(; o)) are linearly inde-

pendent. Then we may use the group action to change basis at the vertex (1,0)

and write
1 0 1 I3
W(l,O) = ’
0 1 To T4
where x1,...,74 € k. Denote the entries of all the other F*, G} matrices using
elements y1, ...,y € k as in Figure 6.2, where for fixed A and 7 < j the entries

of F and G are indexed lower than the entries of FjA and G? respectively.

Claim: All of the matrices F?* and G comprising the point w can be chosen to
take a distinguished form, modulo the group action, with entries in polynomial

terms of only x1, X2, x3, x4 as in Figure 6.5.

In other words, the entries of W(; ) are enough to determine all of the data of

the point w. The proof of this claim comprises of the remainder of this section.

STEP 1: The maps Oy — W — \>W.

In this first part of the quiver we have the matrices

1 0
FI(O,O) _ ’F2(0,0) _ ’Féo,O) _ (™ ,F4(0’0) _ (T8 (6.2)
0 1 ) T4
and

A= () 8 = (00 ) G5 = (s ws) G = (r ws).

which are subject to the relations Ggl’O)Fj(O’O) + G;l’O)Fi(O’O) =0forl <5 <4
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<y33> <y35> <y37) <y39)
Y34 Y36 Y38 Y40

<
[y
—_

Y42 Y43
Yas  Y4ae
Yas Y49

)
Ys1 952>
)
)

<

39

<

=~
@
[N
3 A

,.\A/_\,_\
<
ot
<
(=2
NN

Ys4  Ys5
Y57 Ys8
Yeo Yol
Y63  Ye4

L e
ol Ot O
© o W

/\/\p/—\
(]
=

<
=)
)

Oy w Sym? W

1\ [0\ (x1) (=3 Yo Y10 Y15 Y16 Yo1 Y22 Yor Y28
0/ \1) \z2/) \x4 Y11 Y12 Y17 Y18 Y23 Y24 Y29 Y30

Y13 Y14 Y19 Y20 Y25 Y26 Ys1 Y32

<

FIGURE 6.2: General form of w € M(F) using decomposition (i), e.g. the matrix with

entries ys, yg is Ggl’o).

By first considering when ¢ = 1 = j and ¢« = 2 = j, we find that y; = 0 = y,.
When i = 1,7 = 2 we have

(0 0) (2) +(n 0) (3) =0 = =
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o 1)
(-1 0)
(a2 )
)

AW NWew
010
<O 0 2>
(0 1) <2 0 0)
-1 0) 0 -1 0
(—1‘2 acl) —21‘2 I 0
(—334 563) < 0 —X9 2951)
—2x4 T3 0
< 0 —XT4 2.%3)
Oy w Sym?® W

CEEN TRl

FIGURE 6.3: The unique solution, up to change of basis, of the system of relations
with the full rank stability conditions.

O = O
O = O
= o O

and setting ¢ = 2, j = 3 yields

(o 0) (7)o w) () =0 = won

Repeating the above two substitutions with 3 = 4 yields y7; = —ysx4 and yg =

Yox3. So far we have

W(l,l):<0 Yo —Y2 0 —yoxo yox1 —YoT4 yﬂ3>-

Since W(y 1y is full rank we must have y, # 0. We now use the GL(1) action at
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the vertex AW to multiply W by y;', giving

Ggm) — (() 1) ,Gél’o) = (—1 0) ,GQ’O) = (—xg :U1> ,Gil’o) = (—x4 ng)

(6.3)
as required.
STEP 2: The maps Oy — W — Sym? W,
Here we have the matrices
Yo Y10 Yis Yie Y21 Y22 Yo7 Y28
FI(LO) = |y 2 aFQ(LO) = | vir Y18 >F351’0) = | Y23 You 7F4(170) = | y29 Y30
Y13 Y14 Y19 Y20 Y25 Y26 Ys1 Y32
subject to the relations Fi(l’O)Fj(O’O) — Fj(l’O)Fi(O’O) =0. First set : = 1,5 = 2. Then
Yo Yo 0 Y15 Y16 ] 0 Y10 = Y15
Y1 Y12 <1> — | v1i7 s <0> =10 = Svi2=w7r >
Y13 Y14 Y19 Y20 0 Y1 = Yo

)

so the second column of Fl(l’0 equals the first column of FZ(I’O). Next fix j = 3

and in turn substitute ¢ = 1 then ¢ = 2, yielding

(

Yo Y10 o Y21 Yoo 1 0 Y21 = Y91 + Y1022
Y11 Y12 <x2> — | Y23 You <O> =0 = §v3=yuri +yi2z2
Y13 Yua Y25 Y26 | Y25 = Y1521 + Y1422

(
Yo Yie . Y21 Y22 0 0 Y22 = Y1021 + Y1672
Yi2 Y18 ($2) — | Y23 You <1> =10 = q ¥4 = Y1271 + Y1872
Yia Y20 Yos5 Y26 0 | 425 = Y1471 + Y207

Similarly, fix 7 = 4 while substituting ¢ = 1 and ¢ = 2 as above to get

Yo7 = Yo'z + Y10T4 Y28 = Y10T3 + Y1624
Y29 = Y11T3 + Y1224 Y30 = Y123 + Y18%4 -
Y31 = Y1373 + Y1474 Y32 = Y14T3 + Y20T4
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Substituting all of the above into Wy ), we have

Y9 Y10 Y10 Y16 Y91 +Yio0x2 Y10%1 T Y16T2 Y93 + Y10%4 Y1023 + Y1624
W(2,0) =1y yi2 Y12 Y18 Y111 + Y1222 Y1271 + Y182 Y1123 + Y12T4 Y1223 + Y1874

Y13 Y14 Y14 Y20 Y13%1 +Y14T2  Y14%1 + Y20%2  Y13T3 + Y14T4 Y1423 + Y2074

We now show that the minor of Wiy given by the first, second and fourth
columns must be full rank. Suppose for a contradiction that it is not full rank.
Then we may use the group action (specifically, GL(3) acting at the vertex
Sym? W) to produce a row of zeros in this minor. Suppose this is the top row,
i.e. Yo, Y10, Y16 become zero in the new basis (the argument is similar for the other
rows). The effect this has on the rest of W(y) is that now the entire top row
is zero. This contradicts the condition that W) must be full rank, thus we
conclude that the chosen minor must be full rank. Consequently, we may use
the group action to turn this minor into the identity matrix. The matrix with

respect to this new basis is

1000 zz 0 z3 O
Wooy=10 1 1 0 29 1 x4 3],
0001 0 ) 0 T4

thereby yielding the matrices Fl(l’o), cee F4(1’O) in Figure 6.3 as required.

STEP 3: The central square, including the maps W — N°W — A> QW and
W — Sym? W — \° @W.

Figure 6.4 summarises the progress of the first two steps. Around the square
we have the relations

G§2’O)Fj(1’0) _ 2]%(1,1)@(1,0) _FODGO <<y (6.4)

i J

When ¢ = j this simplifies to GEQ’O)EO’O) = Fi(l’l)Gl(-l’O). Additionally, the ma-
trix W(s,1), which is formed by concatenating the eight matrices Fl(l’l), cee F4(1’1),

ng,o)’ ey Gf’o), must be full rank.

STEP 3A: Write yy1, ..., ys2 (the entries 0fG§2’0), G§2’0)) in terms of Y3, . . ., Y3e
(the entries of Fl(l’l),Fg(l’l)).
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<y33> <y35> <Z/37) <y39>
Y34 Y36 Y38 Y40

AW NWew
<y41 Ya2 y43>
Ya4 Y45 Y46
(0 1) <y47 Y48 y49>
-1 0) Yso  Ys1  Ys2
(—1’2 561) <y53 Y54 y55)
(—z4 3) Ys6  YsT Uss
<y59 Ye0 yﬁl)
Y62 Y63 Y64

4% Sym? W

1 0 0 0 z1 O xz3 0
0 1 1 0 Tro X1 T4 X3
00 01 0 x9 0 x4

FIGURE 6.4: Progress after Steps 1 and 2.
First, consider (6.4) when i,j =1 and 7,7 = 2 in turn. We have

1 0
0
Y43 01| = Y33 (O 1) N Ya1  Ya2 _ Y33 ’
Y6 0 0 Ysa Yaa Y45 0 Yz

Ya1 Y42
Yaa  Yas

0 0
<y47 Y8 Z/49> 10
Yso Y51 Ys2 01

0 0
<y41 Ya2 y43> 1 o0l =2 <y35> (O 1) B (
Yaa Ya5 Y46 0 1 Y36
— Ya2 Y43 _ Yz 2Y3s ’
Ya5  Ya6 Yza  2Y36

and when ¢ = 2 and j = 1, we have ng’o)Fl(l’O) = 2F1(1’1)G§1’0) — FQ(I’I)GSLO)
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Next, for + = 1 and 7 = 2 we have G?’O)FQ(LO) = 2F2(1’1)G§1’0) — Ffl’”GS’O),

) (-1 9

Yas
Ys1

Ya9 _ —y35 0
Ys2 —y3s 0

giving
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that

o O =

0
Yar Y48 Y49 1] =9 Y33 (_1 O) [ Y35 (0 1)
Yso Ys1 Ys2 0 Y34 Y36
— Ya7r Y48 _ —2y33  —Y3s .

Yso Y51 —2y34  —Y36

Combining all of the above, we are able to write the entries of GgQ’O), GgQ’O) in

terms of those in Fl(l’l), F2(1’1) as follows:
0 2 —2 — 0
ngo) _ Ysz 4Yss 7 ngo) _ Y33 Y35 ‘
0 w31 2ys6 —2y34 —ys3s 0O

STEP 3B: Write ys7,yss (the entries of Fél’l)) in terms of Ysz, ..., Y3, L1, T2.
Taking ¢ = 3 and j = 1 we have

T 0

0 w33 2ys3s Yar Y33

Ty 11 | =2 <0 1) — (—:1:2 x1>

0 w34 2yse Y3s Y34
0 T2

Y33Ta  Y33T1 + 2Y35T2 _ Y33Ta  2Y37 — Y33T1
Y34T2  Y34T1 + 2Y36T2 Y34To  2Y3g — Y34T1

Y37 = Y33T1 + Y35T2

Y38 = Y34T1 + Y36T2

and so
T1 + Y35T
Fg(l,l) (y33 17T Yss 2>'

Y34T1 + Y36T2

STEP 3C: Write yss3, . .., Yss (the entries ong,)Q’O)) in terms of yss, . .., Yzg, L1, L.
Taking ¢ = 1 and j = 3 we have

0
xr1 + X
Ys3z  Ysa  UYss 1] =9 Y33 (_xz 931)— Y33T1 T YasT2 (0 1)
Ys6  Ys7  Yss 0 Y34 Y34T1 + Y36T2

— Ys3  Ys4 _ 2Y33Ta  Y33T1 — Y35T2 ‘
Yse  Ys7 2Y34T2  Y34T1 — Y36T2

o O =
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Now take : = 2 and j = 3 to get

0 0
Ty + Yssx
Ys3 UYsa Yss 1 0l =2 Yss <_$2 $1>— Y33L1 T Y3522 (_1 O)
Ys6  Ys7 Y58 Y36 Y341 + Y36T2

0 1
— Ysa  Yss _ Y33T1 — Y35T2  2Y35T1 .
Ys7  Ys8 Y34T1 — Y36T2  2Y36T1

Combining the above and summarising steps 3B and 3C, we have

O _ Y33T1 + Y3522 G(z,o) o —2y33T2  Y33T1 — Y3sT2  2Y35T1
3 - 9 - .
Y3401 + Y3672 —2Y34To  Y3aT1 — Y36T2  2Y36T1

STEP 3D: Write ys9, Ya0, Yo, - - - , Yoa (the entries of F4(1’1) and Gf’o)) in terms
of Y33y - -+, Y36, T3, Ta-

This step is identical to STEPS 3B and 3C, only whenever ¢ or j equals 3, we
instead substitute 4. This gives

O _ Y333 + Y35T4 Q20 _ —2Y33%s  Y33T3 — Y35Ta  2Y35T3
4 - ) 4 - :
Y343 + Y364 —2Y34T4  Y34T3 — Y36T4  2Y36T3

STEP 3E: We complete STEP 3 by repeating the same argument used to
conclude STEP 2. The matrix W 1), formed by concatenating Fl(l’l), e ,F4(1’1),
Gf’o), e ,Gf’o), is a 2 x 16 matrix where, due to STEPS 3A-3D, every term on
the top row is a multiple of either y33 or y35 and every term on the bottom row is a
multiple of either ys4 or y35. The argument at the end of STEP 2 now applies: the
minor formed by the first two columns of W3 ;) must be full rank, otherwise it is
possible to use the group action in such a way that an entire row of W, ;) becomes
zero, which contradicts the condition that Wy 1) must be full rank. Therefore,
the group action allows us to change basis such that (Fl(l’l) Fél’l)) becomes the
identity matrix. This forces ys3,y36 +— 1 and y34,y35 +— 0, and the resulting
change to the rest of W, 1) yields the matrices Fl(l’l), ey FAfl’l), GgQ’O), ey Gf’o)

in Figure 6.3 as required.

STEP 4: The maps N*W — N> @W — (A\° W)®2.

The final step is identical to STEP 1 because the matrices for the maps
AW = A\ @W coincide with those for Oy — W, and the relations involved are
identical. This implies GEQ’U = GZ(-l’O) for 1 <7 < 4 as required (see Figure 6.3)
and ensures that W) is full rank. It is routine to check that the relations
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GPIEPY — GEVGPY = 0 hold. This completes the proof of the claim. [

(2

Remark 6.4. It should be noted that there is an alternative method of produc-
ing the distinguished matrices in Figure 6.3. Indeed, the forms of those matrices
are not arbitrary and in fact correspond to the choice of maps defined in Propo-
sition 4.28.

As observed in (4.8), for 1 < i < 4 the basis u; of V gives us a basis of
sections z,, of H°(Y, W) which hereafter we simply denote z;. Then for any point
y € Y there exists an open set U;; C Y, 1 < i < j < 4, such that z;(y), z;(y)
forms a basis of the fibre WW,. However, we will simply reorder the basis elements
if necessary as in (6.2) and assume that y € U o, thus we write by := 2z,(y)
and by := z(y) for the basis of W,. We then write 23(y) = 210 + 220, and
24(y) = x3by + x4by. Now, the basis by, by of W, induces a basis on each fibre
(S*W), = S*W, for all A € Young(2,2) in the canonical way. For example,
/\2 W, has basis by A by and Sym2 W, has basis b1bq, b1ba, babs.

Consider the maps fqﬁf’o): W — Sym?W. Using Proposition 4.28 we can
evaluate these maps on the fibres of the bundles at . Then for all 1 <7 < 4 and
1 <35 <2 we have

(f5r ) (bs) = bjzily).
For i = 1 we have ( qﬂ’o))y(bl) = b1b; and (fzﬁ’o))y(bg) = b1by. In the ordered

basis byby, bibs, baby of Sym? V mentioned above, this produces the matrix

o O =
o = O

which is precisely the matrix F1(1,0) as calculated above. Similarly, for ¢« = 3 we
have (f55),(b1) = 21byby + 22byby and (£5°),(bs) = 1b1by + Tobobs, yielding

T 0
To X1

0 )

L0 Al of the remaining matrices in Figure 6.3 may be

which is equal to F?f
calculated in the same way; we prove this in general in Remark 6.7. This demon-
strates that the system of distinguished matrices we have constructed is precisely
the f-stable A-module of dimension vector v parametrised by y, and therefore

we have described the image of the morphism fg at the point y.
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6.2 The induction step

Now suppose n > 4 and Y = Gr(n,2). As before, begin by fixing a basis B =
{uy,...,u,} of V and for all pairs A\, A\ + ¢; € Young(n — 2,2) we obtain a basis
of Homo, (S*W,S*W), namely f; for 1 <i<nifj=1o0rg) for1 <i<mn
if 7 = 2; see Proposition 4.28. These provide the arrows in the tilting quiver.
Now fix a point w € M(FE) and recall the two decompositions of w given in
Notation 6.2: we have a matrix per arrow, denoted F* or G2 as appropriate, and
also the concatenation of these matrices whose corresponding arrows have head
at the same vertex, denoted W,.

First consider W, o), the 2 x n matrix with columns Fl(o,())’ e ,F,EO’O) that by
assumption must be full rank. Without loss of generality, assume that the first
two columns are linearly independent (if they’re not, simply re-index the basis).
Using the group action we may change basis to make these columns into the 2 x 2

identity matrix and rename the remaining entries to give a general form of Wy g

I 0 zy w3 -+ Top7 Ton—s
W0 = < .

0 1 @ 24 -+ Top-6 Ton-a

as follows:

Lemma 6.5. All of the matrices F}* and G comprising the point w € M(E)
can be chosen to take a distinguished form, modulo the group action, with entries

in polynomial terms of only x4, ..., x9,_4 as described below.

We prove this lemma by induction on Y = Gr(n, 2), where the base case n = 4
was completed in the previous section.
Induction hypothesis: Suppose that the result holds for n—1; then Lemma 6.5

holds for all matrices corresponding to arrows in the tilting quiver of Gr(n—1,2),
i.e. the sub-quiver S of Q' defined by

So::{)\EZZIH—SZAlz)\QEO},
l<p<n-1

Sy = a;"i 1 E {1,2}, )\,)\ +e; € By
t(a;"i) = A, h(az”') =\+e

(6.5)

Remark 6.6. Observe that S is not a full sub-quiver of )’ as the arrows corre-

sponding to u, € B are missing.

Before stating what the hypothesised forms of these matrices are, we make an
important observation and establish some notation. Recall from Remark 6.3 that

all vector bundles on the diagonal line \; = Ay +k in S have rank k+ 1. Consider
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two vertices A < p with |u| = |[A\| + 2 and write k; := rank(S*WV) and ky =
rank(S#W). Now consider another pair of vertices X' < u' with |p/| = |N| + 2,
rank(SYW) = k; and rank(S*W) = ky. Then paths A — p are in bijective
correspondence with paths A’ — i/ and the sizes of the matrices corresponding
to arrows in these paths are the same. Moreover, by Theorem 5.10, the relations
between these matrices correspond. We therefore suppose as part of the induction
hypothesis that any two matrices corresponding to the same basis vector u; and
that have the same order are identical. For example, in Figure 6.3 compare the
matrices for Oy — W with A°W — AW @ W (2 x 1 matrices), and the
matrices for W — AW with AW e W — (A*W)®2 (1 x 2 matrices). Hence,

the following notation is well-defined for all 1 <7 <n — 1:

Forall 1 <k <n-—3, Fi(k) = Ff‘ for any A € Sy with rank(SAW) =k,

For all 2 <k <n—2, ng) = G} for any \ € Sy with rank(S*W) = k. (6:6)
Hence every matrix corresponding to an arrow in S; C @] is of the form Fi(k) or
ng); observe that these are always (k+1) x k or (k—1) x k matrices respectively.

We now describe the matrices Fi(k) and ng). For1 <k <n-3, Fl(k) is the
k x k identity matrix with an extra row of zeroes at the bottom, while FQ(k) is the

k x k identity matrix with an extra row of zeroes at the top.

0 0 0
0 1 0
FP=: o s, AY=]01 - 0
0 1 I :
0 0 0 0 1
For Fék) we have
T 0
o T
T2 I
0 T2

For4 <i<n-1, Fi(k) takes the same form as F?fk) but with z1, zs replaced
by the entries of the i*" column of W(i,0)- Observe that for k =1and 1 <¢ <4

90



we recover the matrices F}* for A = (0,0) and X = (1, 1); see (6.2).
Next, for 2 < k <n — 2, we have

0 —(k=1) -~~~ 0 0 0
ng) — : ng) : : : 7
oo . : -2 0 0
000 -+ k-1 0 -0 =10
and
—(k’ — 1)$2 T 0
0 —(k’ — 2)[)32 25(]1

—21’2 (l{? - 2)1’1 0
0 —XT2 (k’ - 1)1’1

In the same way as above, ng) for 4 < i < n — 1 takes the same form as G:(),k)

but with 1, 25 replaced by the entries of the i*" column of Wi,0)- As above, for

= 1 and 1 < i < 4 we recover the matrices G2 for A = (1,0), see (6.3), and
A=(2,1).

It is routine to check that all the hypothesised matrices satisfy the relations

in Theorem 5.10 and when appropriately concatenated, provide full rank W) for

each A\ € Sy so long as W(; o) is full rank.
Proof of Lemma 6.5: Recall the sub-quiver S of )’ from (6.5). It remains to

show that all matrices corresponding to arrows in Q] \ S; satisfy the conditions
in Lemma 6.5, and in particular, that they also follow the pattern of matrices
described in the induction hypothesis.

We first deal with arrows in @)} corresponding to the basis vector u,, that have
head at a vertex in Sy. For these matrices we make the observation that for any
given A € Sy, the work done to find F3', G is identical to the work required to
find F}, G for any i > 3. Indeed, see STEP 3D in the base case where we noted
that the working required to find F}' and G} was identical to finding F3 and G2
for certain A. We therefore extend our above definition of the matrices E(k) and
Gz(k) to include ¢ = n, and it is routine to check that these matrices satisfy all the
required conditions of Lemma 6.5.

Next we deal with all of the remaining arrows that do not have head or tail at
the bottom right corner vertex (n—2,0). All of the vector bundles situated at the

head or tail of these arrows have rank less than or equal to n — 2. Therefore, by
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the observation in the induction hypothesis (comparing relations between paths
A — pand X' — p/ between bundles of the same ranks), we may again simply
extend the definitions of Fi(k) and ng) in (6.6) to all A € Q) rather than only the
proper subset Sy.

It remains to check the arrows with head or tail at the vertex (n — 2,0), i.e.
the arrows between Sym™ > W, Sym™ 2 W and /\2 W @ Sym™ * W in the lower
right corner of the tilting quiver as shown in Figure 6.5. This forms the rest of
Section 6.2. For consistency we will denote the matrices corresponding to these
arrows by Fi(n_z) = F for A = (n — 3,0) and ng_l) =G for A= (n —2,0).

To show that Lemma 6.5 holds for J;i(n—2),G1(n—2)7 1 < i < n, we will take

inspiration from STEP 2 and STEP 3 of the base case.

(N w)e2
" ® Sym™ ™ * W
3 G2
‘ n—3
77777777777 AW FY AW
® Symn74 W ® Symnffi w
G n—2) G(n—l)
F~(n_3) F‘(n—2)
———————— » Sym™ W — Sym" W : Sym" W

FIGURE 6.5: The lower right corner of the tilting quiver for Gr(n, 2).
STEP 1: Show that Lemma 6.5 holds for Fi(nd), 1<i<n.
To find the Fl-("fz) we make use of the relations
FOAp0=3) _ p=Dpl=8) | < i<y
i J j i e =0d =T

For 1 <u<n-—1and 1 <wv <n—2, denote the (u,v)-th entry of Fi(nﬁ) for
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©=1,2,3 as follows:
(Fl(n_2))u,v = Ay, (FQ(n_Q))u,v = bu,va (Fii(n_2))uﬂ) = Cuyp-

First we study i = 1 and j = 2. Since the F\"™® and F\"™® are just (n —
3) x (n — 3) identity matrices augmented by a row of zeroes at the bottom and
top respectively, the relation implies that coly(F\" ) = coljyq (F"™?) for all
1<k<n-3,ie.

bu,v = Gy 41, I1<v<n-3, (67)

2)

thus F2(n72) is entirely determined by F 1(n7 apart from its final column.

Next we set i = 3 and j = 1. The relation is F\" 2 F"™ = p{"? p{n=3),

and we analyse each side separately. The left hand side is more straightforward

) )

as multiplying by Fl("f3 simply turns the last column of F?f”*2 into zeroes while

leaving the rest unaltered, i.e.

(Fs(n—Q)Fl(n—?)))u , = 0 ifv=n-2,

)

Cun Otherwise.

For the right hand side recall that F\" is the (n — 2) x (n — 3) matrix

T 0 0

To X1 0

Fg(n_?’) _ 0 ) T
O DY DY x2 Il
0 0 i)

Left-multiplying by Fl(n_2) yields

) (e 0 ifv=n-—2,
(Fl( 2)FS( 3))uv =

)

Ay pT1 + Gy 172 Otherwise,
and comparing with the above we have
Cup = QuopT1 + Qypt1T2, 1 <u<n—1, 1<v<n-—3.
By repeating the above with ¢« = 3 and 7 = 2 we mostly get information about
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F?f”_Q) that we already have since F\" ) is also an identity matrix with an extra
row of zeroes (this time at the top rather than the bottom), and FQ("_Q) is largely

determined by Fl(nﬂ) by (6.7). Importantly however, we do pick up the final

)

column of Fén_2 in this calculation which is given by

Cun—2 = Qyun—2T1 + bu,nf2x2-

Combining this with the above, we can now write F?fn_Q) in terms of only the

n—2) Fz(n—Z)

entries of Fl( and x1, xo as follows:

B Ay o T1 + Qyvr1® ifl<v<n-3,
(Fis(n 2))u,v = Cyop = . v (68)
Qyn—27T1 -+ bum_QIBQ ifv=n-—2.

We find a similar set of equations for Fi("ﬂ)
in (6.8) with the i-th column of W ).
To finish STEP 1 we make the same observation as at the end of STEP 2 of

the base case. Consider the matrix W, _s ), formed by concatenating the Fi(n_Q),

, 4 <4 < n; simply replace 1, x5

and suppose for contradiction that the (n — 1) X (n — 1) minor formed by taking
Fl(n_Q) and the final column of F2(n_2) is not full rank. Then it is possible to
use the group action (specifically, GL(n — 1) acting at the vertex Sym" > W)
to produce a row of zeros in this minor; suppose for example that this is the
top row (the argument for the other rows is similar). The effect this has on
the rest of W,_o0) is that the entire top row becomes zero. This contradicts
the stability condition that W(,_s0) must be full rank, thus we conclude that
the chosen minor must be full rank. As a result, we may use the group action
to change the chosen minor into the identity matrix. The resulting change to
Win—2,0) is that the Fi(”_m take precisely the required forms as in the induction
hypothesis, and so Lemma 6.5 holds for these matrices. Moreover, Fl("72) and
FQ(n_Q) are (n — 2) x (n — 2) identity matrices augmented by a row of zeroes at
the bottom and top respectively, and for i > 3, Fi(n_Q) takes the required forms
similar to Fi(nfg) in the induction hypothesis. This completes STEP 1.

STEP 2: Show that Lemma 6.5 holds for ng_l), 1<i<n.

This step is slightly simpler than STEP 3 of the base case since it remains only
to prove that the ngfl) take the required forms. By Theorem 5.10(iv), across
the lower right corner square we have the relations

(n—3)G" VE" = (n—2)F" G — TGP 1< j <n. (6.9)

J 4 J
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We will refresh notation from STEP 1 and for 1 <u<n—-2,1<ov<n-—1,
denote the (u,v)-th entry of Gl(n_l) for i = 1,2, 3 as follows:

<G§n71)>u,v = Ay, (ngil))u,'u = bu,v; (G;(;nil))u,v = Cyp-

We first consider the cases when i,5 € {1,2}. Note that when i = j, (6.9)
simplifies to G VE" = G Recall that FY FM? for i =

1,2 are identity matrices augmented by a row of zeroes at the bottom and top

respectively, and that

~(n—=3) - 0 0 0

G2 _ 7 =2 : : : s
! Do : 2 2 0 0
000 --- n—23 0 e 0 =10

When i = 1 = j we have G\ VF"™? = F"9G" The left hand side is
equal to ngil) with the final column removed, and the right hand side is equal
to ng_Q) augmented by a row of zeroes at the bottom. Comparing both sides

entry-wise yields

0 a1n—-1
0 2 0 a9 n—1
ng—l) _ .
00 n—3 Gp-3n-1
00 0 Ap—2n—1
Repeating for ¢ = 2 = j yields
b1 0 0 0
boy  —(n—3) 0 0
Gy =1 : S
bn—31 0 e =2 0 0
br—21 0 -0 =10

To find the remaining entries of ng_l) and ng_l) we use (6.9) with ¢ = 1 and

jJ = 2. This reads

(n=3)GI VB = (n = FVGNTY — BYGY,

95



which becomes

0 a1n—1
0 0 agn—1
(n—3) =
0 n—3 Gn_3n-1
0 0 (p—2n—1
0 00 0 —(n—13) 0O 0 0
010 0 :
(n—=2)10 0 2 0 |- -2 0 0],
: 0 -1 0
0 00 n—3 0 0

and so we get ay,-1 = 0for 1 <u <n -3 and a,_2,-1 = n—2. We now
repeat the above with + = 2 and 7 = 1 to get a similar equation and ultimately

discover that the first column of Gén_l) satisfies b,; = 0 for 2 < u < n — 2 and

b1 = —(n—2). We thus have the required forms for GI" ™" and G{"™" as shown
below
0 ~(n=2) - 0 0 0
Gl — 0 G — : ‘ S
Do : -2 0 0
000 -+ n-2 0 - 0 =10

It remains to investigate ng_l) (as usual the process of finding ng_l) for

4 <4 < n will be identical). With ¢ = 3 and j = 1, equation (6.9) becomes

(n B 3)G:())n71)F1(n72) _ (n B 2)F1(n73)G:(5n72) B F?EnfB)ngfm
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and so we have

C1,1 Ci2 v Cln—2
C2.1 Co2 v Co2.n—2
(n—3) =
CTL—2’1 o .. “ . CEEEEY C'I’L—2”I’L—2
—(n —3)x, T1 0
0 —(n—4)xy 214
(n—2) ’ ' '
—2z5 (n—4)1, 0
0 — Ty (n —3)x
0 0 0
0 1 O 0 0
0 i) 2&71 0 0
0 0 2%2 3.171 0

(n—4)xy (n—3)x;
0 (n — 3)5(72

This gives us most of Ggﬂfl). For 1 <wu,v <n — 2, we have

—(n—=2—-u+1zy fu=wuv,
Cup = § UTT fl<u<n-3,v=u+1,
0 otherwise.
Finally, we must find the last column ¢, 1. We repeat the above with ¢ = 3 and

J = 2 and, similar to previous steps, pick up largely the same set of equations

but with the final column included. In particular,

(n—2)r; fu=n-—2
Cun—1 =
0 otherwise.
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In conclusion, we have

—(n — 2)xy Ty 0
0 —(n—3)zy 21
G = : - - . . :
—2xy (n —3)1y 0
0 —T9 (n—2)xy

which is precisely the form required by the induction hypothesis. As mentioned
above, the proof is identical to show that ng_l) for 4 < ¢ < n takes the same
form as Gg"il) except that xq,zo are replaced by the entries of the i-th column
of W1,0). Hence, we have shown that each Gl(-”_l) is of the form defined in the
induction hypothesis. This completes STEP 2 and the proof of Lemma 6.5. [

Remark 6.7. We now prove the claim in Remark 6.4 that the matrices F, G¥
may be deduced from the choices of maps in Proposition 4.28. Recall that for
A € Young(n —2,2) we have S\W = (A* W)®*2 @ Sym™ 2 W, and following the
notation of Remark 6.4 for each y € Y we have a basis of the fibre S*W, given
by
p;= (D Ab)EP @0 0< 5 < A — A,

It suffices to prove the result for only i = 3 where z,,(y) = x1b; + x2by; for other
values of ¢ we simply substitute the appropriate column of W, o).

First fix A such that A + e; € Young(n — 2,2). We will calculate F¥ where
k=X — Ao + 1. The induced basis of S**1W), is given by

g = Dy b)) @b T 0< <N — A4 1
Then for all 0 < 7 < A\ — A9, we have

(F2)y(pj) = @1 (b AD)® @ b 270 4y (b A by)®N @ b2 Tt

= 195 + 2511

which yields the matrix F¥ as required.
Now fix A such that A + e; € Young(n — 2,2). We will calculate G& where
k=X — Ag + 1. The induced basis of S*“2W), is given by

sj= (b Ab)TT @B, 0<j <M — A — 1
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Then for all 0 < 7 < A\ — A9, we have

(QQS)y(pj) = jzi(by A b)PP T @ bil_AZ_jb%_l
— (M = Ay — f)aa(by Aby)®P T ® bi‘l_AQ_j_lbg

—$2(k3 - 1)80 lfj =0
j$18j,1—(]€—1—j)l’28j lflg]g)\l—)\g—l
$1<k - 1)3)\1—/\2—1 lf.] =N — A

which yields the matrix G as required.

6.3 Proof of Theorem 6.1

Given the closed immersion fr : Y — M(E), we now construct a morphism
[ M(E) — Y satisfying f’' o fgp = idy and fg o f' = idar), thereby proving
that fg is an isomorphism.

As a fine moduli space, the multigraded linear series M(E) = M(A, v, 0) car-
ries a tautological bundle V := @ieQ/ V; where each V; is globally generated by
[CIK18, Corollary 2.4] and satisfies rank(V;) = v;. Since M(FE) is also the space
of isomorphism classes of representations of the tilting quiver ()’ with dimension
vector v subject to the relations in Theorem 5.10, it is therefore a subvariety
of the quiver flag variety X formed using the same quiver and dimension vec-
tor but with no relations. Write V(/l,()) for the tautological bundle on X at the
vertex (1,0). By Proposition 2.4(iii), the n arrows (0,0) — (1,0) in Q" imply
that dim(H°(X,V(;))) = n. Since Vi) is the restriction of V{, 5 to M(E)
and there are no relations amongst paths (0,0) — (1,0), we therefore also have
dim(H*(M(E),Va,0))) = n.

Now consider the sub-bundle E' := V(g o) ® V(1,0) of E, where V() = Opp)
and V(10) is globally generated. Then by [CIK18, Theorem 2.6 there is a mor-
phism

fer: M(E) — M(E"),

where M(E’) is the multigraded linear series of E’. The bundles V¢ and
Vi1,0) have ranks 1 and 2 respectively and we have dim(H°(M(E), Vap)) = n
from above. Hence, the quiver for M(E’) has only two vertices with n arrows
between them and no relations. Following Example 2.5(ii), M(E’) is therefore

isomorphic to the Grassmannian Gr(n,2) =Y, and so in fact we have constructed
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a morphism

Using the content of Sections 6.1 and 6.2, it remains to show that fg o fr = idy
and fgo fp = idym).

Now, as observed in Remarks 6.4 and 6.7, fr takes a point y € Y to the 6-
stable A-module of dimension vector v parametrised by y, i.e. to the fibre of the
bundle E over Y, and this image fg(y) is described by the distinguished matrices
defined in the induction hypothesis for Lemma 6.5. See Figure 6.3 when n = 4,
for example. Since y provides the data for the matrices corresponding to the
arrows (0,0) — (1,0) and fg is simply the projection back onto these arrows,
we have fg o fp =idy.

Now suppose w is an arbitrary point of M(F). Then Lemma 6.5 implies that
w is equivalent modulo the group action to a distinguished point w' € M(E),
where every entry of each matrix comprising w’ is a polynomial in the entries of
the matrix W o). As a matrix, the point y' = fg/(w') € Y is equal to W4 ¢y, and
so applying fr to v’ simply reconstructs w’ in the same way as described above.
Thus fe(fe([w])) = fe(fe([w]) = [w] = [w], and therefore fp o fr = idrm)
as required. This completes the proof of Theorem 6.1. O]
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Chapter 7
Future directions

As a result of Theorem 6.1 it is natural to conjecture the following.

Conjecture 7.1. For any 1 < r < n let Y = Gr(n,r). Then the morphism
fe:Y = M(E) is an isomorphism.

To prove this using the methods in this thesis requires two main steps: firstly,
using Theorem 5.14 we must write down the ideal of relations for k@' explicitly,

and secondly, take a similar approach to the proof in Chapter 6 to get the result.

7.1 Describing the ideal of relations for the tilt-
ing quiver of Gr(n,r)

While the strategy has been roughly laid out, actually writing down generators
in general for the ideal of relations J from Theorem 5.14 poses a far greater
combinatorial challenge than the r = 2 case. As alluded to in Section 5.3, we
must first write down a compatible Pieri system for the tilting quiver. In other
words, we must define a system of well-defined maps S*WW — SMeW for all
A € Young(n — r,r) and 1 < i < r, where W is the rank r tautological quotient
bundle on Gr(n,r). Proposition 4.28 covers the i = 1,2 cases. For i > 3, more

complicated exchange relations on the Young diagram A (see Definition 4.2) need
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to be considered. One example is SZ2DW — SEG2DW where v € V and we have

TINT2 Q@Y1 NYa = 201 ATa AN 2y @ Y1 N Yo
+ 201 ANya N2y @ o1 N\ T
F+ 21 ANY1 N\ 25 @ 2 N\ Yo
F Y1 ATa N 2y @21 N\ Yo
F+ T AY2s A 2y @Y1 N\ To
T Y2 ANx2 A2y @Y1 A 1.

To complete this task in general, Buchweitz, Leuschke and Van den Bergh
mention that Olver was the first to write down such a Pieri system in the preprint
[O1v82], though it is unclear to what degree this is accomplished. Since then there
has been more potentially helpful work that has considered these maps (or similar
ones); see [ABWS&2], [MO92], [SW11], [Sam09]. The last reference describes a
package called PieriMaps written for the Macaulay2 software by the author of
the paper.

If a Pieri system can be written down in as simple a way as possible, then
by observing the spaces calculated in Proposition 5.16 it is now a matter of
composing these maps as appropriate to find explicit generators of J. While it is
likely that in the cases where these relations span either Sym? V' or /\2 V' we have
the usual bases of these spaces as generators, the hard part is calculating the
relations around squares in the tilting quiver, i.e. cases when the relations span

V ® V and non-trivial linear combinations appear; see for example Section 5.1.4.

7.2 Reconstructing quiver flag varieties from a
tilting bundle

Despite the description of A = Ende, (E) for Y = Gr(n,r) in [BLV16], the
problems detailed above mean that we do not currently have explicit generators
for the ideal of relations J C k(@’, and therefore little can be said about a potential
proof of Theorem 6.1 in the general case. We do however suspect that such a
proof, while combinatorially unpleasant, would be quite similar to the Gr(n,2)
case.

The methods used in this thesis are very hands-on. An alternative approach
altogether would be to recall Remark 2.12: the results of Bergman-Proudfoot
imply that fg identifies Y with a connected component of M(E), because Y is
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smooth, F is a tilting bundle, and our stability condition 6 is great; see [BP0S,
Theorem 2.4]. A proof of Conjecture 7.1 would therefore follow from showing
that for Y = Gr(n,r), the moduli space M(FE) is connected. In fact, a successful
implication of this approach may even lead to generalising the result further to

all quiver flag varieties:

Conjecture 7.2. Let Y be any quiver flag variety and E the tilting bundle from
Theorem 2.9. Then the morphism fg:Y — M(FE) is an isomorphism.
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