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Abstract

Given a quiver flag variety Y equipped with a tilting bundle E, a construction of

Craw, Ito and Karmazyn [CIK18] produces a closed immersion fE : Y →M(E),

whereM(E) is the fine moduli space of cyclic modules over the algebra End(E).

In this thesis we present two classes of examples where fE is an isomorphism.

Firstly, when Y is toric and E is the tilting bundle from [Cra11]; this gen-

eralises the well-known fact that Pn can be recovered from the endomorphism

algebra of
⊕

0≤i≤nOPn(i). Secondly, when Y = Gr(n, 2), the Grassmannian of

2-dimensional quotients of kn and E is the tilting bundle from [Kap84]. In each

case, we give a presentation of the tilting algebra A = End(E) by constructing a

quiver Q′ such that there is a surjective k-algebra homomorphism Φ: kQ′ → A,

and then give an explicit description of the kernel.
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Chapter 1

Introduction

We begin by briefly outlining some background material before discussing the

main results. Throughout, let k be an algebraically closed field of characteristic

zero.

LetQ be a finite acyclic quiver with a unique source, vertex setQ0 = {0, . . . , `}
and arrow set Q1. Let r := (1, r1, . . . , r`) ∈ N`+1, and denote by Rep(Q, r) the

space of representations of Q with dimension vector r, of which the isomorphism

classes are precisely the orbits under the action of the group G :=
∏`

i=0 GL(ri)

induced by conjugation.

Definition 2.1. The quiver flag variety associated to the pair (Q, r) is the GIT

quotient

Y := Rep(Q, r)//χG

for the special choice of linearisation χ := (−
∑`

i=1 ri, 1, . . . , 1) ∈ G∨.

Craw [Cra11] showed that the variety Y is non-empty if for all i ∈ Q0 we

have ri ≤ si :=
∑
{a∈Q1|h(a)=i} rt(a), and in this case proved that Y has many nice

properties: it is a smooth, projective Mori Dream Space, and has an iterative

structure as a height ` tower of Grassmann-bundles; this motivates the termi-

nology quiver flag varieties. Additionally, these varieties are the framed quiver

moduli of Nakajima [Nak96]. Examples of quiver flag varieties include Grassman-

nians, (partial) flag varieties of type-A and (towers of) certain projective space

bundles.

Many properties of an algebraic variety X can be studied via its bounded

derived category of coherent sheaves, Db(Coh(X)). Typically this category is

difficult to work with, but the key results of Baer [Bae88] and Bondal [Bon90]

prove that if X carries a tilting bundle E (see Definition 2.6) and Rmod(A)
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is the category of finitely generated right modules over the endomorphism al-

gebra A = EndOX (E), then there is an equivalence of triangulated categories

Db(Coh(X)) ∼= Db(Rmod(A)). Hence, there is a strong motivation to find tilt-

ing bundles for varieties. Beilinson [Bei78] gave a tilting bundle for projective

space and Kapranov [Kap84] gave one for the Grassmannian. Craw [Cra11] then

generalised these results to give a tilting bundle for any quiver flag variety Y :

let W1, . . . ,W` be the globally generated vector bundles given by the pullbacks

of the tautological quotient bundles on each variety in the tower structure of Y ;

let Young(n, r) denote the set of Young diagrams with at most n columns and r

rows, and for a Young diagram λ let SλWi be the image of the Schur functor on

W⊗|λ|i .

Theorem 2.9 ([Cra11, Theorem 4.5]). The vector bundle on Y given by

E :=
⊕

1≤i≤`, λ(i)∈Young(si−ri,ri)

Sλ(1)W1 ⊗ · · · ⊗ Sλ(`)W`

is a tilting bundle. In particular, the bounded derived category of coherent sheaves

on Y is equivalent to the bounded derived category of finite-dimensional modules

over the endomorphism algebra EndOY (E).

In general, let A be a finite dimensional associative k-algebra and let v be an

indivisible dimension vector. King [Kin94] defined a certain θ-stability criterion

for A-modules and showed it is equivalent to Mumford’s; see [MFK94, Section 2].

He was therefore able to construct the fine moduli space of θ-stable A-modules

with dimension v, denoted M(A,v, θ), as a GIT quotient. Now, generalising

work of Craw-Smith [CS08] and Craw-Winn [CW13], given a scheme X with a

collection of globally generated vector bundles E1, . . . , En, Craw, Ito and Kar-

mazyn [CIK18] construct the universal morphism fE : X → M(A,v, θ), where

A is the endomorphism algebra of the bundle E =
⊕n

i=0Ei with E0 = OX . This

generalises the classical morphism from a scheme with a basepoint-free line bun-

dle into its linear series. Hence, they callM(A,v, θ) the multigraded linear series

and define

M(E) :=M(A,v, θ).

By considering the case that X is a quiver flag variety Y and E is the tilting

bundle from Theorem 2.9, using [CIK18, Theorem 2.6, Remark 2.8] we are able

to deduce the following.
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Theorem 2.11. The universal property of M(E) gives a morphism

fE : Y −→M(E) (1.1)

which is a closed immersion.

Hence we may embed Y , itself a moduli space, into M(E), another ambient

moduli space.

It is natural to ask when fE is an isomorphism, thereby providing a recon-

struction of the quiver flag variety from a tilting bundle. This thesis provides two

classes of examples: when Y is toric, and when Y = Gr(n, 2), the Grassmannian

of 2-dimensional quotients of kn. The main tool is to define a quiver Q′, which

we call the tilting quiver, such that there is a surjective k-algebra homomorphism

Φ: kQ′ � A defined by mapping concatenations of arrows to compositions of

maps. Since kQ′/ ker(Φ) ∼= A, we may regard points of M(E) as θ-stable rep-

resentations of Q′ with dimension vector v subject to the relations induced by

ker(Φ).

Reconstructing toric quiver flag varieties from a tilting

bundle

The following result is from the paper [CG18], of which the author of this thesis

is a co-author. Please see the declarations on the preliminary pages.

Fix a quiver Q with vertex set {0, . . . , `} satisfying the conditions prior to

Definition 2.1. When the dimension vector r = (1, . . . , 1), the group G is an

algebraic torus and we therefore call Y a toric quiver flag variety. In this case,

E is a direct sum of line bundles and the Grassmann-bundle tower structure

becomes a tower of projective bundles. The main result is as follows.

Theorem 3.2. Let Y be a toric quiver flag variety. Then the morphism fE : Y →
M(E) from (1.1) is an isomorphism.

A special case of Theorem 3.2 is that when Y = Pn we recover the result of

Beilinson [Bei78] where Pn is reconstructed from the tilting bundle
⊕

0≤i≤nOPn(i);

see Example 3.4. This theorem therefore provides further evidence that toric

quiver flag varieties provide good multigraded analogues of projective space.

To prove Theorem 3.2 we give an alternative description of M(E) using the

results of Craw and Smith [CS08]. In the toric setting, the tilting quiver Q′ is

given by the bound quiver of sections of E. We prove that the vertices of Q′
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correspond to the integer points of a certain `-dimensional cuboid in Z`; that

the original quiver Q forms a full sub-quiver of Q′; and that the arrow set Q′1 is

given by translating the arrows of Q to everywhere they fit inside that cuboid.

To borrow from Example 3.7, the toric quiver flag variety with original quiver

(a) below has tilting quiver (b), and e1, e2, e3 denotes the standard basis of Z3.

0 1

2 3

(a)

0 e1

e2

e3

(b)

Figure 1.1: Example of a quiver Q (a) with tilting quiver Q′ (b).

Each arrow of Q′ carries a label corresponding to a torus-invariant divisor

Dρ, where ρ ∈ Σ(1) is a ray of the toric fan for Y ; this is represented by the

different coloured arrows in the above figure. These labels determine the relations

IR ⊂ kQ′ on Q′. Let BQ′ be the irrelevant ideal that cuts out the θ-unstable locus

of AQ′1
k . Then [CS08, Proposition 3.8] implies thatM(E) is equal to the geometric

quotient of V(IR) \V(BQ′) by the action of G. Using [CS08, Proposition 4.3], we

can also describe the image of Y under fE as a geometric quotient. The proof of

Theorem 3.2 then follows by showing that these geometric quotients coincide.

A presentation of Kapranov’s tilting algebra for Gr(n, 2)

For the remainder of this thesis we analyse the case that Y = Gr(n, 2) := Gr(V, 2),

the Grassmannian of 2-dimensional quotients of V = kn, although we do give
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some minor results for Gr(n, r) in general where stated. Chapter 4 begins with

some background material on Schur powers, Littlewood-Richardson numbers and

skew-Schur powers.

The tilting bundle E from Theorem 2.9 becomes

E =
⊕

λ∈Young(n−2,2)

SλW ,

whereW is the rank 2 tautological quotient bundle of Y . This tilting bundle was

originally given by Kapranov [Kap84], and as such we refer to A = EndOY (E) as

Kapranov’s tilting algebra. Like in the toric case, the first step towards proving

that Y ∼=M(E) is to write down a presentation of A as a quiver with relations. In

particular, we want to define the tilting quiver Q′ such that there is a surjective k-

algebra homomorphism Φ: kQ′ → A. The ideal ker(Φ) then defines the relations

on the quiver.

Important note: Such a presentation was given by Buchweitz, Leuschke and

Van den Bergh in [BLV16]. While they give the tilting quiver with spaces of

relations for Gr(n, r) in general, their indirect approach to computing EndOY (E)

relies on heavy machinery and furthermore they do not give explicit generators

for the kernel. Since we need these relations to prove that Y ∼=M(E) in Chap-

ter 6, in this thesis we give a new proof which produces an entirely self-contained

description of A for the Gr(n, 2) case and an explicit list of elements that gen-

erate the ideal ker(Φ) ⊂ kQ′. We consider the advantages and disadvantages of

this approach compared to [BLV16] in more depth in Section 5.3. For now, we

continue to give an overview of the approach used in this thesis.

We begin by simplifying a result of Kapranov in the general case. For two

Young diagrams λ, µ with λ contained in µ (write λ ≤ µ), denote by Sµ/λV the

skew-Schur power of V corresponding to the skew diagram µ/λ (see Section 4.3).

Proposition 4.24. Let W be the rank r tautological quotient bundle of Gr(V, r)

and let λ ≤ µ ∈ Young(n− r, r). Then

HomOY
(SλW ,SµW) ∼= Sµ/λV.

Let e1, . . . , er be the standard basis of Zr. Then an immediate corollary of

Proposition 4.24 is that for all λ, µ ∈ Young(n − r, r) ⊂ Zr with µ = λ + ei for

1 ≤ i ≤ r, we have HomOY
(SλW ,SµW) ∼= V ; see Corollary 4.25.

Now fix r = 2. Writing B = {u1, . . . , un} for a basis of V , we get a basis

of each of the homomorphism spaces HomOY
(SλW ,Sλ+eiW) which we denote by

5



fλu1 , . . . , f
λ
un if i = 1 or gλu1 , . . . , g

λ
un if i = 2; we call these f -type and g-type maps.

We then write down these maps explicitly and use them to prove the following

key surjectivity result. Given λ < µ ∈ Young(n − 2, 2), define m1 = µ1 − λ1

and m2 = µ2 − λ2, and for 0 ≤ k ≤ m1 + m2 define the sequence of partitions

τk = λ+ke1 if 0 ≤ k ≤ m1 and τk = λ+m1e1 + (k−m1)e2 if m1 ≤ k ≤ m1 +m2.

Proposition 4.30. Let Y = Gr(n, 2) and let λ < µ ∈ Young(n− 2, 2). Let τk be

the sequence of partitions defined above. Then the composition map

Θλ,µ :

m1+m2⊗
k=1

HomOY
(Sτk−1W ,SτkW) −→ HomOY

(SλW ,SµW)

is surjective.

Proposition 4.30 implies that any homomorphism in A may be decomposed

as a linear combination of f -type and g-type maps. In light of this, we define the

tilting quiver Q′ to have vertex set corresponding to the irreducible summands

of E, namely SλW for each λ ∈ Young(n− 2, 2), and arrow set corresponding to

the collection of f -type and g-type maps between each summand. This produces

a staircase-like diagram for Q′; see Figure 4.2. Then we can define a k-algebra

homomorphism

Φ: kQ′ −→ A

by mapping each arrow to the appropriate f -type or g-type map, extending this

by mapping paths to compositions of these maps, and finally extending linearly

to all of kQ′. We then prove the following.

Theorem 4.34. Let Y = Gr(n, 2). Then the k-algebra homomorphism Φ: kQ′ →
A is surjective.

Hence we have kQ′/ ker(Φ) ∼= A, which concludes Chapter 4. The goal of

Chapter 5 is to describe the ideal ker(Φ) explicitly, which determines the relations

on Q′. By observing that elements of ker(Φ) are relations between paths with

the same head and tail and length at least two, it is enough to find a basis Kλ,µ

for the kernels of the induced maps

Φλ,µ : eµkQ′eλ −−→→ HomOY
(SλW ,SµW),

where eµ, eλ are idempotents corresponding to the length zero paths at the vertices

µ, λ ∈ Q′0 respectively. Define P := {(λ, µ) ∈ Q′0
2 | λ < µ, |µ| ≥ |λ| + 2}. Then

6



we have

ker(Φ) =

 ⋃
(λ,µ)∈P

Kλ,µ

 .

In Section 5.1 we consider the subset P2 := {(λ, µ) ∈ Q′0
2 | λ < µ, |µ| = |λ|+2} ⊂

P and write down each set Kλ,µ for (λ, µ) ∈ P2 explicitly. Then we define the

ideal

I : =

 ⋃
(λ,µ)∈P2

Kλ,µ

 .

It is clear that I ⊆ ker(Φ), and by considering the remaining pairs (λ, µ) ∈ P \P2

in Section 5.2 we prove that I = ker(Φ). Denote the arrows of Q′ by their images

under Φ (the f -type and g-type maps). The main result is as follows.

Theorem 5.10. Let Y = Gr(n, 2), let E be the tilting bundle (4.1) and let

A = EndOY (E). Let Q′ be the quiver defined in Definition 4.31. Then the k-

algebra A is isomorphic to kQ′/I for the ideal

I =

 ⋃
(λ,µ)∈P2

Kλ,µ

 ,

where

(i) if µ = (λ1 + 2, λ2), Kλ,µ =
{
fujf

λ
ui
− fuifλuj | 1 ≤ i, j ≤ n

}
.

(ii) if µ = (λ1, λ2 + 2), Kλ,µ =
{
gujg

λ
ui
− guigλuj | 1 ≤ i, j ≤ n

}
.

(iii) if λ1 = λ2 and µ = (λ1 + 1, λ1 + 1), Kλ,µ =
{
gujf

λ
ui

+ guif
λ
uj
| 1 ≤ i, j ≤ n

}
.

(iv) if λ1 > λ2 and µ = (λ1 + 1, λ2 + 1),

Kλ,µ =
{

(λ1 − λ2) gujf
λ
ui
− (λ1 − λ2 + 1) fuig

λ
uj

+ fujg
λ
ui
| 1 ≤ i, j ≤ n

}
.

We conclude Chapter 5 with an example. For Y = Gr(5, 2) we write down

the tilting quiver and the relations described by I explicitly. We observe that

the tilting quiver for Gr(4, 2) forms a full sub-quiver and the relations form a

sublist of those for Gr(5, 2); this data recovers the example given by Buchweitz,

Leuschke and Van den Bergh in [BLV15, Example 8.4].
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Reconstructing Gr(n, 2) from a tilting bundle

For Y = Gr(n, 2), Theorem 5.10 gives us an explicit presentation of the endo-

morphism algebra A ∼= kQ′/ ker(Φ). Hence points of M(E) = M(A,v, θ) are

θ-stable representations of Q′ with dimension vector v which satisfy the relations

induced by ker(Φ). Using this presentation we prove the following.

Theorem 6.1. Let Y be the Grassmannian Gr(n, 2). Then the morphism

fE : Y →M(E) is an isomorphism.

By considering a particular sub-bundle E ′ of the tautological bundle on the

moduli space M(E), we use the same multigraded linear series technology as in

Theorem 2.11 to write down a morphism fE′ : M(E)→M(E ′) where our choice

of E ′ yields M(E ′) ∼= Y . The approach is then to demonstrate that fE′ is an

inverse morphism for fE, and this requires a technical result using induction as

follows.

Begin by considering Y = Gr(4, 2). Using the presentation above and con-

sidering [Cra11, Section 2], we can write down points of w ∈ M(E) using two

overlapping systems of matrices: one matrix per arrow of Q′ satisfying the rela-

tions in ker(Φ) given by Theorem 5.10, the orders of which are determined by

v, and one matrix per vertex of Q′ given by concatenating the matrices corre-

sponding to the arrows with head at that vertex, which by θ-stability must be

full rank.

Now fix w ∈M(E). Using the constraints on the systems of matrices defining

w, namely θ-stability and the relations induced by ker(Φ), we prove w is equiva-

lent to a point (modulo the group action) where every entry of each matrix is a

polynomial in the entries of the single matrix corresponding to the arrows of Q,

the original quiver for Y which is a full sub-quiver of Q′. Once we have done this

for Gr(4, 2), we use induction to prove the same property holds for Gr(n, 2). It

is then possible to show that fE′ is the inverse morphism for fE.

Future directions

We conclude with a discussion about the potential to generalise the methods of

this thesis in order to prove the following.

Conjecture 7.1. For any 1 ≤ r < n let Y = Gr(n, r). Then the morphism

fE : Y →M(E) is an isomorphism.

While Buchweitz, Leuschke and Van den Bergh provide the tilting quiver

for any Gr(n, r), considerable combinatorial work must be undertaken in order

8



to write down explicit generators for ker(Φ). The difficulty is two-fold: first,

write down a ‘Pieri system’, i.e. a collection of maps SλW → Sλ+eiW for λ ∈
Young(n − r, r) and 1 ≤ i ≤ r (when i = 1, 2 these are the f -type and g-type

maps described above). Secondly, use this system to describe the relations of

the titling algebra in the style of Chapter 5. We discuss this in more detail in

Section 5.3 and Section 7.1.

Without completing the above, it is hard to say anything definitive about

generalising the proof of Theorem 6.1 using the methods in Chapter 6. However,

different strategies altogether may provide further insight, in particular the work

of Bergman and Proudfoot [BP08] which identifies any quiver flag variety Y with

a connected component ofM(E). Given the evidence in this thesis, we therefore

conjecture the following.

Conjecture 7.2. Let Y be any quiver flag variety and E the tilting bundle from

Theorem 2.9. Then the morphism fE : Y →M(E) is an isomorphism.

9



Chapter 2

Background

We begin by recalling some basic definitions and the construction of quiver flag

varieties. Then we present a tilting bundle for these varieties and define the

corresponding tilting algebra. From this we create a second moduli space, the

‘multigraded linear series’, and write down a closed immersion from the original

quiver flag variety to the multigraded linear series.

Throughout, let k be an algebraically closed field of characteristic zero.

2.1 Quiver flag varieties

The background material presented in this section mostly follows [Cra11, Sec-

tions 2, 3].

A quiver Q = (Q0, Q1) is a directed graph with vertex set Q0 and arrow set

Q1. For each arrow a ∈ Q1 we denote by h(a), t(a) ∈ Q0 the vertices at the

head and tail of a respectively. We say that Q is finite if Q0 and Q1 are finite;

connected if the underlying graph is connected; acyclic if there exists a labelling

of vertices Q0 = {0, 1, . . . , `} ⊂ N such that for all a ∈ Q1 we have t(a) < h(a).

Unless stated otherwise, we hereafter suppose that Q is finite, connected, acyclic

and has a unique source vertex 0, i.e. 0 is the only vertex i ∈ Q0 such that there

are no arrows a ∈ Q1 with h(a) = i.

A representation W of Q consists of a vector space Wi for all i ∈ Q0 and a

linear map wa : Wt(a) → Wh(a) for all a ∈ Q1. Denote ri := dim(Wi) and define

the dimension vector of W to be r := (r0, . . . , r`) ∈ N`+1.

Henceforth fix a dimension vector r = (ri) ∈ N`+1 satisfying r0 = 1 and denote
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the space of representations of Q with dimension vector r by

Rep(Q, r) :=
⊕
a∈Q1

Hom(krt(a) ,krh(a)). (2.1)

Isomorphism classes of representations with dimension vector r are precisely the

orbits under the action of the group

G :=
∏̀
i=0

GL(ri) (2.2)

induced by conjugation, i.e. change of basis.

Definition 2.1. The quiver flag variety associated to the pair (Q, r) is the GIT

quotient

Y := Rep(Q, r)//χG

for the special choice of linearisation χ := (−
∑`

i=1 ri, 1, . . . , 1) ∈ G∨.

Remark 2.2. It will sometimes be more convenient to consider a coarser de-

composition of Rep(Q, r) than (2.1). For each 1 ≤ i ≤ ` define the subspace

Rep(Q, r)i :=
⊕
{a∈Q1:h(a)=i}Hom(krt(a) ,kri), giving

Rep(Q, r) =
⊕

1≤i≤`

Rep(Q, r)i. (2.3)

We may write points of Rep(Q, r) as a tuple of matrices (wi), 1 ≤ i ≤ `, where

each wi has ri rows.

By [Cra11, Lemma 2.1], a point (wi) is χ-stable if and only if it is χ-semistable

if and only if each matrix wi satisfies rank(wi) = ri. Thus, Craw observed that

the quiver flag variety Y is non-empty if and only if the inequality

ri ≤ si :=
∑

{a∈Q1|h(a)=i}

rt(a) (2.4)

holds for all i > 0. Moreover, by [Cra11, Propositions 2.2, 3.1], Y is equal to

the fine moduli space Mχ(Q, r) of χ-stable representations of Q with dimension

vector r, and is also a smooth Mori Dream Space of dimension
∑`

i=1 ri(si − ri).
For more on Mori Dream Spaces, see [HK00].

We now state the main structure theorem of quiver flag varieties.
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Theorem 2.3 ([Cra11, Theorem 3.3]). For any quiver flag variety Y , there is a

tower of Grassmann-bundles

Y := Y` −→ Y`−1 −→ · · · −→ Y1 −→ Y0 = Speck, (2.5)

where at each stage, Yi is isomorphic to the Grassmannian of rank ri quotients

of a fixed locally-free sheaf of rank si on Yi−1.

We therefore see that quiver flag varieties have an iterative structure as a

tower of Grassmann-bundles. Hereafter we assume that the inequality (2.4) is

strict for each i > 0 to avoid degeneracy in the tower.

Following [Cra11, Equation 2.4], we see that quiver flag varieties naturally

carry a collection of vector bundles W1, . . . ,W` that determine many of their

algebraic invariants. Indeed, for i > 0, the Grassmann-bundle Yi over Yi−1 carries

a tautological quotient bundle Vi of rank ri, and we write Wi := π∗i (Vi) for the

bundle of rank ri on Y obtained as the pullback under the morphism πi : Y → Yi

in the tower. Define W0 := OY and let kQ be the path algebra of Q. Then there

is also a universal k-algebra homomorphism kQ → End(
⊕

i∈Q0
Wi) obtained

associating compositions of morphismsWt(a) →Wh(a) to paths of arrows a ∈ Q1.

Proposition 2.4 ([Cra11, Corollary 3.5, Lemma 3.7]). Let Y be a quiver flag

variety with non-trivial tautological bundles W1, . . . ,W`.

(i) The vector bundles W1, . . . ,W` are globally generated.

(ii) The line bundles det(W1), . . . , det(W`) are globally generated and provide

an integral basis for Pic(Y ).

(iii) The universal k-algebra homomorphism kQ → End(
⊕

i∈Q0
Wi) induces an

isomorphism of vector spaces eikQe0
∼= H0(Y,Wi) for each i ∈ Q0, where

ei are the orthogonal idempotents of kQ.

Examples 2.5. (i) [CS08, Example 3.6] Consider the quiver in Figure 2.1 with

dimension vector (1, 1, 1). Using the tower structure given in (2.5), we see that Y

is a projective bundle over P1. Moreover, using [Cra11, Theorem 3.3] it is possible

to calculate the locally-free sheaf of rank s2 = 2 in Theorem 2.3 to beOP1⊕OP1(1).

Therefore, we have Y = PP1(OP1 ⊕ OP1(1)) = F1, the first Hirzebruch surface.

For more on Hirzebruch surfaces, see [CLS11, Example 3.1.16].

(ii) [Cra11, Example 2.4] Consider the quiver in Figure 2.2 with dimension vector

(1, r) and let |Q1| := n > r so that (2.4) is satisfied. Then the tower from (2.5)

is height one and so Y is simply Gr(n, r), the Grassmannian of r-dimensional
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1 1

1

Figure 2.1: The quiver for Y = F1, the first Hirzebruch surface.

quotients of kn. Alternatively, observe that points of Y as given by the decompo-

sition (2.3) are r × n matrices; the discussion following Remark 2.2 implies that

a point is χ-stable if and only if it is full rank, and furthermore after identifying

matrices that are equivalent under the group action (change of basis), points of Y

therefore correspond one-to-one with surjective linear maps kn → kr, or in other

words, r-dimensional quotients of kn.

1 r

n

Figure 2.2: The quiver Q with n arrows such that Y = Gr(n, r).

(iii) The quiver with n arrows 0 → 1 and one arrow i → i + 1 for 1 ≤ i ≤ ` − 1

with dimension vector satisfying n > r1 > · · · > r` makes Y into a (partial) flag

variety of type-A; see [Cra11, Example 2.6].

2.2 Tilting bundles

We now move on to the definition of a tilting bundle. For a smooth projective

variety X, write Coh(X) for the abelian category of coherent sheaves on X and

Db(Coh(X)) for the bounded derived category of coherent sheaves on X.

Definition 2.6. A coherent sheaf E on X is tilting if:

(i) the algebra EndOX (E) has finite global dimension, i.e. the maximal projec-

tive dimension of any module over EndOX (E) is finite.

(ii) ExtkOX (E,E) = 0 for all k > 0.

(iii) E classically generates Db(Coh(X)), i.e. we have 〈E〉 = Db(Coh(X)) where

〈E〉 is the smallest triangulated subcategory of Db(Coh(X)) containing E

and all of its direct summands.
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For a tilting sheaf E, we write A := EndOX (E) for its tilting algebra.

Remark 2.7. It was noted by Hille and Van den Bergh [HV07] that when X is

smooth, conditions (ii) and (iii) together imply (i) in the definition.

The motivation for finding tilting bundles stems from the following impor-

tant theorem, which gives a nice description of the bounded derived category of

coherent sheaves for varieties with a tilting sheaf.

Theorem 2.8 ([Bae88][Bon90]). Let X be a smooth projective variety with tilting

sheaf E and tilting algebra A, and write Rmod(A) for the category of finitely

generated right A-modules. Then the functor

HomOX (E,−) : Coh(X) −→ Rmod(A)

induces an equivalence of triangulated categories

R HomOX (E,−) : Db(Coh(X)) −→ Db(Rmod(A)).

When a tilting sheaf is also a vector bundle we call it a tilting bundle. The

results of Beilinson [Bei78] and Kapranov [Kap88] provide tilting bundles for

projective space and Grassmannians respectively. In order to describe the gen-

eralisation to quiver flag varieties, we first establish our conventions for Young

diagrams.

Let r be a positive integer and λ ∈ Nr a weakly decreasing finite sequence

of non-negative integers λ1 ≥ · · · ≥ λr ≥ 0. We call such λ a partition with r

parts, even if λ ends in a trail of zeroes. We can represent partitions pictorially

using Young diagrams ; these are finite collections of boxes arranged into left-

justified rows in descending order. For example, the Young diagram representing

λ = (4, 3, 1, 1) is

.

Denote the number of boxes in a Young diagram by |λ| :=
∑r

i=1 λi. As an abuse

of notation we hereafter consider partitions and Young diagrams as one and the

same. Denote by Young(n, r) the set of Young diagrams with at most n columns

and r rows. In other words,

Young(n, r) := {λ = (λ1, . . . , λr) ∈ Nr | n ≥ λ1 ≥ · · · ≥ λr ≥ 0} .
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Recall that for any vector bundle V of rank r and for λ ∈ Young(n, r), we

obtain a vector bundle SλV whose fibre over each point is the irreducible GL(r)-

module of highest weight λ. We may equivalently view SλV as the image of the

Schur functor on V⊗|λ|; more on this in Chapter 4.

The following theorem provides a tilting bundle for any quiver flag variety Y

with tautological bundles W1, . . . ,W`.

Theorem 2.9 ([Cra11, Theorem 4.5]). The vector bundle on Y given by

E :=
⊕

1≤i≤`, λ(i)∈Young(si−ri,ri)

Sλ(1)W1 ⊗ · · · ⊗ Sλ(`)W` (2.6)

is a tilting bundle. In particular, the bounded derived category of coherent sheaves

on Y is equivalent to the bounded derived category of finitely generated right

modules over A = EndOY (E).

Remark 2.10. This result answered affirmatively the question of Nakajima [Nak96,

Problem 3.10].

2.3 Multigraded linear series

Consider a quiver flag variety Y with tilting bundle E given by (2.6) and let

E0, . . . , En be the indecomposable summands of E with E0 = OY . Denote by

v := (vj) ∈ Nn+1 the dimension vector satisfying vj := rank(Ej) for all 0 ≤ j ≤ n.

Following [CIK18, Section 2] and the summary given in [CG18, Section 2], we

now briefly describe the construction of a fine moduli spaceM(A,v, θ) called the

multigraded linear series.

Multigraded linear series are examples of moduli spaces originally constructed

by King [Kin94]. To introduce our choice of stability condition θ, first set

θ′ = (−
∑n

i=1 vi, 1, 1, . . . , 1) ∈ Hom(Zn+1,Q). An A-module M =
⊕

0≤j≤nMj

of dimension vector v is θ′-stable if and only if M is generated as an A-module

by any nonzero element of M0; any such stability condition is called 0-generated.

Since v is indivisible, King [Kin94, Proposition 5.3] constructs the fine moduli

spaceM(A,v, θ′) of isomorphism classes of θ′-stable A-modules of dimension vec-

tor v as a GIT quotient. In particular, M(A,v, θ′) comes with an ample bundle

O(1). Let k ≥ 1 denote the smallest positive integer such that O(k) is very

ample. Then θ := kθ′ is also a 0-generated stability condition, and we write

M(E) :=M(A,v, θ)
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for the fine moduli space of θ-stable A-modules of dimension vector v. The

universal property of M(E) determines a morphism

fE : Y −→M(E) (2.7)

and moreover we have the following.

Theorem 2.11. The morphism fE : Y −→M(E) is a closed immersion.

Proof. Each Wi is globally generated by Proposition 2.4, and hence so is every

indecomposable summand Ei of E from (2.6). Therefore det(Ei) is also globally

generated for each Ei; see [Sno86, Section 4]. By [Cra11, Lemma 3.7] the line

bundle L :=
⊗`

i=1 det(Wi) is ample. Hence, the line bundle
⊗

0≤j≤n det(Ej),

which is a tensor product of L and other globally generated bundles, is also ample

by [Har77, Exercise II.7.5(d)]. The result now follows from [CIK18, Theorem 2.6].

Remark 2.12. Work of Bergman-Proudfoot compares any smooth projective

variety admitting a tilting bundle to a fine moduli space of modules over the

endomorphism algebra. In fact, [BP08, Theorem 2.4] implies that fE identifies Y

with a connected component ofM(E), because Y is smooth, E is a tilting bundle,

and our stability condition θ is ‘great’ (see the discussion prior to Proposition 2.2

in [BP08]).

Theorem 2.11 implies that M(E) may be realised as an ambient space for

Y ; this generalises the classical morphism to the linear series of a basepoint-free

line bundle. It is natural to ask when fE is an isomorphism, thereby providing a

reconstruction of the quiver flag variety from a tilting bundle. This thesis provides

two classes of examples: when Y is toric (Chapter 3), and when Y = Gr(n, 2), the

Grassmannian of 2-dimensional quotients of kn (Chapter 6). The main tool is to

define a quiver Q′, which we call the tilting quiver, such that there is a surjective

k-algebra homomorphism

Φ: kQ′ −−→→ A

defined by mapping paths to compositions of maps. Since kQ′/ ker(Φ) ∼= A,

we may regard points of M(E), or more specifically θ-stable A-modules with

dimension vector v, as θ-stable representations of Q′ with dimension vector v

subject to the relations induced by ker(Φ).
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Chapter 3

Reconstructing toric quiver flag

varieties from a tilting bundle

The content of this chapter is taken from the paper [CG18], of which

the author of this thesis is a co-author. Please see the declarations on

the preliminary pages.

3.1 Statement of the main result

We continue to use the notation introduced in Chapter 2. Let Q be a finite,

connected, acyclic quiver with unique source and vertex set Q0 = {0, . . . , `}.
This chapter considers quiver flag varieties with dimension vector r = (1, . . . , 1);

in this case, the group G from (2.2) is an algebraic torus and so the quiver flag

variety Y is a toric variety. As such, we make the following definition.

Definition 3.1. A toric quiver flag variety is a quiver flag variety Y with di-

mension vector r = (1, . . . , 1).

The toric fan Σ can be described directly in this case (see [CS08, p1517]), and

therefore Y is a tower of projective space bundles via Theorem 2.3. Moreover,

the tilting bundle from (2.6) is simply the direct sum of line bundles

E =
⊕

1≤i≤`, 0≤mi<si

W⊗m1
1 ⊗ · · · ⊗W⊗m`` (3.1)

on Y , where si is defined in (2.4). The main result is as follows.

Theorem 3.2. Let Y be a toric quiver flag variety. Then the morphism fE : Y →
M(E) from (2.7) is an isomorphism.
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As a result, toric quiver flag varieties provide a new class of examples where

the programme of Bergman-Proudfoot [BP08] can be carried out in full, enabling

one to reconstruct the variety from the tilting bundle. The special case where

Y is isomorphic to projective space recovers the well-known result that Pn can

be reconstructed from the tilting bundle
⊕

0≤i≤nOPn(i) of Beilinson [Bei78]; see

Example 3.4. Theorem 3.2 therefore provides further evidence that toric quiver

flag varieties provide good multigraded analogues of projective space.

3.2 The reduction step

The method of proof for Theorem 3.2 is as follows. Set n+1 :=
∏

1≤i≤` si and list

the indecomposable summands from (3.1) as E0, . . . , En with E0
∼= OY . The fact

that
⊗

0≤j≤n det(Ej) =
⊗

0≤j≤nEj is very ample and fE is a closed immersion

puts us in the situation studied by Craw–Smith [CS08], where it is possible to

give an explicit GIT quotient description for both the moduli space M(E) and

the image of the universal morphism fE. Theorem 3.2 will follow once we prove

that these two GIT quotients coincide.

To describe M(E) as a GIT quotient, we first present the algebra A =

EndOY (E) using the bound quiver of sections (Q′, R) as follows. The quiver

Q′ has vertex set Q′0 = {0, 1, . . . , n} and an arrow from vertex i to j for each

irreducible, torus-invariant section of Ej ⊗E−1
i , i.e. the corresponding homomor-

phism from Ei to Ej does not factor through some Ek with k 6= i, j. To each

arrow a ∈ Q′1 we associate the corresponding torus-invariant ‘labelling divisor’

div(a) ∈ NΣ(1), where Σ(1) denotes the set of rays of the fan of Y . The two-sided

ideal

R := (p− q ∈ kQ′ | p, q share the same head, tail and labelling divisor)

in kQ′ satisfies A ∼= kQ′/R (see [CS08, Proposition 3.3]). Denote the coordinate

ring of AQ′1
k by k[ya], where a ranges over Q′1. The ideal R in the non-commutative

ring kQ′ determines an ideal in k[ya] given by

IR :=

 ∏
a∈supp(p)

ya −
∏

a∈supp(q)

ya ∈ k[ya]
∣∣∣ p, q share the same head,

tail and labelling divisor

 , (3.2)

where the support of a path supp(p) is simply the set of arrows that make up the

path. This ideal is homogeneous with respect to the action of T :=
∏

0≤j≤n GL(1)
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by conjugation. It now follows directly from the definition of King [Kin94] that

M(A,v, θ) := V(IR)//θ T := Proj
⊕
k≥0

(
k[ya]/IR)kθ, (3.3)

where
(
k[ya]/IR)kθ denotes the kθ-graded piece. In fact, [CS08, Proposition 3.8]

implies thatM(E) =M(A,v, θ) is the geometric quotient of V(IR) \V(BQ′) by

the action of T , where

BQ′ :=
n⋂
j=1

(
ya ∈ k[ya]

∣∣ h(a) = j
)

(3.4)

is the irrelevant ideal in k[ya] that cuts out the θ-unstable locus in AQ′1
k .

Our task is to compare (3.3) with the GIT quotient description of the image

of fE. For this, define a map π : ZQ′1 → ZQ′0 ⊕ ZΣ(1) by setting π(χa) = (χh(a) −
χt(a), div(a)), where χa for a ∈ Q′1 and χi for i ∈ Q′0 denote the characteristic

functions. The T -homogeneous ideal

IQ′ :=
(
yu − yv ∈ k[ya] | u− v ∈ ker(π)

)
(3.5)

contains IR from (3.2), and [CS08, Proposition 4.3] establishes that the image of

the universal morphism fE is isomorphic to the geometric quotient of V(IQ′) \
V(BQ′) by the action of T .

Proposition 3.3. Suppose that the T -orbit of every closed point of V(IR)\V(BQ′)

contains a closed point of V(IQ′) \ V(BQ′). Then Theorem 3.2 holds.

Proof. The inclusion V(IQ′) ⊆ V(IR) always holds, and the assumption ensures

that V(IR)//θ T ⊆ V(IQ′)//θ T , so the closed immersion fE is surjective.

In Section 3.4 we prove that the assumption of Proposition 3.3 holds for every

toric quiver flag variety Y . To illustrate the strategy, we recall the following well-

known construction of Pn using Beilinson’s tilting bundle.

Example 3.4. For the acyclic quiver Q with vertex set Q0 = {0, 1} and n + 1

arrows from 0 to 1, the toric quiver flag variety Y is isomorphic to Pn and the

quiver of sections Q′ for the tilting bundle
⊕

0≤i≤nOPn(i) is shown in Figure 3.1;

note that Q is a sub-quiver of Q′. For each 1 ≤ m ≤ n and each ray ρ ∈ Σ(1)

in the fan of Pn defining a torus-invariant divisor Dρ, let amρ denote the arrow

with head at m and labelling divisor div(amρ ) = Dρ. Writing ymρ ∈ k[ya] for the
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0 1 n− 1 n
n+ 1 n+ 1

· · ·

Figure 3.1: The tilting quiver for Pn.

variable associated to the arrow amρ , we have

IR =
(
ym+1
σ ymρ − ym+1

ρ ymσ ∈ k[ya]
∣∣ 1 ≤ m ≤ n− 1; ρ, σ ∈ Σ(1)

)
. (3.6)

We claim that a point (wmρ ) ∈ V(IR) \V(BQ′) ⊂ An(n+1)
k lies in the same T -orbit

as the point (vmρ ) with components vmρ := w1
ρ for all 1 ≤ m ≤ n and ρ ∈ Σ(1).

Clearly (vmρ ) ∈ V(IQ′) \ V(BQ′), so the claim and Proposition 3.3 show that

Theorem 3.2 holds for Pn.

To prove the claim, note that since (wmρ ) 6∈ V(BQ′), the T -action allows us

to assume that for all 1 ≤ m ≤ n there exists ρ(m) ∈ Σ(1) such that wmρ(m) = 1.

Then v1
ρ(1) = 1, and (3.6) implies that w2

ρ(1)v
1
ρ = w2

ρ for all ρ ∈ Σ(1). The case

ρ = ρ(2) gives w2
ρ(1) = (v1

ρ(2))
−1 = (w1

ρ(2))
−1, so

w2
ρ = v1

ρ(w
1
ρ(2))

−1 = w1
ρ(w

1
ρ(2))

−1 for all ρ ∈ Σ(1).

Let the one-dimensional subgroup k× ⊂ T scale by w1
ρ(2) at vertex 2 to obtain a

point in the same T -orbit as (wmρ ) whose components agree with those of (vmρ )

for m = 1, 2. Repeating at each successive vertex shows that (vmρ ) and (wmρ ) lie

in the same T -orbit as claimed.

3.3 The tilting quiver

Before establishing that the assumption of Proposition 3.3 holds for every toric

quiver flag variety, we describe the tilting quiver Q′ in detail (see Example 3.7).

For the vertex set Q′0, recall that the line bundles W1, . . . ,W` provide an

integral basis for Pic(Y ) ∼= Z`. Since Q′0 is defined by the summands W⊗m1
1 ⊗

· · · ⊗ W⊗m`` of the tilting bundle E from (3.1), it is convenient to realise Q′0 as

the set of lattice points of a cuboid in Z` ⊗Z R of dimension ` with side lengths

s1−1, . . . , s`−1. We label the vertex forW⊗m1
1 ⊗· · ·⊗W⊗m`` by the corresponding

lattice point (m1, . . . ,m`) ∈ Z`, giving

Q′0 =
{

(m1, . . . ,m`) ∈ Z` | 0 ≤ mi < si
}
.
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We introduce a total order on Q′0: for k = (k1, . . . , k`),m = (m1, . . . ,m`) ∈ Q′0,

write k < m if ki < mi for the largest index i satisfying ki 6= mi.

For the arrow set Q′1, first note that the arrows in Q correspond precisely

to the torus-invariant prime divisors in Y because Q is the quiver of sections

of {OY ,W1, . . . ,W`}, [CS08, Remark 3.9]. For ρ ∈ Σ(1) we write aρ ∈ Q1 for

the arrow corresponding to the divisor of zeros Dρ of a torus-invariant section

of Wh(aρ) ⊗ W−1
t(aρ). Each aρ may be regarded as an arrow in Q′, so we may

identify Q with a complete sub-quiver of Q′ that we call the base quiver in Q′.

More generally, translating each aρ around the cuboid described in the preceding

paragraph (so that the head and tail lie in Q′0) produces arrows in Q′ that we

denote amρ ∈ Q′1 for m = h(amρ ) and Dρ = div(amρ ). In fact, we have the following:

Lemma 3.5. Every arrow a ∈ Q′1 is of the form a = amρ , where m = h(a) and

Dρ = div(a).

Proof. For a ∈ Q′1, write h(a) = m = (m1, . . . ,m`) and t(a) = m′ = (m′1, . . . ,m
′
`),

so div(a) is the divisor of zeros of a section of
⊗

1≤i≤`W
⊗(mi−m′i)
i . In terms of

prime divisors, we have

div(a) =
∑
ρ∈Σ(1)

λρDρ for λρ ∈ N.

Let 1 ≤ k ≤ ` be the largest value such that λρ 6= 0 for some ρ ∈ Σ(1) satisfying

k = h(aρ) ∈ Q0. Note that 0 ≤ m′k < mk, and moreover, j := t(aρ) < k.

Since div(a) is irreducible, translating aρ so that the tail is at vertex m′ forces

the head to lie outside the cuboid, giving m′j = 0 or m′k = sk − 1; similarly,

translating aρ so that the head is at m forces the tail to lie outside the cuboid,

giving mj = sj − 1 or mk = 0. Since 0 ≤ m′k < mk, both m′j = 0 and mj = sj − 1

must hold, so m′j < mj. As a result, there must exist σ ∈ Σ(1) satisfying λσ 6= 0

for j = h(aσ). If we set i := t(aσ) and repeat the argument above, we deduce

that m′i < mi. Continuing in this way, we eventually find τ ∈ Σ(1) such that

λτ 6= 0 with h(aτ ) = 1 and t(aτ ) = 0. But then 0 = m′1 < m1 = s1− 1, so we can

place a translation of aτ with head at m and tail in the cuboid (or tail at m′ and

head in the cuboid). This shows div(a) is reducible, a contradiction.

Remark 3.6. Since Q is the quiver of sections of {OY ,W1, . . . ,W`}, the vertices

of the base quiver are the vertices e0, e1, . . . , e` ∈ Q′0 ⊂ Z`, where ei denotes the

ith standard basis vector for i > 0, and where e0 := (0, . . . , 0).

The next example illustrates how the base quiver sits inside Q′.
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Example 3.7. The quiver Q shown in Figure 3.2(a) defines the toric quiver flag

variety Y = PZ(O(1, 0)⊕O(0, 1)) where Z = PP2(O ⊕O(1)); the colours of the

arrows indicate the distinct labelling divisors. We have s1 = 3 and s2 = s3 = 2,

so the tilting quiver Q′ has 12 vertices shown in Figure 3.2(b) using the ordering

described above. Note that the base quiver is the complete sub-quiver of Q′ whose

0 1

2 3

(a)

e0 e1

e2

e3

(b)

Figure 3.2: Quivers for Y : (a) original quiver Q; (b) tilting quiver Q′.

vertices are shown in bold in Figure 3.2(b). The colour of each arrow of Q′ is

determined by its unique translate arrow from the base quiver.

3.4 Proof of Theorem 3.2

In light of Lemma 3.5, each point of AQ′1
k is a tuple (wmρ ) where wmρ ∈ k for

ρ ∈ Σ(1) and for all relevant m ∈ Q′0. Motivated by Example 3.4, we associate to

(wmρ ) ∈ AQ′1
k an auxiliary point (vmρ ) ∈ V(IQ′) ⊆ AQ′1

k whose components satisfy

vmρ := wρ for ρ ∈ Σ(1) and all relevant m ∈ Q′0, (3.7)

where for ρ ∈ Σ(1) we write wρ ∈ k for the component of the point (wmρ ) corre-

sponding to the unique arrow aρ in the base quiver satisfying div(aρ) = Dρ.
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Lemma 3.8. If (wmρ ) 6∈ V(BQ′), then (vmρ ) 6∈ V(BQ′).

Proof. Fix m = (m1, . . . ,m`) ∈ Q′0 and let 1 ≤ j ≤ ` be minimal such that

mj 6= 0. Then for all ρ satisfying h(aρ) = j ∈ Q0, the arrow amρ obtained by

translating aρ until the head lies at m is an arrow of Q′. At least one of the

values {wρ | h(aρ) = j} is nonzero by assumption, and hence for this value of ρ

we have vmρ = wρ 6= 0 as required.

We now establish notation for the proof of Theorem 3.2. For any vertex

k = (k1, . . . , k`) ∈ Q′0, let (Q′(k), R(k)) denote the bound quiver of sections of

the line bundlesW⊗m1
1 ⊗· · ·⊗W⊗m`` on Y with (m1, . . . ,m`) ≤ k. Explicitly, Q′(k)

is the complete sub-quiver of Q′ with vertex set Q′(k)0 := {m ∈ Q′0 | m ≤ k},
and the ideal of relations R(k) := kQ′(k) ∩R satisfies

kQ′(k)

R(k)
∼= End

( ⊕
(m1,...,m`)≤k

W⊗m1
1 ⊗ · · · ⊗W⊗m``

)
.

As in Section 3.2, the coordinate ring k[ymρ | ρ ∈ Σ(1),m ≤ k] of the affine space

AQ′(k)1
k contains ideals IR(k), BQ′(k) and IQ′(k) defined as in equations (3.2), (3.4)

and (3.5) respectively, each of which is homogeneous with respect to the action

of T (k) :=
∏

0≤i≤k GL(1) by conjugation. The projection onto the coordinates

indexed by arrows amρ satisfying m ≤ k, denoted

πk : AQ′1
k −→ AQ′(k)1

k , (3.8)

is equivariant with respect to the actions of T and T (k). Notice that πk(V(IR)) ⊆
V(IR(k)), πk(V(BQ′)) ⊆ V(BQ′(k)) and πk(V(IQ′)) ⊆ V(IQ′(k)).

Proof of Theorem 3.2. Fix a point w = (wmρ ) ∈ V(IR) \ V(BQ′) and the

corresponding point v = (vmρ ) ∈ V(IQ′) \ V(BQ′) whose components are defined

in equation (3.7). Since w 6∈ V(BQ′), the action of T enables us to assume that

for all m ∈ Q′0 there exists ρ(m) ∈ Σ(1) such that wmρ(m) = 1. In particular,

vmρ(m) = 1 for all relevant m ∈ Q′0. Now, for 0 ≤ k ≤ (s1 − 1, . . . , s` − 1), the

morphism πk from (3.8) sends the points w and v to

πk(w) ∈ V(IR(k)) \ V(BQ′(k)) and πk(v) ∈ V(IQ′(k)) \ V(BQ′(k))

respectively. We claim that πk(v) lies in the T (k)-orbit of πk(w). Given the claim,

the special case k = (s1− 1, . . . , s`− 1) shows that the point v lies in the T -orbit

of the point w, so Theorem 3.2 follows immediately from Proposition 3.3.
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We prove the claim by induction on the vertex k = (k1, . . . , k`) using the

total order on Q′0 from Section 3.3. The case k = e0 is immediate, and for

(1, 0, . . . , 0) ≤ k ≤ (s1−1, 0, . . . , 0) the claim follows from Example 3.4; hereafter

we assume that ` ≥ 2. Suppose the claim holds for all m < k, so we may assume

that wmρ = wρ for all m < k. It is enough to show for all ρ ∈ Σ(1), that wρ(k) 6= 0

and

wkρ = wρ(wρ(k))
−1, (3.9)

because then we may let the one-dimensional subgroup k× ⊂ T (k) scale by wρ(k)

at vertex k. Before establishing the claim (3.9), we introduce some notation that

we use in the proof.

Notation 3.9. 1. Recall from Section 3.3 that vertices of the tilting quiver

Q′ are elements k = (k1, . . . , k`) in the lattice Z`, so ki ∈ Z for 1 ≤ i ≤ `.

Note also (see Remark 3.6) that the standard basis vectors e1, . . . , e` of Z`

denote certain vertices of Q′. This notation is standard and we hope that

no confusion arises in what follows.

2. It is convenient to distinguish certain elements of Q0 and Z`.

• First we distinguish certain elements of the vertex setQ0 = {0, 1, . . . , `}
of the original quiver. For the ray ρ(k) appearing in (3.9), define

0 ≤ α < β ≤ ` by

α := t(aρ(k)) and β := h(aρ(k)),

where aρ(k) is the arrow in the original quiver Q satisfying div(aρ(k)) =

Dρ(k). Also, let 1 ≤ δ ≤ ` be minimal such that the induction vertex

k = (k1, . . . , k`) satisfies kδ 6= 0, and define 0 ≤ γ < δ by setting

γ := t(aρ(eδ)).

Minimality of δ implies that either γ = 0 or kγ = 0 and, moreover,

that δ ≤ β.

• Next we introduce certain elements of Z`. For any ray ρ ∈ Σ(1), define

d(ρ) := eh(aρ) − et(aρ) ∈ Z`,

where aρ is the arrow in the original quiver satisfying div(aρ) = Dρ

(recall that e0 := 0). In particular, by the previous bullet point we
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have

d(ρ(k)) = eβ − eα and d(ρ(eδ)) = eδ − eγ.

We now return to the proof of the claim (3.9), treating the cases δ < β and

δ = β separately.

Case 1: Suppose first that δ < β. In this case we proceed in three steps:

Step 1: Show that equation (3.9) holds for ρ = ρ(eδ) when γ = α = 0 or

γ 6= α. We use generators of the ideal IR(k) corresponding to pairs of paths in

Q′(k) with head at k. Consider paths of length two as in Figure 3.3, where for

now we substitute ρ(k) and ρ(eδ) in place of ρ1 and ρ2. In this case, we claim

k − d(ρ1)− d(ρ2) k − d(ρ2)

k − d(ρ1) k

ρ1

ρ1

ρ2

ρ2

Figure 3.3

that each vertex in Figure 3.3 lies in the quiver Q′(k). Indeed, akρ(k) ∈ Q′(k)1, so

its head k and tail k− eβ + eα lie in Q′(k)0; this implies kβ > 0 and either α = 0

or kα < sα − 1. Also, kδ > 0 and either γ = 0 or kγ = 0, so k − d(ρ(eδ)) is equal

to k− eδ + eγ, which lies in the quiver Q′(k). For the fourth vertex in Figure 3.3,

either:

(i) γ = α = 0, giving eγ = eα = 0, and the inequalities kβ, kδ > 0 imply that

the fourth vertex k − eβ − eδ lies in Q′(k)0 as claimed; or

(ii) γ 6= α, and since γ < δ < β, the fourth vertex k − eβ + eα − eδ + eγ lies in

Q′(k)0 because kβ, kδ > 0, either α = 0 or kα < sα − 1 and either γ = 0 or

kγ = 0.

Figure 3.3 therefore determines a binomial in IR(k) which implies that

w
k−d(ρ(k))
ρ(eδ)

wkρ(k) = w
k−d(ρ(eδ))
ρ(k) wkρ(eδ)

.

Our induction assumption gives wmρ = wρ for all m < k, and since wρ(eδ) = 1 =

wkρ(k), we have 1 = wρ(k)w
k
ρ(eδ)

. In particular, wρ(k) 6= 0 and

wkρ(eδ)
= (wρ(k))

−1

which establishes equation (3.9) for ρ = ρ(eδ) when γ = α = 0 or γ 6= α.
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Step 2: Show that equation (3.9) holds for ρ = ρ(eδ) when γ = α 6= 0. Since

kα = kγ = 0, the method from Step 1 applies verbatim unless sγ = 2. In this

case, define 0 ≤ ε < γ by

ε := t(aρ(eγ)),

giving d(ρ(eγ)) = eγ − eε. Consider paths of length three as in Figure 3.4, where

for now we substitute ρ(k), ρ(eδ) and ρ(eγ) in place of ρ1, ρ2 and ρ3. Again, we

k −
∑3

i=1 d(ρi) k − d(ρ2)− d(ρ3) k − d(ρ2)

k − d(ρ1)− d(ρ3) k − d(ρ1) k

ρ1 ρ3

ρ2
ρ2

ρ3 ρ1

Figure 3.4

claim that each vertex in Figure 3.4 lies in the quiver Q′(k); the proof is similar

to that from Step 1 (here, minimality of δ implies ε = 0 or kε = 0, and we

use the inequalities ε < γ < δ < β). Thus we obtain a binomial in IR(k) which,

applying the inductive assumption wmρ = wρ for all m < k, gives

wρ(eδ)wρ(eγ)w
k
ρ(k) = wρ(k)wρ(eγ)w

k
ρ(eδ)

.

Since wρ(eδ) = wρ(eγ) = wkρ(k) = 1, we have wρ(k) 6= 0 and wkρ(eδ)
= (wρ(k))

−1 which

implies that equation (3.9) holds for ρ = ρ(eδ).

Step 3: Show that equation (3.9) holds for all ρ ∈ Σ(1). Consider any arrow

akρ in Q′ with head at k. The vertices

λ := t(aρ) and µ := h(aρ)

satisfy d(ρ) = eµ − eλ with 0 ≤ λ < µ ≤ `. We proceed using the approach from

Steps 1-2:

(i) If µ 6= β, then we substitute ρ and ρ(k) in place of ρ1 and ρ2 in Figure 3.3

as in Step 1, unless λ = α 6= 0 and sα = 2 in which case we substitute

ρ(eα) in place of ρ3 in Figure 3.4 as in Step 2. In either case, we obtain

an equation relating components of wk which, after applying the inductive

hypothesis if necessary, becomes

wρ(k)w
k
ρ = wρw

k
ρ(k).

Steps 1 and 2 established wρ(k) 6= 0, and wkρ(k) = 1, so equation (3.9) holds.
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(ii) Otherwise, µ = β. Substitute ρ(eδ) and ρ in place of ρ1 and ρ2 in Figure 3.3

as in Step 1, unless λ = γ 6= 0 and sγ = 2 in which case we substitute

ρ(eγ) in place of ρ3 in Figure 3.4 as in Step 2. As in part (i) above, we

obtain an equation which simplifies to

wkρ = wρw
k
ρ(eδ)

. (3.10)

Steps 1 and 2 established wkρ(eδ)
= (wρ(k))

−1, so equation (3.9) follows.

This completes the proof of equation (3.9) in Case 1.

Case 2: Suppose instead that δ = β. If kδ > 1 then the proof is identical to

Case 1. If on the other hand kδ = 1, then the vertex k − d(ρ(eδ)) − d(ρ(k)) =

k − 2eδ + eγ + eα that plays a key role in Case 1 does not lie in Q′(k)0. In the

special case that k = eδ, making k a vertex of the base quiver, then we have

wkρ = wρ for all relevant ρ ∈ Σ(1) and there is nothing to prove. If k 6= eδ, we

introduce another useful vertex of the original quiver: let ξ be minimal such that

δ < ξ ≤ ` and kξ 6= 0, and define 0 ≤ η < ξ by setting

η := t(aρ(eξ))

giving d(ρ(eξ)) = eξ − eη. We treat the cases η 6= δ and η = δ separately.

Subcase 2A: If η 6= δ(= β), then either η = 0 or kη = 0, so k − d(ρ(eξ)) =

k − eξ + eη is a vertex of Q′(k)0. We may now proceed just as in Case 1 except

that ρ(eξ) replaces ρ(eδ) throughout (so ξ and η replace δ and γ respectively).

Subcase 2B: Suppose instead that η = δ(= β). We’ve already reduced to

the case kδ = 1. If sδ > 2 then once again, k − d(ρ(eξ)) = k − eξ + eδ is a vertex

of Q′(k)0 and we proceed as in Case 1 with ρ(eξ) replacing ρ(eδ) throughout. If

sδ = 2, then we proceed as follows:

Step 1: Show that wρ(k) 6= 0. If γ 6= α or γ = α = 0, then we use Figure 3.4

with ρ1 = ρ(k), ρ2 = ρ(eδ) and ρ3 = ρ(eξ) to obtain the equation

1 = wρ(eδ)wρ(eξ)w
k
ρ(k) = wρ(k)wρ(eξ)w

k
ρ(eδ)

which gives wρ(k) 6= 0. Otherwise, γ = α 6= 0, giving d(ρ(k)) = eδ−eγ = d(ρ(eδ)).

It may be that ρ(k) = ρ(eδ), in which case wρ(k) = wρ(eδ) = 1 and hence wρ(k) 6= 0

as required. If ρ(k) 6= ρ(eδ), then consider the pair of paths of length four as in

Figure 3.5, where we substitute ρ(k), ρ(eδ), ρ(eξ) and ρ(eγ) in place of ρ1, . . . , ρ4

(in fact, both paths pass through the same set of vertices in this case).
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k −
∑4

t=1 d(ρt) k −
∑4

t=2 d(ρt) k − d(ρ2)− d(ρ3)

k −
∑

t6=2 d(ρt) k − d(ρ1)− d(ρ3) k − d(ρ1)

k − d(ρ2)

k

ρ1 ρ4

ρ2

ρ4 ρ3

ρ2ρ3

ρ1

Figure 3.5

We obtain the equation

1 = wρ(eδ)wρ(eγ)wρ(eξ)w
k
ρ(k) = wρ(k)wρ(eγ)wρ(eξ)w

k
ρ(eδ)

which gives wρ(k) 6= 0 and completes Step 1.

Step 2: Show that equation (3.9) holds for all ρ ∈ Σ(1). For any akρ ∈ Q′1,

the vertices

λ := t(aρ) and µ := h(aρ)

satisfy d(ρ) = eµ − eλ with 0 ≤ λ < µ ≤ `.

(i) If µ > δ, use Figure 3.3 with ρ1 = ρ(k) and ρ2 = ρ, unless λ = α 6= 0 and

sα = 2 in which case use Figure 3.4 with the addition of ρ3 = ρ(eα). Either

way, we obtain the equation wρ(k)w
k
ρ = wρw

k
ρ(k) which, since wρ(k) 6= 0 by

Step 1, gives (3.9).

(ii) If µ = δ, use Figure 3.4 with ρ1 = ρ(k), ρ2 = ρ and ρ3 = ρ(eξ) unless

λ = α 6= 0 and sα = 2 in which case use Figure 3.5 with the addition of

ρ4 = ρ(eα). Either way, we obtain wρ(k)w
k
ρ = wρw

k
ρ(k) which, since wρ(k) 6= 0

by Step 1, gives (3.9).

This concludes the proof in Case 2, and completes the proof of Theorem 3.2.

Remark 3.10. Our approach relies on the explicit description of the image of

the morphism fE in Theorem 3.2 as the GIT quotient V(IQ′)//θ T , see [CS08,

Theorem 1.1]. We do not at present have a similar description in the non-toric

setting.

Example 3.11. We conclude with an example to illustrate the proof of The-

orem 3.2. Let Q and Q′ be the quivers in Figure 3.2, so ` = 3. Suppose

k = (0, 1, 1) ∈ Q′0, so δ = 2. The three arrows with head at k have tails

at (1, 1, 0) (light blue), (0, 0, 1) (red) and (1, 0, 1) (blue),and we label the cor-

responding rays ρ1, ρ2 and ρ3 respectively. We now illustrate in two different

situations why wρ(k) 6= 0 and why the equation wkρ = wρ(wρ(k))
−1 from (3.9)

holds for ρ = ρ1, ρ2, ρ3.
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(0, 0, 0) (1, 0, 0)

(0, 1, 0)

(0, 0, 1)

(2, 0, 0)

(1, 1, 0)

(1, 0, 1)

(0, 1, 1)

(2, 1, 0)

(2, 0, 1)

(1, 1, 1) (2, 1, 1)

Figure 3.6: The tilting quiver for Q from Figure 3.2.

1. Suppose that ρ(k) = ρ1. Then β = 3 and α = 1 (see Figure 3.2(a)), and

wkρ1 = 1. Suppose ρ(eδ) = ρ(e2) = ρ2 so that γ = 0 and wρ2 = 1. This is an

example of Case 1 as δ < β, and since γ = 0 we require only Step 1. In

this case Figure 3.3 becomes

(1, 0, 0) (1, 1, 0)

(0, 0, 1) (0, 1, 1)

ρ2

ρ2

ρ1

ρ1

and the relation gives the equation wρ2w
k
ρ1

= wρ1w
k
ρ2

. Moreover, wρ2 =

1 = wkρ1 implies wρ1 6= 0 and wkρ2 = (wρ1)
−1 which establishes (3.9) for

ρ = ρ1, ρ2. The remaining arrow akρ3 with head at k requires Step 3,

and in this case for ρ = ρ3 we have µ = 2 and λ = 1. Since µ 6= β and

sα = s1 6= 2, we require Step 3(i) to deduce wρ3w
k
ρ1

= wρ1w
k
ρ3

. This implies

wkρ3 = wρ3(wρ1)
−1, establishing (3.9) for ρ = ρ3.

2. Suppose ρ(k) = ρ3, so β = 2, α = 1 and wkρ3 = 1. Suppose that ρ(e2) = ρ2,

so γ = 0 and wρ2 = 1. Since δ = β and kδ = k2 = 1, this is an example of

Case 2. Since k 6= e2, we compute ξ = 3. Write ρ4 for the label of the pink

arrow with head at (0, 0, 1) and tail at (0, 1, 0), and suppose ρ(e3) = ρ4.

Then η = t(aρ4) = 2 and wρ4 = 1. Since η = δ and sδ = 2, we require

Subcase 2B. Following Step 1, since γ = 0 we use Figure 3.4 as shown

below. This yields the equation wρ2wρ4w
k
ρ3

= wρ3wρ4w
k
ρ2

which simplifies to

1 = wρ3w
k
ρ2

, giving wρ3 6= 0 as required. Step 2 of Subcase 2B establishes

(3.9) for ρ = ρ1, ρ2, ρ3: we already know this for ρ = ρ3 by assumption; the

case ρ = ρ2 is provided by Step 1 since wkρ2 = (wρ3)
−1; and the case

ρ = ρ1 is a simple application of Step 2(i), where we apply Figure 3.3 to
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(1, 0, 0) (0, 1, 0) (0, 0, 1)

(1, 1, 0) (1, 0, 1) k

ρ3 ρ4

ρ2
ρ2

ρ4 ρ3

the rectangle with vertices (2, 0, 0), (1, 1, 0), (1, 0, 1), k and arrows labelled

ρ1 and ρ3.
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Chapter 4

The tilting quiver for Gr(n, 2)

The remainder of this thesis considers the case where Y is the Grassmannian of

2-dimensional quotients of a n-dimensional vector space, though we begin in this

chapter with some minor results for the general case when Y = Gr(n, r) for any

n > r ≥ 2.

Let r, n be positive integers satisfying 1 ≤ r < n and hereafter fix V = kn.

Let Q be the quiver with two vertices 0, 1 and n arrows from 0 to 1 as in Fig-

ure 4.1. With dimension vector r = (1, r) and χ = (−1, 1), the quiver flag

variety Y = Rep(Q, r)//χG is isomorphic to Gr(n, r) := Gr(V, r), the Grass-

mannian of r-dimensional quotients of V , as shown in Example 2.5(ii). Note

that since Chapter 3 covers the case where Y is projective space, and because

Gr(n, r) ∼= Gr(n, n− r), we hereafter assume that n ≥ 4 and 1 < r ≤ n/2.

1 r

n

Figure 4.1: The quiver Q with n arrows such that Y = Gr(n, r).

In this case, the tower of Grassmann-bundles from Theorem 2.3 is height one

and so we define W :=W1, the rank r tautological quotient bundle on Y . Recall

that

s1 =
∑

{a∈Q1|h(a)=1}

rt(a) = n,

so the tilting bundle from (2.6) is given by

E =
⊕

λ∈Young(n−r,r)

SλW . (4.1)
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This tilting bundle was first introduced by Kapranov in [Kap84], and as such we

refer to A = EndOY (E) as Kapranov’s tilting algebra.

As in the toric case, we aim to present A using Q′, a quiver with relations

that we call the tilting quiver. Since the indecomposable summands of E need

not be line bundles, the process of determining Q′ is much more involved than in

the toric case. In this chapter we will describe the structure of the tilting quiver

Q′ for Y = Gr(n, 2), which has vertex set given by the irreducible summands of

E and arrow set corresponding to the homomorphisms between these summands,

and use this to define a surjective k-algebra homomorphism

Φ: kQ′ −−→→ A.

4.1 The Schur functor

In this section we use [Ful97, p.104-7] to construct SλW , the vector bundle whose

fibre over each point is the irreducible GL(r)-module of highest weight λ, as a

quotient of W⊗|λ|. We will do this using the Schur functor.

Let V be a finite-dimensional k-vector space and λ be a partition. Whereas

the Cartesian product of n copies of V is denoted V n = V × · · · × V , we write

V ×λ for the Cartesian product of |λ| copies of V labelled by the boxes of the

Young diagram of λ. We will consider maps ϕ : V ×λ → U , where U is a k-vector

space, satisfying three properties:

(i) ϕ is multilinear.

(ii) ϕ is alternating in the entries of each column of λ.

(iii) ϕ(v) =
∑
ϕ(w), where the sum is taken over all w obtained from v by an

exchange (see below) between two fixed columns and a fixed subset of boxes

in the right hand column.

The process of an exchange is defined as follows. Given a Young diagram λ, fix

two columns c1, c2 with c1 to the left of c2 with n1 ≥ n2 ≥ 1 the number of boxes

in each column respectively. Let d be a set of n3 ≤ n2 boxes in c2. Swap the n3

boxes of d with any n3 boxes of c1 whilst maintaining the vertical order of each

subset of boxes; this is called an exchange. The sum ϕ(v) =
∑
ϕ(w) is taken over

all such exchanges, i.e. each combination of choosing n3 boxes of c1 after fixing

c1, c2 and d. Given v, c1, c2, d, there are
(
n1

n3

)
many w in the sum ϕ(v) =

∑
ϕ(w).
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Example 4.1. Suppose λ = (3, 3, 2) and fix the first and last columns of λ.

Suppose that the fixed subset of boxes in the right hand column is simply the

top box. Then the sum ϕ(v) =
∑
ϕ(w) becomes

ϕ

 x1 y1 z1

x2 y2 z2

x3 y3

 = ϕ

 z1 y1 x1

x2 y2 z2

x3 y3

+ ϕ

 x1 y1 x2

z1 y2 z2

x3 y3

+ ϕ

 x1 y1 x3

x2 y2 z2

z1 y3

 .

Now suppose we fix the same columns but select both boxes in the right hand

column as the fixed subset. Being careful to maintain the vertical order of the

boxes, the sum ϕ(v) =
∑
ϕ(w) becomes

ϕ

 x1 y1 z1

x2 y2 z2

x3 y3

 = ϕ

 z1 y1 x1

z2 y2 x2

x3 y3

+ ϕ

 z1 y1 x1

x2 y2 x3

z2 y3

+ ϕ

 x1 y1 x2

z1 y2 x3

z2 y3

 .

Definition 4.2 ([Ful97, p.106-7]). Let V be a finite-dimensional k-vector space

and λ = (λ1, . . . , λr) a partition. The Schur power SλV is the universal target

vector space for maps ϕ as described above. Explicitly, SλV is the quotient space

of V ⊗|λ| given by

SλV =
(
∧r V )⊗λr ⊗

(∧r−1 V
)⊗(λr−1−λr) ⊗ · · · ⊗

(∧2 V
)⊗(λ2−λ3) ⊗ V ⊗(λ1−λ2)

Eλ

where Eλ is the subspace generated by all possible exchanges on the Young dia-

gram λ as described above. We call the elements of Eλ exchange relations. The

map V ×λ → SλV is given by taking the wedge product of entries in each column

from top to bottom and then tensoring these together.

Theorem 4.3 ([Ful97, Theorem 2, p.114]). Let V be a finite-dimensional k-

vector space and λ be a partition with at most dim(V ) parts. Then SλV is the

irreducible polynomial representation of GL(V ) with highest weight λ. Moreover,

these are all of the irreducible polynomial representations of GL(V ).

Definition 4.4. The functor of finite-dimensional k-vector spaces Sλ : Vect →
Vect, V 7→ SλV , is called the Schur functor. While we have defined this functor

on Vect, it may also be defined on many other categories, in particular vector

bundles and G-modules.

Examples 4.5. (i) If λ = (1, . . . , 1) with |λ| = k ≥ 1 then the Young diagram

of λ has only one column and so Eλ is trivial, therefore SλV =
∧k V .

(ii) Suppose λ = (3, 3, 2) as in Example 4.1. Then SλV =
(
∧3 V )⊗2 ⊗

∧2 V

Eλ
and

33



the map V ×λ → SλV is given by

x1 y1 z1

x2 y2 z2

x3 y3

7→ x1 ∧ x2 ∧ x3 ⊗ y1 ∧ y2 ∧ y3 ⊗ z1 ∧ z2.

(iii) If λ = (k) then S(k)V = V ⊗k/E(k). However, every column of λ contains

only one box and so the exchange relations are reduced to simply permuting the

boxes. This implies S(k)V = Symk V .

Remark 4.6. As a result of Example 4.5(iii), it will be more convenient to

identify the V ⊗(λ1−λ2) term in the definition of SλV with Sym(λ1−λ2) V after taking

the quotient by Eλ. Henceforth we write

SλV =
(
∧r V )⊗λr ⊗

(∧r−1 V
)⊗(λr−1−λr) ⊗ · · · ⊗

(∧2 V
)⊗(λ2−λ3) ⊗ Sym(λ1−λ2) V

Eλ
.

(4.2)

4.2 Littlewood-Richardson numbers

By Theorem 4.3, SλV is irreducible and so products such as SλV ⊗ SµV are in

general reducible. The Pieri rule gives us the irreducible decomposition of a

Schur power multiplied by a symmetric power or alternating power.

Proposition 4.7 (Pieri rule [FH91, Eqn 6.8-9]). Let λ be a partition and m ∈ N.

(i) We have

SλV ⊗ Symm V ∼=
⊕
γ

SγV

where γ ranges over all partitions formed by adding m boxes to λ with no

two new boxes in the same column.

(ii) We have

SλV ⊗
m∧
V ∼=

⊕
γ

SγV

where γ ranges over all partitions formed by adding m boxes to λ with no

two new boxes in the same row.

In this section we will see how to decompose the product of any two Schur

powers using the Littlewood-Richardson rule. To do this we define Littlewood-

Richardson numbers and present the rule following mostly [Ful97, Chapter 5].
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Let λ, µ be partitions with r parts and suppose µ contains λ, i.e. λi ≤ µi for

all i = 1, . . . , r, and we write λ ≤ µ. Note that λ ≤ µ =⇒ |λ| ≤ |µ| but the

converse is not true in general. We write λ < µ for strict containment.

The skew diagram µ/λ is given by the Young diagram µ with λ removed from

the top left corner. For example, if λ = (3, 2, 2, 1) and µ = (6, 4, 4, 2) then µ/λ is

as follows:

µ λ µ/λ

Observe that any Young diagram µ is also a skew diagram µ/λ where λ = (0).

A filling of a skew diagram is the insertion of a positive integer into each box.

A (semi-standard) skew tableau is a skew diagram with a filling such that:

(i) each row is weakly increasing.

(ii) each column is strictly increasing.

We say that a skew tableau µ/λ has content γ = (γ1, . . . , γk) ∈ Nk if µ/λ

contains γ1 1’s, γ2 2’s, and so on up to γk k’s. For example, taking λ and µ as

above, one possible skew tableau with shape µ/λ and content γ = (4, 2, 2) is

1 1 3
1 2
2 3

1

.

The sequence of integers given by concatenating the rows of a skew tableau

from top to bottom and in reverse order is called the reverse word of the tableau,

e.g. the reverse word of the tableau above is 3, 1, 1, 2, 1, 3, 2, 1. We say that a

word is a lattice word if the content of every initial sequence is a partition, i.e.

for every initial sequence of the word there must contain at least as many 1’s as

2’s, at least as many 2’s as 3’s, and so on. The reverse word above is not a lattice

word, for example, as the first number is a 3 so there are more 3’s than 1’s in the

first letter of the reverse word. However, if we swap the 3 in the top right box

with the 1 in the bottom left box as follows,

1 1 1
1 2
2 3

3

,
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we now have a tableau whose reverse word 1, 1, 1, 2, 1, 3, 2, 3 is a lattice word.

This leads to the following definition.

Definition 4.8. A Littlewood-Richardson tableau is a skew tableau whose reverse

word is a lattice word.

Remark 4.9. Due to the lattice word condition, the rightmost box of the top

row of a Littlewood-Richardson tableau must contain a 1. Since we require rows

to be weakly increasing, this implies that the entire top row must contain only

1’s. This observation extends to the fact that any integer k may not appear above

the k-th row in the skew diagram.

Definition 4.10. Let λ, µ, γ be partitions such that λ ≤ µ and |λ| + |γ| = |µ|.
The Littlewood-Richardson number cµλ,γ ∈ N is equal to the number of Littlewood-

Richardson tableaux of shape µ/λ and content γ.

Proposition 4.11 ([Ful97, §5.2 Corollary. 2]). Let λ, µ, γ be partitions such that

|λ| + |γ| = |µ|. Then cµλ,γ = cµγ,λ. Moreover, cµλ,γ = 0 if either λ or γ is not

contained in µ.

Remark 4.12. We observe some useful facts for some basic Littlewood-Richardson

numbers.

(i) If λ, γ, µ have at most two parts then cµλ,γ is equal to either 0 or 1. This is

because only 1’s may be placed in the top row of µ/λ, and all the 2’s must

be right aligned in the bottom row. The remaining 1’s must then be placed

left of the 2’s.

(ii) When the skew diagram µ/λ consists of a single row or column of size k,

the reverse lattice word condition implies that cµλ,γ = 1 when γ = (k) or

γ = (1, . . . , 1) ∈ Zk respectively, otherwise cµλ,γ = 0.

It turns out that Littlewood-Richardson numbers determine the multiplicity

of summands in the decomposition of a tensor product of Schur powers into

irreducibles.

Proposition 4.13 ([FH91, §6.1 Eqn. 6.7: Littlewood-Richardson rule]). Let V

be an r-dimensional vector space and let λ, γ be partitions with at most r parts.

Then

SλV ⊗ SγV ∼=
⊕
µ

(SµV )⊕c
µ
λ,γ ,

where µ ranges over all partitions satisfying |µ| = |λ|+ |γ|.
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Remark 4.14. In Proposition 4.13 we needn’t insist µ has at most r parts

because when dim(V ) = r, we have SµV = 0 whenever µr+1 > 0, see [FH91,

§6.1, p.76].

4.3 The skew-Schur functor

We now construct the skew-Schur functor, which generalises the Schur functor

defined in Section 4.1. The following strategy can be found in [FH91, Ex 6.19].

Notation 4.15. Hereafter we fix a basis B = {u1, . . . , un} of V . When choosing

an arbitrary collection of these vectors, possibly with multiplicity, we will use the

letters vi ∈ B. We do this to avoid writing uij for elements of B, for example, as

later we will need space for multiple other subscripts.

Fix partitions λ < µ with at most r parts and set d = |µ|− |λ|. For any filling

of the skew diagram µ/λ with entries in {1, . . . , n}, there is a corresponding basis

vector of V ⊗d given by reading the content of the boxes from left to right, top to

bottom. For example, if µ/λ = (3, 2)/(1, 0) and n = 4 then

3 1
4 3

←→ u3 ⊗ u1 ⊗ u4 ⊗ u3 ∈ V ⊗4.

Consider the action of Sd, the permutation group on {1, . . . , d}, on V ⊗d by per-

muting the indices, i.e. for σ ∈ Sd and vi ∈ B we have (v1 ⊗ · · · ⊗ vd) · σ =

vσ(1) ⊗ · · · ⊗ vσ(d). Define the subgroups

Prow = {σ ∈ Sd | σ preserves the content of each row of µ/λ} ,

Pcol = {σ ∈ Sd | σ preserves the content of each column of µ/λ} .

Now consider the group algebra kSd with generators eσ and define the elements

aµ/λ =
∑
σ∈Prow

eσ,

bµ/λ =
∑
σ∈Pcol

sgn(σ)eσ.

These define endomorphisms on V ⊗d by setting eσ(v) = v · σ, and we have

im(aµ/λ) ∼= Symµ1−λ1 V ⊗ · · · ⊗ Symµr−λr V,

im(bµ/λ) ∼=
µ′1−λ′1∧

V ⊗ · · · ⊗
µ′k−λ

′
k∧
V,
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where λ′, µ′ are the conjugate partitions to λ, µ (list the heights of the columns

left to right instead of the lengths of the rows top to bottom).

Definition 4.16. The Young symmetrizer with respect to the skew diagram µ/λ

is defined by

cµ/λ := bµ/λaµ/λ.

The image of cµ/λ on a vector in V ⊗d is given by summing over the symmetrization

of rows followed by the anti-symmetrization of columns. This defines an endo-

morphism on V ⊗d and we call its image the skew-Schur power, denoted Sµ/λV ,

i.e.

Sµ/λV := im(cµ/λ).

As in Definition 4.4, the skew-Schur functor Sµ/λ may be defined on many other

categories.

Proposition 4.17 ([FH91, Ex 6.19]). Let λ < µ with d = |µ| − |λ| and let

B = {u1, . . . , un} be a basis of V . Then for each semi-standard skew tableau with

shape µ/λ filled with integers from {1, . . . , n}, the images of the corresponding

basis vectors in V ⊗d under cµ/λ form a basis of Sµ/λV .

Example 4.18. Let λ = (1, 0), µ = (2, 2) and B = {u1, u2, u3} be a basis of V .

We have d = |µ|− |λ| = 3. Consider the semi-standard skew tableau 1
2 3

, which

corresponds to the basis vector u1 ⊗ u2 ⊗ u3 ∈ V ⊗3. Symmetrizing the rows, we

have aµ/λ = 1
2 3

+ 1
3 2

, and now anti-symmetrizing the columns gives

cµ/λ

(
1

2 3

)
= 1

2 3
− 3

2 1
+ 1

3 2
− 2

3 1
.

Thus, cµ/γ(u1⊗u2⊗u3) = u1⊗u2⊗u3−u3⊗u2⊗u1 +u1⊗u3⊗u2−u2⊗u3⊗u1.

In general therefore, S(2,2)/(1,0)V is the subspace of V ⊗3 spanned by vectors of the

form

ui1 ⊗ ui2 ⊗ ui3 − ui3 ⊗ ui2 ⊗ ui1 + ui1 ⊗ ui3 ⊗ ui2 − ui2 ⊗ ui3 ⊗ ui1

where i1
i2 i3

is a semi-standard skew tableau with each ij ∈ {1, 2, 3}.

Remark 4.19. When λ = (0) the skew-Schur functor coincides with the Schur

functor. In this case, we write cµ (rather than cµ/λ) for the corresponding Young

symmetrizer. An important application of Young symmetrizers of the form cµ is
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that it allows us to describe SµV from (4.2) as a subspace of V ⊗|µ| rather than

as a quotient.

As a consequence of Theorem 4.3, skew-Schur powers are not irreducible in

general. Their decomposition is given by the following proposition.

Proposition 4.20 ([FH91, §6.1 Ex. 6.19]). Let V be an r-dimensional vector

space and let λ, µ be partitions with at most r parts satisfying λ ≤ µ. Then

Sµ/λV is a polynomial representation of GL(V ) with irreducible decomposition

Sµ/λV ∼=
⊕
γ

(SγV )⊕c
µ
λ,γ ,

where γ ranges over all partitions satisfying |γ| = |µ| − |λ|.

4.4 Generators for Kapranov’s tilting algebra

For Y = Gr(n, r) = Gr(V, r), recall the tilting bundle E from (4.1). Kapranov’s

tilting algebra A = EndOY (E) may be decomposed as the collection of spaces

HomOY
(SλW , SµW) for all pairs λ, µ ∈ Young(n − r, r). In this section we give

a presentation of these spaces and describe them explicitly in some simple cases.

The key tool for this will be a result from Kapranov’s presentation of Db(Coh(Y )).

Unless stated otherwise, we hereafter identify SλW with the quotient of W⊗|λ|

given by the expression in Remark 4.6.

Theorem 4.21 ([Kap84, p.189 3.0]). Let W be the rank r tautological quotient

bundle of Gr(V, r) and let λ, µ ∈ Young(n− r, r). Then

HomOY
(SλW ,SµW) ∼=

⊕
γ

SγV, (4.3)

where γ ranges over the positive summands in the decomposition of S(−λr,...,−λ1)W⊗
S(µ1,...,µr)W into irreducibles.

We will analyse this result more closely, in particular concentrating on finding

precisely the multiplicities of each γ in (4.3). Firstly, for partitions with negative

entries we use the identity [Kap84, Eqn 0.1],

S(−λr,...,−λ1)W ∼= Sλ(W∨) ∼= (SλW)∨, (4.4)

where W∨ denotes the dual bundle of W . Moreover, Kapranov explains that

Schur powers of bundles with negative entries may be dealt with by multiplying
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and then dividing by a line bundle ([Kap84, 2.1, p.187]). For m ∈ Z, this implies

the identity

SλW ∼= det(W)−m ⊗ S(λ1+m,...,λr+m)W . (4.5)

Lemma 4.22 ([Kap88, Lem 3.2a]). Let W be the rank r tautological quotient

bundle of Y = Gr(V, r) and let λ ∈ Zr be weakly decreasing. Then

H0(Y, SλW) ∼=

SλV if λi ≥ 0 ∀i,

0 otherwise.

Lemma 4.23 ([Kap88, 3.5, p.490]). Let λ, µ be partitions with at most r parts.

Then

(i) HomOY
(SλW , SλW) ∼= k.

(ii) HomOY
(SλW , SµW) 6= 0 only if λi ≤ µi for all i.

We are now able to prove a more concise version of Theorem 4.21.

Proposition 4.24. Let W be the rank r tautological quotient bundle of Gr(V, r)

and let λ ≤ µ ∈ Young(n− r, r). Then

HomOY
(SλW ,SµW) ∼= Sµ/λV. (4.6)

Proof. As a consequence of [Har77, Proposition 3.6.7], since SλW is a vector

bundle we have the isomorphism

HomOY
(SλW ,SµW) ∼= H0(Y, (SλW)∨ ⊗ SµW).

By combining (4.4) and (4.5) with m = λ1, we have

(SλW)∨ ⊗ SµW ∼= S(−λr,...,−λ1)W ⊗ S(µ1,...,µr)W
∼= det(W)−λ1 ⊗ (Sλ̃W ⊗ SµW)

where λ̃ := (λ1−λr, λ1−λr−1, . . . , λ1−λ2, 0). The decomposition of Sλ̃W⊗SµW
into irreducibles ranges over partitions of size |λ̃|+ |µ|, but then multiplying back

by det(W)−λ1 results in partitions γ of size |µ| − |λ|, many of which contain neg-

ative entries. However, when taking global sections these vanish by Lemma 4.22,

and so we are left with those γ containing only non-negative entries and satisfying

|γ| = |µ| − |λ|.
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It remains to find the multiplicities of each summand. The multiplicity of

SγW in (SλW)∨ ⊗ SµW is given by

dim(HomOY
(SγW , (SλW)∨ ⊗ SµW)) = dim(HomOY

(SγW ⊗ SλW ,SµW))

= dim(HomOY
(⊕µ′(Sµ

′W)⊕c
µ′
λ,γ ,SµW))

= dim(⊕µ′ HomOY
((Sµ′W)⊕c

µ′
λ,γ ,SµW))

= dim(⊕µ′ HomOY
(Sµ′W , SµW)⊕c

µ′
λ,γ )

= dim(HomOY
(SµW ,SµW)⊕c

µ
λ,γ )

= cµλ,γ

where µ′ ranges over |µ′| = |γ| + |λ| = |µ| and the fifth and sixth equalities

follow from Lemma 4.23 (ii) and (i) respectively. Thus, we have shown that

HomOY
(SλW ,SµW) =

⊕
γ(SγV )⊕c

µ
λ,γ , and the identity from Proposition 4.20

completes the proof.

Corollary 4.25. Let λ ∈ Young(n − r, r) and let e1, . . . , er denote the standard

basis of Zr. Then for all 1 ≤ i ≤ r and all m > 0 such that λ+mei ∈ Young(n−
r, r), we have

HomOY
(SλW ,Sλ+meiW) ∼= Symm V.

In particular,

HomOY
(SλW ,Sλ+eiW) ∼= V.

Proof. By Proposition 4.24 we have HomOY
(SλW ,Sλ+meiW) ∼=

⊕
γ(SγV )⊕c

λ+mei
λ,γ ,

where γ ranges over all partitions with m boxes. The skew diagram (λ+mei)/λ

however is just a single row of length m, hence by Remark 4.12(ii) the only

non-zero Littlewood-Richardson number in this decomposition occurs when γ =

(m), in which case cλ+mei
λ,(m) = 1. Therefore HomOY

(SλW ,Sλ+meiW) ∼= S(m)V =

Symm V . The second statement follows immediately.

As a result of Proposition 4.24, HomOY
(SλW ,SµW) depends only on the shape

of the skew diagram µ/λ and so we are able to deduce some simple invariance

results. We may add redundant rows both above and below λ and µ without

changing µ/λ and therefore also without changing HomOY
(SλW ,SµW). Similarly,

we may add or remove redundant columns to the left of both λ and µ. We state

this more precisely in the following corollary, but first set some notation. Let

ν1, ν2, ν3 be partitions such that for i = 1, 2, the bottom row of νi is at least as

long as the top row of νi+1. Denote by (ν1 : ν2 : ν3) the Young diagram formed by
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gluing each of these diagrams on top of one another, keeping all rows left-aligned.

Note that this is also well-defined if any of the νi are empty.

Corollary 4.26. Let λ, µ ∈ Young(n − r, r) with λ ≤ µ. Let ν be either empty

or a Young diagram with bottom row greater than or equal to µ1, and δ be either

empty or a Young diagram such that its top row is less than or equal to λr. Let

c ∈ Z such that c ≥ −λr.

(i) If both (ν : λ : δ), (ν : µ : δ) ∈ Young(n− r, r), then

HomOY
(SλW ,SµW) ∼= HomOY

(S(ν:λ:δ)W ,S(ν:µ:δ)W).

(ii) If both (λ1 + c, . . . , λr + c), (µ1 + c, . . . , µr + c) ∈ Young(n− r, r), then

HomOY
(SλW ,SµW) ∼= HomOY

(S(λ1+c,...,λr+c)W ,S(µ1+c,...,µr+c)W).

4.5 Homomorphisms of adjacent summands

Hereafter we restrict to the case where Y = Gr(n, 2), i.e. r = 2 and all partitions

considered have at most two parts.

Fix a basis B = {u1, . . . , un} of V . In this section we write down explicitly

the homomorphisms between adjacent summands in the tilting quiver, i.e. those

defining HomOY (SλW ,Sλ+eiW) for all pairs λ, λ + ei ∈ Young(n − 2, 2) with

i ∈ {1, 2}; by Corollary 4.25 these spaces are all isomorphic to V . Using (4.2),

the tilting summands SλW are of the form

SλW ∼=
(
∧2W)⊗λ2 ⊗ Symλ1−λ2W

Eλ
, (4.7)

where Eλ is the sub-bundle of exchange relations.

Remark 4.27. We have
∧2W = det(W) = OY (1), but rather than writing SλW

as some twisting of Symλ1−λ2W we will use the presentation in (4.7) so that we

can make use of the exchange relations, described explicitly, in various proofs.

First consider λ = (0, 0) and i = 1, so λ+ ei = (1, 0). Then

HomOY (OY ,W) ∼= H0(Y,W) ∼= V, (4.8)

so given v ∈ B there is a homomorphism sv : OY →W and a uniquely determined

global section zv := sv(1). Next suppose λ = (1, 0) and λ + ei = (1, 1). We also
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have HomOY (W ,
∧2W) ∼= V by Corollary 4.25, so there is a homomorphism

s′v : W →
∧2W which we can define using the same section: s′v(x) = x ∧ zv.

Unfortunately, writing down homomorphisms SλW → Sλ+eiW is in general

not as straightforward as adding in a new variable zv where required; we need

to consider well-definedness with respect to the exchange relations Eλ (recall

Section 4.1 and Example 4.1). In general, write sections of SλW as

wλ := x1,1 ∧ x1,2 ⊗ · · · ⊗ xλ2,1 ∧ xλ2,2 ⊗ y1 · · · yλ1−λ2 . (4.9)

Since r = 2, the Young diagram for λ has at most two rows, therefore all exchange

relations on SλW may be characterised as one of the following two types:

(E1): We may take a single box from any column (remember that the symmetric

part Sym(λ1−λ2)W counts as λ1 − λ2 distinct columns) and perform an

exchange with any height two column to the left of it.

(E2): We may take both boxes in a height two column and exchange with a

column of height two to the left of it.

As an example of (E1), from (4.9) choose y1 and the first column (containing

x1,1 ∧ x1,2) to get

wλE1 := y1 ∧ x1,2 ⊗ · · · ⊗ xλ2,1 ∧ xλ2,2 ⊗ x1,1y2 · · · yλ1−λ2
+ x1,1 ∧ y1 ⊗ · · · ⊗ xλ2,1 ∧ xλ2,2 ⊗ x1,2y2 · · · yλ1−λ2 .

Then modulo the exchange relations, we have wλ = wλE1.

As an example of (E2), from (4.9) choose the first column and the one con-

taining xλ2,1 ∧ xλ2,2 to get

wλE2 := xλ2,1 ∧ xλ2,2 ⊗ · · · ⊗ x1,1 ∧ x1,2 ⊗ y1 · · · yλ1−λ2 .

Then modulo the exchange relations, we have wλ = wλE2.

Proposition 4.28. Let λ, λ + ei ∈ Young(n − 2, 2) where i ∈ {1, 2} and let

wλ ∈ SλW be as in (4.9). Let v ∈ B and zv be as above.

(i) If i = 1, then the map fλv : SλW → Sλ+e1W given by

fλv (wλ) = x1,1 ∧ x1,2 ⊗ · · · ⊗ xλ2,1 ∧ xλ2,2 ⊗ y1 · · · yλ1−λ2zv

is a well-defined linear homomorphism.
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(ii) If i = 2, then the map gλv : SλW → Sλ+e2W given by

gλv (wλ) =

λ1−λ2∑
k=1

x1,1 ∧ x1,2 ⊗ · · · ⊗ xλ2,1 ∧ xλ2,2 ⊗ yk ∧ zv ⊗
∏
j 6=k

yj

is a well-defined linear homomorphism.

Moreover, fλu1 , . . . , f
λ
un or gλu1 , . . . , g

λ
un form a basis for HomOY

(SλW ,Sλ+eiW)

where i = 1 or 2 respectively.

Proof. The maps are clearly linear so we just prove they are well-defined with

respect to the exchange relations on SλW . Using wλ from (4.9) and wλE1, w
λ
E2

defined above, we will show that fλv (wλ) = fλv (wλE1) = fλv (wλE2) and gλv (wλ) =

gλv (wλE1) = gλv (wλE2). Any other choice of exchange is of the form (E1) or (E2)

and the proof is identical.

(i) If i = 1, the symmetric power in Sλ+e1W compared to SλW is increased by one

while the alternating part is left unchanged; see (4.7). It turns out that simply

inserting zv into the symmetric part is well-defined. Firstly, we have

fλv (wλE1) = y1 ∧ x1,2 ⊗ · · · ⊗ xλ2,1 ∧ xλ2,2 ⊗ x1,1y2 · · · yλ1−λ2zv
+ x1,1 ∧ y1 ⊗ · · · ⊗ xλ2,1 ∧ xλ2,2 ⊗ x1,2y2 · · · yλ1−λ2zv

= x1,1 ∧ x1,2 ⊗ · · · ⊗ xλ2,1 ∧ xλ2,2 ⊗ y1 · · · yλ1−λ2zv
= fλv (wλ)

where for the second equality we perform the inverse to an (E1) exchange. Sec-

ondly, since the exchange defining wλE2 has no effect on the symmetric part where

zv is added, fλv (wλE2) = fλv (wλ) is immediate.

(ii) If i = 2, the symmetric power in Sλ+e2W decreases by one while the alternat-

ing power increases by one. The new height two column in λ + e2 requires two

variables; one of these will be zv while the other will be a variable removed from

the symmetric part. To make this well-defined with respect to the exchange rela-

tions, we must sum over every choice of variable we remove from the symmetric
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part to pair with zv, which leads to the definition of gλv . For wλE1, we have

gv(w
λ
E1) =

λ1−λ2∑
k=1

y1 ∧ x1,2 ⊗ · · · ⊗ xλ2,1 ∧ xλ2,2 ⊗ yk ∧ zv ⊗ x1,1

∏
j 6=k,1

yj

+

λ1−λ2∑
k=1

x1,1 ∧ y1 ⊗ · · · ⊗ xλ2,1 ∧ xλ2,2 ⊗ yk ∧ zv ⊗ x1,2

∏
j 6=k,1

yj

=

λ1−λ2∑
k=1

x1,1 ∧ x1,2 ⊗ · · · ⊗ xλ2,1 ∧ xλ2,2 ⊗ yk ∧ zv ⊗
∏
j 6=k

yj

= gλv (wλ),

where for the second equality we perform the inverses to the (E1)-type exchanges

that move y1 into the first column on each pair of terms from the two sums in

turn. As for wλE2, this is similar to (i) because the exchange in question occurs

left of the column where gλv inserts zv, hence gλv (wλE2) = gλv (wλ) is immediate.

Finally, using the basis B and (4.8), we get a basis suρ , 1 ≤ ρ ≤ n of

HomOY
(OY ,W) and in turn a collection of linearly independent global sections

zuρ . Then for any given λ the maps fλuρ (or gλuρ) are also linearly independent:

for 1 ≤ ρ ≤ n the images of wλ under each fλuρ (or gλuρ) are pairwise distinct, the

sections zuρ may not be written in terms of one another, and no sequence of ex-

changes will produce a linear dependence relation since exchanges never introduce

new variables, only move around the existing ones.

The maps constructed in Proposition 4.28 are all of the maps between adjacent

tilting summands. We will hereafter refer to them as ‘f -type’ and ‘g-type’ maps.

Remark 4.29. As an example of the danger of defining g-type maps by simply

adding in zv without summing over each choice of yi to pair with it, consider the

case when g
(2,0)
v : Sym2W →

∧2W⊗W . Suppose we were to define g
(2,0)
v (y1y2) =

zv ∧ y1 ⊗ y2. Now y1y2 = y2y1 and using this definition of g
(2,0)
v we would have

g(2,0)
v (y2y1) = zv ∧ y2 ⊗ y1

= y1 ∧ y2 ⊗ zv + zv ∧ y1 ⊗ y2

= y1 ∧ y2 ⊗ zv + g(2,0)
v (y1y2)

6= g(2,0)
v (y1y2)

where for the second equality we perform an (E1)-type exchange to move y1 into

the other column.
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4.6 Structure of the tilting quiver for Gr(n, 2)

We now construct the tilting quiver Q′ for Y = Gr(n, 2) and use it to define a

surjective k-algebra homomorphism Φ: kQ′ → A.

The vertex set Q′0 will be given by the irreducible summands of E, namely

SλW for all λ ∈ Young(n − 2, 2). Note that we will sometimes directly refer to

vertices by λ rather than SλW .

Recall that A = EndOY (E) may be decomposed as the collection of spaces

HomOY
(SλW , SµW) for all pairs λ, µ ∈ Young(n− r, r). The arrow set Q′1 will be

given by a minimal set of generators for the spaces satisfying λ < µ. By Corol-

lary 4.25, for adjacent vertices we have HomOY
(SλW ,Sλ+eiW) ∼= V ; depending

on i, these spaces are spanned by a collection of f -type or g-type maps defined

in Proposition 4.28. Hence, for all pairs λ, λ+ ei ∈ Young(n− 2, 2) we will have

n arrows in Q′1 from SλW → Sλ+eiW corresponding to the f -type or g-type basis

of HomOY
(SλW ,Sλ+eiW) as appropriate.

Claim: For any pair λ < µ ∈ Young(n− 2, 2), every map in HomOY
(SλW ,SµW)

may be written as a linear combination of compositions of f -type and g-type

maps.

A proof of this claim implies that the collection of f -type and g-type maps

constitutes a minimal set of generators for the spaces HomOY
(SλW , SµW) with

λ < µ. Therefore, the arrows between adjacent summands described above form

the complete arrow set Q′1. We actually prove a stronger statement than in the

claim, which is that the compositions formed strictly by a sequence of f -type

maps followed by a sequence of g-type maps is enough. In other words, given

λ < µ define m1 = µ1 − λ1 and m2 = µ2 − λ2, and for 0 ≤ k ≤ m1 + m2 define

the sequence of partitions

τk :=

λ+ ke1 if 0 ≤ k ≤ m1,

λ+m1e1 + (k −m1)e2 if m1 ≤ k ≤ m1 +m2.
(4.10)

Then the claim follows from the following proposition.

Proposition 4.30. Let Y = Gr(n, 2) and let λ < µ ∈ Young(n− 2, 2). Let τk be

the sequence of partitions defined in (4.10). Then the composition map

Θλ,µ :

m1+m2⊗
k=1

HomOY
(Sτk−1W ,SτkW) −→ HomOY

(SλW ,SµW),
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where

f τ0v1⊗· · ·⊗f
τm1−1
vm1

⊗gτm1
vm1+1⊗· · ·⊗g

τm1+m2−1
vm1+m2

7→ g
τm1+m2−1
vm1+m2

◦· · ·◦gτm1+m2−1
vm1+m2

◦f τm1−1
vm1

◦· · ·◦f τ0v1 ,

is surjective.

The proof is technical and we postpone it until Section 4.7. Assuming Propo-

sition 4.30, we can now introduce the tilting quiver Q′ and establish the main

result of this chapter.

Definition 4.31. For Y = Gr(n, 2), define the tilting quiver Q′ by

Q′0 =
{
λ ∈ Z2 | n− 2 ≥ λ1 ≥ λ2 ≥ 0

}
,

Q′1 =

aλ,iρ
∣∣∣∣∣∣∣

1 ≤ ρ ≤ n

i ∈ {1, 2}, λ, λ+ ei ∈ Q′0
t(aλ,iρ ) = λ, h(aλ,iρ ) = λ+ ei

 .

See Figure 4.2. Note that when drawing the tilting quiver we will use the pre-

sentation of SλW given in (4.7) to label the vertices. Observe that the notation

for the arrows is consistent with Chapter 3, where the superscript records the

location of the arrow and the subscript records the label corresponding to a basis

vector in B.

Remark 4.32. Observe that, as in the toric case, the original quiver Q may be

identified with a complete sub-quiver of Q′ that we call the base quiver in Q′;

this is the sub-quiver with vertex set {OY ,W}, positioned at (0, 0)→ (1, 0). See

example 3.7.

For each λ ∈ Q′0 let eλ ∈ kQ′ denote the idempotent corresponding to the

path of length zero at that vertex. For all λ, µ ∈ Q′0 satisfying λ < µ, with

the convention that we traverse paths from right to left (the same way that

composition of maps is performed), eµkQ′eλ denotes the space of paths λ → µ.

Recall the basis B = {u1, . . . , un} of V.
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OY W Sym2W

∧2W
∧2W ⊗W

(
∧2W)⊗2

Symn−3W Symn−2W

∧2W
⊗ Symn−4W

∧2W
⊗ Symn−3W

(
∧2W)⊗(n−4)

⊗ Sym2W

(
∧2W)⊗(n−3)

(
∧2W)⊗(n−3)

⊗W

(
∧2W)⊗(n−2)

(
∧2W)⊗(n−4)

⊗W

Figure 4.2: The tilting quiver Q′ for Gr(n, 2). Each arrow in the figure represents n
arrows in the quiver corresponding to B. The sub-bundle of exchange relations Eλ (see
(4.7)) is implicit.

Definition 4.33. Let Y = Gr(n, 2). We now define a k-algebra homomorphism

Φ: kQ′ −→ A. (4.11)

By definition of Q′1 and Corollary 4.25, when µ = λ + ei for i ∈ {1, 2}, we have

eλ+eikQ′eλ ∼= V ∼= HomOY
(SλW ,Sλ+eiW), and by Proposition 4.28 the latter

space has a basis given by fλu1 , . . . , f
λ
un if i = 1 or gλu1 , . . . , g

λ
un if i = 2. Thus, for

all λ ∈ Q′, 1 ≤ ρ ≤ n and i ∈ {1, 2} as appropriate, we define:

Φ(eλ) = idλ ∈ HomOY
(SλW ,SλW) ∼= k,

Φ(aλ,iρ ) =

fλuρ ∈ HomOY
(SλW ,Sλ+e1W) if i = 1,

gλuρ ∈ HomOY
(SλW ,Sλ+e2W) if i = 2.

The images of the horizontal (and vertical) arrows in Q′1 are therefore exactly the
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f -type (and g-type maps) defined in Proposition 4.28. We extend Φ to any path

in Q′ by mapping the concatenation of arrows aλ,iρ to the composition of maps in

A as appropriate. Finally, we extend Φ linearly over k to combination of paths

in kQ′.

Theorem 4.34. Let Y = Gr(n, 2). The k-algebra homomorphism Φ: kQ′ → A

is surjective.

Proof. Firstly, whenever λ is not contained in µ we have HomOY
(SλW , SµW) = 0

by Lemma 4.23(ii), thus surjectivity is trivial in these cases; indeed, we defined

no arrows in Q′ for such pairs λ, µ. As a consequence, Q′ is acyclic and (0, 0) is

the unique source vertex.

Now suppose λ < µ ∈ Q′0 and h ∈ HomOY
(SλW , SµW) ⊂ A. Proposition 4.30

implies that h may be factorised as a linear combination of compositions of f -

type and g-type maps. Therefore the corresponding linear combination of paths

given by concatenating arrows of the form aλ,1ρ , aλ,2ρ maps to h under Φ. Hence,

Φ is surjective.

Remark 4.35. Theorem 6.1 provides a new proof of [BLV16, Theorem 6.9] in the

case Y = Gr(n, 2). We discuss this result and the methods used in Section 5.3.

4.7 Proof of Proposition 4.30

For convenience we restate Proposition 4.30 here:

Proposition 4.30. Let Y = Gr(n, 2) and let λ < µ ∈ Young(n− 2, 2). Let τk be

the sequence of partitions defined in (4.10). Then the composition map

Θλ,µ :

m1+m2⊗
k=1

HomOY
(Sτk−1W ,SτkW) −→ HomOY

(SλW ,SµW),

where

f τ0v1⊗· · ·⊗f
τm1−1
vm1

⊗gτm1
vm1+1⊗· · ·⊗g

τm1+m2−1
vm1+m2

7→ g
τm1+m2−1
vm1+m2

◦· · ·◦gτm1+m2−1
vm1+m2

◦f τm1−1
vm1

◦· · ·◦f τ0v1 ,

is surjective.

First of all, due to the invariance result Corollary 4.26(ii), it is enough to

consider the special case where λ2 = 0; the general case follows immediately

since HomOY
(S(λ1,λ2)W ,S(µ1,µ2)W) ∼= HomOY

(S(λ1−λ2,0)W ,S(µ1−λ2,µ2−λ2)W), and
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we adjust the sequence νk accordingly. We therefore assume λ2 = 0 throughout

the entirety of the proof, and in turn we have m1 = µ1 − λ1, m2 = µ2.

We first consider the domain and codomain of Θλ,µ. By Corollary 4.25, the

domain of Θλ,µ is isomorphic to V ⊗(m1+m2) and by Proposition 4.24, the codomain

is isomorphic to Sµ/λV . Both of these spaces have an irreducible decomposition

in terms of Schur powers of V , and we see in Section 4.3 that Sµ/λV is a GL(V )-

submodule of V ⊗(m1+m2).

Lemma 4.36. The irreducible decomposition of HomOY
(SλW ,SµW) is given by

Sµ/λV ∼=
⊕
γ∈Γµ/λ

SγV, (4.12)

where

• if µ2 ≤ λ1, Γµ/λ consists of the partitions (max{m1,m2},min{m1,m2}),
(max{m1,m2}+ 1,min{m1,m2} − 1), . . . , (m1 +m2, 0).

• if µ2 > λ1, Γµ/λ consists of the partitions (max{m1,m2},min{m1,m2}),
(max{m1,m2}+ 1,min{m1,m2} − 1), . . . , (µ1, µ2 − λ1).

Proof. The main tool for this is Proposition 4.20, which tells us that

Sµ/λV ∼=
⊕
γ

(SγV )⊕c
µ
λ,γ

where γ ranges over all partitions satisfying |γ| = |µ| − |λ| = m1 + m2. By

Proposition 4.11 we have cµλ,γ 6= 0 =⇒ γ ≤ µ, hence we only need to consider

γ with at most two parts that satisfy γ1 ≤ µ1 and γ2 ≤ µ2. Additionally, cµλ,γ is

equal to either 0 or 1 by Remark 4.12(i).

The set Γµ/λ is given by the collection of such γ satisfying cµλ,γ = 1, i.e. those

such that the skew diagram µ/λ filled with content γ is a Littlewood-Richardson

tableau. First suppose that µ2 ≤ λ1, which means the two rows of µ/λ do

not overlap. Since there are no columns of height two, the strictly increasing

columns condition cannot be broken and so a filling consisting of only 1’s, i.e.

γ = (m1 + m2, 0), is permissible. By Remark 4.12(i), 2’s may only be placed

in the right of the bottom row; therefore, to avoid breaking the reverse lattice

word condition, the number of 2’s we may use is bounded above by the length

of the top row, i.e. γ2 ≤ m1. Since we must also have γ2 ≤ µ2 = m2, we have

min{m1,m2} ≥ γ2 ≥ 0 as required.
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The argument for the case when µ2 > λ1 carries over from above, except we

now also have a positive lower bound for γ2 because columns of height two exist

in µ/λ. We therefore require at least µ2− λ1 many 2’s to place in the height two

columns, and this gives the second case in the statement of the lemma.

We now outline the strategy of proof for Proposition 4.30. Fix λ < µ. We

will show that the restriction of Θλ,µ to the submodule Sµ/λV of V ⊗(m1+m2) is an

isomorphism. It therefore follows that Θλ,µ is surjective.

To do this we take advantage of Schur’s lemma (see [FH91, Lemma 1.7]): if

ϕ : W1 → W2 is a G-module homomorphism of irreducible G-modules, then ϕ

is either an isomorphism or the zero map. Recall Γµ/λ from Lemma 4.36. We

have that SγV is irreducible over G = GL(V ) for all γ ∈ Γµ/λ and Θλ,µ is a

GL(V )-module homomorphism. Since every summand in (4.12) appears with

multiplicity one, Schur’s lemma implies that it is enough to show Θλ,µ is non-

zero when restricted to SγV ⊂ V ⊗(m1+m2) for each γ ∈ Γµ/λ. In summary, the

proof of Proposition 4.30 is completed by the following lemma.

Lemma 4.37. Let γ ∈ Γµ/λ. Then Θλ,µ

∣∣
SγV 6= 0.

The strategy for the proof of Lemma 4.37 is as follows. For each γ ∈ Γµ/λ we

first write down an element hγ in V ⊗(m1+m2), the domain of Θλ,µ. We then get an

element cγ(hγ) of SγV by applying the Young symmetrizer cγ : V ⊗m1+m2 � SγV ;

see Example 4.18. Then, by formulating the evaluation of a section wλ under the

map Θλ,µ(cγ(hγ)), we show this is non-zero to complete the proof. In order to

implement this strategy we need some new notation.

Notation 4.38. (i) Fix a basis B = {u1, . . . , un} of V and let λ < µ ∈ Young(n−
2, 2). Recall m1 = µ1 − λ1 and m2 = µ2 (we are assuming λ2 = 0), so that

µ = λ + m1e1 + m2e2. In this section we always consider compositions of maps

given by the image of Θλ,µ, i.e. those of the form

g
τm1+m2−1
vm1+m2

◦ · · · ◦ gτm1+m2−1
vm1+m2

◦ f τm1−1
vm1

◦ · · · ◦ f τ0v1

where each vi ∈ B. Because the domain of each map in this composition may be

derived from whether the previous map is f -type or g-type, we will suppress the

superscript of all maps but the first and instead write the above as

gvm1+m2
◦ · · · ◦ gvm1+1 ◦ fvm1

◦ · · · ◦ fλv1 .

(ii) We require the notion of multisets ; these are sets with possible multiplicities of

elements, and we distinguish multisets from sets by using square brackets [ ]. The
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cardinality of a multiset counts these multiplicities, e.g. [1, 1, 2] has cardinality 3.

Denote ordered multisets using [ ]o, and given a multisetM define Ok(M) to be the

collection of all ordered sub-multisets ofM with cardinality k. If the cardinality of

M is m ≥ 0, then the size of the collection Ok(M) is m!/(m−k)!. For example, if

M = [1, 1, 2] then O2(M) is the collection [1, 1]o, [1, 1]o, [1, 2]o, [1, 2]o, [2, 1]o, [2, 1]o.

For every γ ∈ Γµ/λ, we now define our candidates hγ ∈ V ⊗(m1+m2) that we

use in the proof of Lemma 4.37. Recall Section 4.3: the Young symmetrizer cγ

is defined by bγaγ, so cγ(hγ) will be a double sum taken over all ways of first

symmetrizing the rows of γ, followed by anti-symmetrizing the columns. We will

simplify matters by defining hγ such that aγ is trivial. The simplest such map is

the basis vector of V ⊗(m1+m2) corresponding to the skew tableau of shape γ with

the top row filled with 1’s and the bottom row filled with 2’s, i.e.

γ1︷ ︸︸ ︷
1 1 1 1 1 1 1
2 2 2 2

←→ fλu1 ⊗ · · · ⊗ fu1︸ ︷︷ ︸
m1

⊗ gu1 ⊗ · · · ⊗ gu1 ⊗ gu2 ⊗ · · · ⊗ gu2︸ ︷︷ ︸
m2

=: hγ.︸ ︷︷ ︸
γ2

︸ ︷︷ ︸
γ1

︸ ︷︷ ︸
γ2

Thus, there are m1 f -type maps followed by m2 g-type maps, the first γ1 of which

are defined using the basis vector u1 and the last γ2 defined using the basis vector

u2. By the conditions on γ ∈ Γµ/λ, we always have γ2 ≤ min{m1,m2}.
We now write down cγ(hγ) = bγaγ(hγ). By construction, aγ acts trivially on

hγ so it remains to sum over all ways of anti-symmetrizing the height two columns

of γ. Therefore

cγ(hγ) = bγ(hγ) =
∑
σ∈Pcol

sgn(σ)hγ · σ,

which, since γ has γ2 columns of height two, is a sum of 2γ2 terms. Each σ defines

a unique ordered multiset

ξσ = [v1, . . . , vγ2 ]
o,

where each vi is equal to either u1 or u2 as given by the top row of the height two

columns in hγ · σ. Define ασ and βσ to be the number of v1’s and v2’s appearing

in ξσ respectively; then ασ + βσ = γ2 and we have sgn(σ) = (−1)βσ . Given ξσ

define v′i for 1 ≤ i ≤ γ2 to be the vectors on the bottom row of the height two

columns in h · σ, i.e. if vi = u1 then v′i = u2 and vice versa. This yields cγ(hγ)

equal to∑
σ∈Pcol

(−1)βσfλv1 ⊗ · · · ⊗ fvγ2 ⊗ fu1 ⊗ · · · ⊗ fu1 ⊗ gu1 ⊗ · · · ⊗ gu1 ⊗ gv′1 ⊗ · · · ⊗ gv′γ2
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and therefore Θλ,µ(cγ(hγ)) is given by∑
σ∈Pcol

(−1)βσgv′γ2 ◦ · · · ◦ gv′1 ◦ gu1 ◦ · · · ◦ gu1 ◦ fu1 ◦ · · · ◦ fu1 ◦ fvγ2 ◦ · · · ◦ f
λ
v1
.

(4.13)

Notation 4.39. Before detailing the evaluation of a section wλ = y1 · · · yλ1 ∈
SλW ∼= Symλ1W under the above sum, we will first describe the evaluation of wλ

under a single composition gvm1+m2
◦· · ·◦gvm1+1◦fvm1

◦· · ·◦fλv1 ∈ HomOY
(SλW ,SµW)

where each vi ∈ B; this will also be useful in Chapter 5. Using Proposition 4.28,

evaluating the composition of the f -type maps is easy: we simply have

fvm1
◦ · · · ◦ fλv1(w

λ) = y1 · · · yλ1zv1 · · · zvm1
.

The evaluation of a g-type map is the sum over each way of pairing a variable

in the symmetric part with the new variable introduced by the map, hence the

evaluation of a succession of g-type maps is given by summing over all ordered

ways of doing this. Thus, define the multiset M = [y1, . . . , yλ1 , zv1 , . . . , zvm1
], and

recall thatOm2(M) is the collection of ordered sub-multisets ofM with cardinality

m2. Then the image of wλ under the composition above is given by

wλ 7→
∑

X=[x1,...,xm2 ]o

∈Om2 (M)

x1 ∧ zvm1+1 ⊗ · · · ⊗ xm2 ∧ zvm1+m2
⊗

∏
z∈M\X

z. (4.14)

Proof of Lemma 4.37. Now recall (4.13); the goal is to find a section wλ such

that Θλ,µ(cγ(hγ))(w
λ) 6= 0. Define δ to be the number of g-type maps in each

term of cγ(hγ) with fixed defining basis vector u1, i.e. δ = m2 − γ2. Set

wλ := zλ1−δu1
zδu2 .

Note that this choice of section is possible because γ ∈ Γµ/λ =⇒ γ2 ≥ µ2−λ1 =

m2 − λ1 =⇒ λ1 ≥ m2 − γ2 = δ.

Since Θλ,µ is linear we will analyse the evaluation of wλ under each term

Θλ,µ(hγ · σ) in the sum (4.13) separately; we will deal with the sign (−1)βσ at

the end. Thus, fix σ ∈ Pcol and consider ξσ, ασ, βσ as defined above. Following

Notation 4.39, the composition of the f -type maps in Θλ,µ(hγ · σ) contributes

zm1−βσ
u1

and zβσu2 to wλ, bringing the total exponent of zu1 to λ1 − δ + m1 − βσ =

µ1 − µ2 + ασ and the total exponent of zu2 to δ + βσ = µ2 − γ2 + βσ. Hence, the
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multiset M in (4.14) is given by

M = [zu1 , . . . , zu1︸ ︷︷ ︸
µ1−µ2+ασ

, zu2 , . . . , zu2︸ ︷︷ ︸
µ2−γ2+βσ

].

After composing the remaining g-type maps, Θλ,µ(hγ · σ)(wλ) is equal to

∑
X=[x1,...,xm2 ]

o

∈Om2
(M)

x1 ∧ zu1
⊗ · · · ⊗ xm2−γ2 ∧ zu1

⊗ xm2−γ2+1 ∧ zv′1 ⊗ · · · ⊗ xm2
∧ zv′γ2

⊗
∏

z∈M\X

z.

(4.15)

Every variable in this sum is either zu1 or zu2 , thus the only X ∈ Om2(M)

that produce a non-zero term are those with x1, . . . , xm2−γ2 equal to zu2 and for

m2 − γ2 + 1 ≤ j ≤ m2, xj = zu1 if v′j−m2+γ2
= zu2 and vice versa. Hence every

ordered sub-multiset X that produces a non-zero term is identical, and consists

of ασ many zu1 ’s and µ2 − γ2 + βσ many zu2 ’s. Define the total number of such

X to be ησ; this is given by the number of ordered ways of choosing ασ many

zu1 ’s from M , multiplied by the number of ordered ways of choosing µ2− γ2 +βσ

many zu2 ’s from M , i.e.

ησ =
(µ2 − γ2 + βσ)!(µ1 − µ2 + ασ)!

(µ1 − µ2)!
.

The sum (4.15) therefore simplifies to

ησzu2 ∧ zu1 ⊗ · · · ⊗ zu2 ∧ zu1 ⊗ zv1 ∧ zv′1 ⊗ · · · ⊗ zvγ2 ∧ zv′γ2 ⊗ z
µ1−µ2
u1

.

We now use anti-symmetrization in the columns with content zvi ∧ zv′i to ensure

that the first entry is zu2 while the second is zu1 . There are ασ many columns

that are not in this order, since this is the number of zv′i terms that are equal to

zu2 . Hence, rearranging each column so that the content reads zu2 ∧zu1 means we

must multiply by (−1)ασ . Therefore we simplify the above once more, yielding

Θλ,µ(hγ · σ)(wλ) = (−1)ασησzu2 ∧ zu1 ⊗ · · · ⊗ zu2 ∧ zu1 ⊗ zµ1−µ2u1
.
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In conclusion, using (4.13) we have

Θλ,µ(cγ(hγ))(w
λ) =

∑
σ∈Pcol

(−1)βσ(−1)ασησzu2 ∧ zu1 ⊗ · · · ⊗ zu2 ∧ zu1 ⊗ zµ1−µ2u1

= (−1)γ2
∑
σ∈Pcol

ησzu2 ∧ zu1 ⊗ · · · ⊗ zu2 ∧ zu1 ⊗ zµ1−µ2u1

6= 0,

since zu2 ∧ zu1 ⊗ · · · ⊗ zu2 ∧ zu1 ⊗ zµ1−µ2u1
6= 0, (−1)γ2 is constant, and ησ > 0 for

all σ. This completes the proof of Lemma 4.37, and hence Proposition 4.30.
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Chapter 5

The ideal of relations for the

tilting quiver of Gr(n, 2)

Let Y = Gr(n, 2). In this chapter we identify the kernel of the k-algebra ho-

momorphism Φ : kQ′ � A from Theorem 4.34. The ideal ker(Φ) then induces

relations on the tilting quiver Q′. Having completed our presentation of the tilting

algebra for Y = Gr(n, 2), we compare this with the work of Buchweitz, Leuschke

and Van den Bergh in Section 5.3.

Throughout, let B = {u1, . . . , un} be a basis of V and recall Notation 4.15:

when choosing an arbitrary collection of these vectors, possibly with multiplicity,

we will use the letters vi ∈ B. Our convention is to write angle brackets 〈 〉 for

linear subspaces and round brackets ( ) for ideals.

Strategy for finding ker(Φ): Recall that for each λ ∈ Q′0, eλ ∈ kQ′ denotes

the idempotent corresponding to the path of length zero at that vertex. Then for

all pairs λ < µ ∈ Q′0, we denote by Φλ,µ the induced k-linear map obtained by

restricting Φ to the subspace spanned by paths with tail at λ and head at µ, i.e.

Φλ,µ : eµkQ′eλ −−→→ HomOY
(SλW ,SµW) ∼= Sµ/λV.

Note that Φλ,µ is surjective by Proposition 4.30. Now, Q′ is acyclic and there are

no relations involving paths of length one. Indeed, relations only arise between

paths that share the same head and tail, and for all a ∈ Q′1 the only paths p

in Q′ satisfying t(a) = t(p) and h(a) = h(p) are the arrows between the same

two vertices, and these have linearly independent images under the map Φ. It

therefore suffices to find ker(Φλ,µ) for every pair (λ, µ) in the set

P := {(λ, µ) ∈ Q′0
2 | λ < µ, |µ| ≥ |λ|+ 2}.
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Denote by Kλ,µ a set of basis vectors for the subspace ker(Φλ,µ). Then ker(Φ) is

the ideal generated by the union of these bases:

ker(Φ) =

 ⋃
(λ,µ)∈P

Kλ,µ

 . (5.1)

We divide this chapter into two main steps. Define

P2 :=
{

(λ, µ) ∈ Q′0
2 | λ < µ, |µ| = |λ|+ 2

}
⊂ P, (5.2)

the pairs of vertices separated by paths of length two. The first step is to find

ker(Φλ,µ), and thereforeKλ,µ, for all (λ, µ) ∈ P2. We identify elements of ker(Φλ,µ)

by studying various compositions of the f -type and g-type maps defined in Propo-

sition 4.28 evaluated on an arbitrary section wλ of SλW . We use to define the

ideal

I :=

 ⋃
(λ,µ)∈P2

Kλ,µ

 ⊂ kQ′ (5.3)

generated by the relations of length two. Then we have I ⊆ ker(Φ), and by

considering longer paths in kQ′ the second step is to show that I = ker(Φ).

Note that in the case of Y = Gr(4, 2), the ideal I was written down by

Buchweitz, Leuschke and Van den Bergh in [BLV15, Example 8.4]. We recover

this example in passing in our discussion of Gr(5, 2) in Example 5.11.

5.1 Relations between paths of length two

In this section we identify the vector spaces ker(Φλ,µ) for all (λ, µ) ∈ P2, and then

extract bases Kλ,µ in order to define the ideal I ⊆ ker(Φ) from (5.3). For each

(λ, µ) ∈ P2, after finding a certain collection of relations we will perform a di-

mension count to prove these relations span ker(Φλ,µ). Hence, we first decompose

the codomain HomOY (SλW ,SµW) ∼= Sµ/λV into a sum of irreducibles.

It will be useful to recall the construction of Sym2 V and
∧2 V as subspaces

embedded in V ⊗2. We have the quotients

Sym2 V :=
V ⊗2

〈v1 ⊗ v2 − v2 ⊗ v1 | vi ∈ B〉
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and
2∧
V :=

V ⊗2

〈v1 ⊗ v2 + v2 ⊗ v1 | vi ∈ B〉
,

and there is a natural isomorphism V ⊗2 −→ Sym2 V ⊕
∧2 V given by

v1 ⊗ v2 7→
1

2
(v1 ⊗ v2 + v2 ⊗ v1, v1 ⊗ v2 − v2 ⊗ v1) =: (v1v2, v1 ∧ v2), (5.4)

which enables us to identify Sym2 V and
∧2 V as subspaces of V ⊗2.

Proposition 5.1. Let (λ, µ) ∈ P2.

(i) If µ = (λ1 + 2, λ2) then HomOY (SλW ,SµW) ∼= Sym2 V .

(ii) If µ = (λ1, λ2 + 2) then HomOY (SλW ,SµW) ∼= Sym2 V .

(iii) If λ1 = λ2 and µ = (λ1 + 1, λ1 + 1) then HomOY (SλW ,SµW) ∼=
∧2 V .

(iv) If λ1 > λ2 and µ = (λ1 + 1, λ2 + 1) then HomOY (SλW ,SµW) ∼= V ⊗2.

Proof. For (i) and (ii) this is just Corollary 4.25. For (iii) and (iv) fix µ = (λ1 +

1, λ2 + 1), and using the notation of Lemma 4.36, let Γµ/λ be the set of partitions

γ corresponding to the irreducible summands of HomOY (SλW , SµW) ∼= Sµ/λV .

By Lemma 4.36, we have γ ∈ Γµ/λ if and only if |γ| = 2 and λ2 + 1 − λ1 ≤
γ2 ≤ 1. If λ1 = λ2 then the only γ ∈ Γµ/λ is (1, 1), giving HomOY (SλW ,SµW) ∼=
S(1,1)V =

∧2 V as required. If λ1 > λ2 then both (2, 0), (1, 1) ∈ Γµ/λ, hence

HomOY (SλW ,SµW) ∼= Sym2 V ⊕
∧2 V ∼= V ⊗2.

Remark 5.2. In the following four subsections we describe ker(Φλ,µ) for the four

cases of Proposition 5.1 respectively. To do this, we will find relations by evalu-

ating elements of im(Φλ,µ) on an arbitrary section wλ of SλW . Such elements are

given by compositions of the f -type and g-type maps defined in Proposition 4.28.

In the first three cases there is only one route from λ to µ so the domain of

Φλ,µ satisfies eµkQ′eλ ∼= V ⊗2. Since Φλ,µ is surjective and V ⊗2 ∼= Sym2 V ⊕
∧2 V ,

we just need to find relations that span a space isomorphic to the irreducible sum-

mand in the decomposition of V ⊗2 that is complement to the summand given by

HomOY (SλW ,SµW) in Proposition 5.1; these relations must then span ker(Φλ,µ).

Case (iv) is slightly different and we deal with that in Section 5.1.4.

Notation 5.3. (i) Let wλ be a section of SλW as in (4.9). In each of the

following subsections, the x1,1 ∧ x1,2 ⊗ · · · ⊗ xλ2,1 ∧ xλ2,2 part of wλ is never

altered so we simplify the notation by denoting x := x1,1∧x1,2⊗· · ·⊗xλ2,1∧
xλ2,2. Thus we have

wλ = x⊗ y1 · · · yλ1−λ2 .
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(ii) When writing down the subspaces ker(Φλ,µ), we will abuse notation slightly

by writing fλuρ and gλuρ for the arrows aλ,1ρ and aλ,2ρ respectively. Henceforth

the symbols fλuρ , g
λ
uρ are juxtaposed to denote paths in kQ′, but separated

by ◦ for homomorphisms in A.

(iii) Particularly in figure environments, we will use • as a place-holder for vec-

tors in B.

5.1.1 Paths of two horizontal arrows

Here we consider paths of the form

S(λ1,λ2)W −→ S(λ1+1,λ2)W −→ S(λ1+2,λ2)W ,

as shown in Figure 5.1. Denote ν = (λ1 + 1, λ2).

(
∧2W)⊗λ2

⊗ Symλ1−λ2W
(
∧2W)⊗λ2

⊗ Symλ1−λ2+1W
(
∧2W)⊗λ2

⊗ Symλ1−λ2+2W
fλ• f ν•

∧2 V

Figure 5.1: Paths of two horizontal arrows with relations given by the dashed arrow.

For all v1, v2 ∈ B we have

f νv2 ◦ f
λ
v1

(wλ) = f νv2 (x⊗ y1 · · · yλ1−λ2zv1)

= x⊗ y1 · · · yλ1−λ2zv1zv2
= x⊗ y1 · · · yλ1−λ2zv2zv1
= f νv1 (x⊗ y1 · · · yλ1−λ2zv2)

= f νv1 ◦ f
λ
v2

(wλ)

and so f νv2 ◦ f
λ
v1
− f νv1 ◦ f

λ
v2

= 0. Using (5.4) and identifying the tensor product

with composition of maps, we may write down an isomorphism

2∧
V

∼=−−−−→
〈
f νv2 ◦ f

λ
v1
− f νv1 ◦ f

λ
v2
| v1, v2 ∈ B

〉
where v1∧v2 7→ f νv2 ◦f

λ
v1
−f νv1 ◦f

λ
v2

. We have HomOY (SλW ,S(λ1+2,λ2)W) ∼= Sym2 V

by Proposition 5.1(i); hence, it follows from Remark 5.2 that this is the entire

subspace of relations because the domain of Φλ,µ satisfies eµkQ′eλ ∼= V ⊗2 ∼=
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Sym2 V ⊕
∧2 V . Thus we may conclude

ker(Φλ,µ) =
〈
f νv2f

λ
v1
− f νv1f

λ
v2
| v1, v2 ∈ B

〉
.

Note that in the original notation used in Definition 4.31, this subspace is given

by ker(Φλ,µ) =
〈
aν,1ρ1 a

λ,1
ρ2
− aν,1ρ2 a

λ,1
ρ1
| 1 ≤ ρ1, ρ2 ≤ n

〉
.

5.1.2 Paths of two vertical arrows

Next we consider paths of the form

S(λ1,λ2)W −→ S(λ1,λ2+1)W −→ S(λ1,λ2+2)W ,

as shown in Figure 5.2. Denote ν = (λ1, λ2 + 1).

(
∧2W)⊗λ2

⊗ Symλ1−λ2W

(
∧2W)⊗λ2+1

⊗ Symλ1−λ2−1W

(
∧2W)⊗λ2+2

⊗ Symλ1−λ2−2W

gλ•

gν•

∧2 V

Figure 5.2: Paths of two vertical arrows with relations given by the dashed arrow.
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For all v1, v2 ∈ B we have

gνv2 ◦ g
λ
v1

(wλ) = gνv2

(
λ1−λ2∑
k=1

x⊗ yk ∧ zv1 ⊗
∏
j 6=k

yj

)

=

λ1−λ2∑
k=1

gνv2

(
x⊗ yk ∧ zv1 ⊗

∏
j 6=k

yj

)

=

λ1−λ2∑
k=1

(∑
i 6=k

x⊗ yk ∧ zv1 ⊗ yi ∧ zv2 ⊗
∏
j 6=k,i

yj

)

=

λ1−λ2∑
i=1

(∑
k 6=i

x⊗ yi ∧ zv2 ⊗ yk ∧ zv1 ⊗
∏
j 6=k,i

yj

)

=

λ1−λ2∑
i=1

gνv1

(
x⊗ yi ∧ zv2 ⊗

∏
j 6=i

yj

)
= gνv1 ◦ g

λ
v2

(wλ)

where in the fourth equality we use an (E2)-type exchange to swap the column

containing yk∧zv1 with the column containing yi∧zv2 , and the order of summation

is swapped. Therefore gνv2 ◦ g
λ
v1
− gνv1 ◦ g

λ
v2

= 0, so like the previous case, using

Proposition 5.1(ii) and Remark 5.2 yields

ker(Φλ,µ) =
〈
gνv2g

λ
v1
− gνv1g

λ
v2
| v1, v2 ∈ B

〉
.

5.1.3 Paths between vertices on the diagonal

Next we suppose λ1 = λ2 and consider paths of the form

S(λ1,λ1)W −→ S(λ1+1,λ1)W −→ S(λ1+1,λ1+1)W ,

as shown in Figure 5.3. Denote ν = (λ1 + 1, λ1).

Since SλW has no symmetric part wλ = x. Then for all v1, v2 ∈ B we have

gνv2 ◦ f
λ
v1

(wλ) = gνv2 (x⊗ zv1)

= x⊗ zv1 ∧ zv2
= −x⊗ zv2 ∧ zv1
= −gνv1 (x⊗ zv2)

= −gνv1 ◦ f
λ
v2

(wλ)
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(
∧2W)⊗λ1 (

∧2W)⊗λ1 ⊗W

(
∧2W)⊗λ1+1

fλ•

gν•Sym2 V

Figure 5.3: Paths between vertices on the diagonal with relations given by the dashed
arrow.

and so gνv2 ◦ f
λ
v1

+ gνv1 ◦ f
λ
v2

= 0. Again, using (5.4) and identifying the tensor

product with composition of maps, we may write down an isomorphism

Sym2 V
∼=−−−−→

〈
gνv2 ◦ f

λ
v1

+ gνv1 ◦ f
λ
v2
| v1, v2 ∈ B

〉
where v1v2 7→ gνv2 ◦ f

λ
v1

+ gνv1 ◦ f
λ
v2

. We have HomOY (SλW ,S(λ1+1,λ1+1)W) ∼=
∧2 V

by Proposition 5.1(iii); hence, it follows from Remark 5.2 that this is the entire

subspace of relations because the domain of Φλ,µ satisfies eµkQ′eλ ∼= V ⊗2 ∼=
Sym2 V ⊕

∧2 V . Thus we may conclude

ker(Φλ,µ) =
〈
gνv2f

λ
v1

+ gνv1f
λ
v2
| v1, v2 ∈ B

〉
.

5.1.4 Paths around a square

Now we suppose λ1 > λ2 and µ = (λ1 + 1, λ2 + 1), and consider paths around

a square as in Figure 5.4. In this case there are two routes from λ to µ, so

we have eµkQ′eλ ∼= V ⊗2 ⊕ V ⊗2. Akin to Remark 5.2, surjectivity of Φλ,µ and

counting dimensions implies that ker(Φλ,µ) ∼= V ⊗2 since HomOY
(SλW ,SµW) ∼=

V ⊗2 by Proposition 5.1(iv). Thus, we are looking for relations that span a space

isomorphic to V ⊗2.

Lemma 5.4. Denote ν = (λ1+1, λ2) and δ = (λ1, λ2+1). Then for all v1, v2 ∈ B,

we have

(λ1 − λ2) gνv2 ◦ f
λ
v1

= (λ1 − λ2 + 1) f δv1 ◦ g
λ
v2
− f δv2 ◦ g

λ
v1
. (5.5)
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(
∧2W)⊗λ2

⊗ Symλ1−λ2W
(
∧2W)⊗λ2

⊗ Symλ1−λ2+1W

(
∧2W)⊗λ2+1

⊗ Symλ1−λ2−1W
(
∧2W)⊗λ2+1

⊗ Symλ1−λ2W

fλ•

gλ• gν•

f δ•

V ⊗2

Figure 5.4: Paths around a square, with space of relations isomorphic to V ⊗2, gen-
erated by (5.5).

Proof. Starting with the right hand side, we have

(λ1 − λ2 + 1) f δv1 ◦ g
λ
v2

(wλ)− f δv2 ◦ g
λ
v1

(wλ)

= (λ1 − λ2 + 1) f δv1

(
λ1−λ2∑
k=1

x⊗ yk ∧ zv2 ⊗
∏
j 6=k

yj

)
− f δv2

(
λ1−λ2∑
k=1

x⊗ yk ∧ zv1 ⊗
∏
j 6=k

yj

)

= (λ1 − λ2 + 1)

λ1−λ2∑
k=1

x⊗ yk ∧ zv2 ⊗ zv1
∏
j 6=k

yj −
λ1−λ2∑
k=1

x⊗ yk ∧ zv1 ⊗ zv2
∏
j 6=k

yj.

The left hand side becomes

(λ1 − λ2) gνv2 ◦ f
λ
v1

(wλ)

= (λ1 − λ2) gνv2 (x⊗ y1 · · · yλ1−λ2zv1)

= (λ1 − λ2)

λ1−λ2∑
k=1

(
x⊗ yk ∧ zv2 ⊗ zv1

∏
j 6=k

yj

)
+ (λ1 − λ2)x⊗ zv1 ∧ zv2 ⊗

λ1−λ2∏
j=1

yj.

Now subtract the left hand side from the right hand side to give

(λ1 − λ2 + 1) f δv1 ◦ g
λ
v2
− f δv2 ◦ g

λ
v1
− (λ1 − λ2) gνv2 ◦ f

λ
v1

=

λ1−λ2∑
k=1

x⊗ yk ∧ zv2 ⊗ zv1
∏
j 6=k

yj −
λ1−λ2∑
k=1

x⊗ yk ∧ zv1 ⊗ zv2
∏
j 6=k

yj

− (λ1 − λ2)x⊗ zv1 ∧ zv2 ⊗
λ1−λ2∏
j=1

yj =: (†).

We now perform slightly different exchanges with each of the λ1 − λ2 copies of
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x⊗zv1∧zv2⊗
∏λ1−λ2

j=1 yj defining the last term of (†). With the first copy, perform

an (E1)-type exchange by moving into y1 the column containing zv1∧zv2 , yielding

x⊗ zv1 ∧ zv2 ⊗
λ1−λ2∏
j=1

yj = x⊗ y1 ∧ zv2 ⊗ zv1
∏
j 6=1

yj + x⊗ zv1 ∧ y1 ⊗ zv2
∏
i 6=1

yi

= −x⊗ zv2 ∧ y1 ⊗ zv1
∏
j 6=1

yj + x⊗ zv1 ∧ y1 ⊗ zv2
∏
j 6=1

yj

Now perform a similar exchange with the second copy using y2, and in general

with the k-th copy using yk. Adding these all together, we get

(λ1 − λ2)x⊗ zv1 ∧ zv2 ⊗
λ1−λ2∏
j=1

yj

= −
λ1−λ2∑
k=1

x⊗ zv2 ∧ yk ⊗ zv1
∏
j 6=k

yj +

λ1−λ2∑
k=1

x⊗ zv1 ∧ yk ⊗ zv2
∏
j 6=k

yj.

Finish by substituting the right-hand side of this identity into the last term of

(†) to get zero.

Since

V ⊗2 ∼=
〈
(λ1 − λ2) gνv2 ◦ f

λ
v1
− (λ1 − λ2 + 1) f δv1 ◦ g

λ
v2

+ f δv2 ◦ g
λ
v1
| v1, v2 ∈ B

〉
,

the discussion prior to Lemma 5.4 implies

ker(Φλ,µ) =
〈
(λ1 − λ2) gνv2f

λ
v1
− (λ1 − λ2 + 1) f δv1g

λ
v2

+ f δv2g
λ
v1
| v1, v2 ∈ B

〉
.

Remark 5.5. Consequently, because each path going in one direction around

the square may be written as a linear combination of paths going the opposite

way, there are no relations amongst paths traversing in the same direction.
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(
∧2W)⊗λ2

⊗ Symλ1−λ2W
(
∧2W)⊗λ2

⊗ Symλ1−λ2+1W

(
∧2W)⊗λ2+1

⊗ Symλ1−λ2W

(
∧2W)⊗λ2

⊗ Symλ1−λ2W

(
∧2W)⊗λ2+1

⊗ Symλ1−λ2−1W
(
∧2W)⊗λ2+1

⊗ Symλ1−λ2W

fλ•

gν•0gλ•

f δ•

0

Figure 5.5: There are no relations between paths going the same direction around
the square.

We now present the ideal I ⊆ ker(Φ) as defined in (5.3). Recall the basis

B = {u1, . . . , un} of V .

Proposition 5.6. For each (λ, µ) ∈ P2, let ν, δ be the vertices that lie on paths

λ and µ as defined in Sections 5.1.1-5.1.4. Define the sets Kλ,µ as follows:

(i) if µ = (λ1 + 2, λ2), Kλ,µ =
{
f νujf

λ
ui
− f νuif

λ
uj
| 1 ≤ i, j ≤ n

}
.

(ii) if µ = (λ1, λ2 + 2), Kλ,µ =
{
gνujg

λ
ui
− gνuig

λ
uj
| 1 ≤ i, j ≤ n

}
.

(iii) if λ1 = λ2 and µ = (λ1 + 1, λ1 + 1), Kλ,µ =
{
gνujf

λ
ui

+ gνuif
λ
uj
| 1 ≤ i, j ≤ n

}
.

(iv) if λ1 > λ2 and µ = (λ1 + 1, λ2 + 1),

Kλ,µ =
{

(λ1 − λ2) gνujf
λ
ui
− (λ1 − λ2 + 1) f δuig

λ
uj

+ f δujg
λ
ui
| 1 ≤ i, j ≤ n

}
.

Then each Kλ,µ is a basis of ker(Φλ,µ) and the ideal

I :=

 ⋃
(λ,µ)∈P2

Kλ,µ

 ⊆ ker(Φ)

contains all of the relations in Q′ generated by paths of length two.

Proof. Sections 5.1.1-5.1.4.
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5.2 Relations between longer paths

Having described the ideal I ⊆ ker(Φ) in Proposition 5.6, we now prove that I =

ker(Φ). Recall from equation (5.1) that we have ker(Φ) = (∪(λ,µ)∈PKλ,µ). Since

the ideal I is taken over P2, a subset of P , we must show that ker(Φλ,µ) = eµIeλ

for all pairs (λ, µ) in the complement of P2, i.e. the set

Pl :=
{

(λ, µ) ∈ Q′0
2 | λ < µ, |µ| > |λ|+ 2

}
where we write l simply to mean ‘longer’.

We do this in two propositions. First we compute ker(Φλ,µ) in the special

cases that all paths λ → µ are straight lines in Q′, i.e. (λ, µ) ∈ Pl where µ is of

the form either (µ1, λ2) or (λ1, µ2). Then we deal with the remaining cases where

both λ1 < µ1 and λ2 < µ2.

Prior to the first of these propositions, recall from Example 4.5(ii) that the

k-th symmetric power of V is given by

Symk V :=
V ⊗k

〈v1 ⊗ · · · ⊗ vk − vσ(1) ⊗ · · · ⊗ vσ(k) | σ ∈ Sk, vi ∈ B〉
, (5.6)

where Sk is the permutation group on {1, . . . , k}. We write v1 · · · vk ∈ Symk V

for the equivalence class containing v1 ⊗ · · · ⊗ vk. Following [Wey03, §1.1.1 p.3],

there is a natural embedding given by

∆k : Symk V ↪−→ V ⊗k

v1 · · · vk 7−−→
1

k!

∑
σ∈Sk

vσ(1) ⊗ · · · ⊗ vσ(k).
(5.7)

Notation 5.7. We will make use of Notation 5.3(ii) again: when writing down

the subspaces ker(Φλ,µ), we will abuse notation slightly by writing fλuρ and gλuρ
for the arrows aλ,1ρ and aλ,2ρ respectively. Henceforth the symbols fλuρ , g

λ
uρ are

juxtaposed to denote paths in kQ′, but separated by ◦ for homomorphisms in A.

In addition, we will use some notation from Section 4.7; denote m1 = µ1− λ1

and m2 = µ2− λ2, and since we are using the f and g notation for arrows in Q′1,

without ambiguity we may drop the superscript on all arrows in a path except

the first as in Notation 4.38(i).

66



Proposition 5.8. Let (λ, µ) ∈ Pl and suppose µ is of the form either (µ1, λ2) or

(λ1, µ2). Then

ker(Φλ,µ) =


〈
fvm1
· · · fλv1 − fvσ(m1)

· · · fλvσ(1) | σ ∈ Sm1 , vi ∈ B
〉

if µ = (µ1, λ2),〈
gvm2
· · · gλv1 − gvσ(m2)

· · · gλvσ(1) | σ ∈ Sm2 , vi ∈ B
〉

if µ = (λ1, µ2).

(5.8)

In particular, ker(Φλ,µ) = eµIeλ.

Proof. The fact that the subspaces (5.8) are contained in ker(Φλ,µ) follows from

straightforward induction arguments on the results of Sections 5.1.1-5.1.2. We

claim that these relations span ker(Φλ,µ) by dimension count. The domain of the

surjective map Φλ,µ is eµkQ′eλ, which is isomorphic to either V ⊗m1 or V ⊗m2 when

µ is equal to (µ1, λ2) or (λ1, µ2) respectively. Taking the quotient of these spaces

by the appropriate subspace in (5.8) gives Symm1 V or Symm2 V respectively by

(5.6). Since the codomain of Φλ,µ is HomOY
(SλW ,SµW), which is isomorphic to

Symm1 V or Symm2 V respectively by Corollary 4.25, the claim follows from the

first isomorphism theorem.

For the final statement, first suppose µ = (µ1, λ2). The subspace eµIeλ

consists only of the relations amongst straight line paths λ → µ, and all of

these are generated by those in Proposition 5.6(i), specifically those of the form

{fv2fγiv1 − fv1f
γi
v2
| v1, v2 ∈ B} where γi = λ + ie1 for 0 ≤ i ≤ m1 − 2. Hence,

define STm1
⊆ Sm1 to be the subset of adjacent transpositions, i.e. σ ∈ STm1

if for

some 1 ≤ k ≤ m1 − 1 we have σ(k) = k + 1, σ(k + 1) = k, and σ(j) = j for all

j 6= k, k + 1. Then

eµIeλ =
〈
fvm1
· · · fλv1 − fvσ(m1)

· · · fλvσ(1) | σ ∈ S
T
m1
, vi ∈ B

〉
.

Hence we have eµIeλ ⊆ ker(Φλ,µ), but since Sm1 is generated by the elements of

STm1
the reverse inclusion follows simply by performing a sequence of permutations

in STm1
. The proof is similar for µ = (λ1, µ2).

Proposition 5.9. Let (λ, µ) ∈ Pl and suppose λ1 < µ1 and λ2 < µ2. Then

ker(Φλ,µ) = eµIeλ.

Proof. First of all, as in Section 4.7, it is enough to consider the special case that

λ2 = 0 as each of the spaces eµkQ′eλ, eµIeλ and HomOY
(SλW ,SµW) is unchanged

if we replace (λ1, λ2) and (µ1, µ2) by (λ1 − λ2, λ2 − λ2) and (µ1 − λ2, µ2 − λ2)

respectively. See, for example, Corollary 4.26(ii).
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There is a commutative diagram

eµkQ′eλ HomOY
(SλW ,SµW)

eµkQ′eλ
eµIeλ

Φλ,µ

π
Ψλ,µ

where π is the quotient map. The goal is to show that Ψλ,µ is injective: then

ker(Ψλ,µ) = 0 and so ker(Φλ,µ) = π−1(0) = eµIeλ as required.

Consider a path (or more generally, a linear combination of paths) p ∈ eµkQ′eλ
and let ν be the vertex (µ1, λ2). If at any point on the path(s) p there is a vertical

arrow immediately before a horizontal arrow, it is possible to use relations from

I, namely those of Proposition 5.6(iv), to rewrite those two arrows as a linear

combination of arrows around the same square in Q′ that instead go horizontally

before vertically. We can repeat this process until p has been rewritten completely

as linear combination of paths that all go strictly horizontally before vertically;

in other words, there exists an element p2 ⊗k p1 ∈ eµkQ′eν ⊗k eνkQ′eλ such that

[p] = [p2p1] ∈ eµkQ′eλ/eµIeλ.
Now, in kQ′/I we have [p2p1] = [p2][p1] where

[p2] ∈ eµkQ
′eν

eµIeν
∼= Symm2 V, [p1] ∈ eνkQ

′eλ
eνIeλ

∼= Symm1 V,

and we have used the isomorphisms from Proposition 5.8 with m1 = µ1− λ1 and

m2 = µ2. Since every [p] ∈ eµkQ′eλ/eµIeλ can be written in the form [p2p1],

there exists a surjective homomorphism

ξ1 : Symm2 V ⊗k Symm1 V −−→→ eµkQ′eλ
eµIeλ

where [p2] ⊗k [p1] 7→ [p2p1] = [p]. We now split into two subcases according to

the decomposition of HomOY
(SλW ,SµW) into irreducibles.

(i): µ2 ≤ λ1. In this case HomOY
(SλW , SµW) is isomorphic to Symm2 V ⊗k

Symm1 V ; this follows from Lemma 4.36 and the first Pieri rule (Proposition 4.7(i)).
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We have the diagram

Symm2 V ⊗k Symm1 V

eµkQ′eλ
eµIeλ

HomOY
(SλW ,SµW)

HomOY
(SλW ,SµW)

ξ1

Ψλ,µ

∼=

id

and therefore ξ1 and Ψλ,µ must be bijections. In particular, Ψλ,µ is injective as

required.

Note that the relations between paths on the main diagonal of Q′, i.e. those of

Proposition 5.6(iii), are absent in case (i). Indeed, any vertex γ on a path λ→ µ

satisfies 0 ≤ γ2 ≤ µ2 and λ1 ≤ γ1 ≤ µ1. Vertices on the diagonal also satisfy

γ1 = γ2, and when µ2 ≤ λ1 the only such possible vertex is (λ1, µ2). Thus, with

at most one vertex on the diagonal on any path λ→ µ, Proposition 5.6(iii) plays

no role in eµkQ′eλ/eµIeλ in this case. The next case is different.

(ii): µ2 > λ1. The irreducible summands of HomOY
(SλW ,SµW) form a proper

subset of those in the irreducible decomposition of Symm2 V ⊗k Symm1 V ; again

this follows from Lemma 4.36 and the first Pieri rule (Proposition 4.7(i)). Indeed,

as hinted above we must now also consider the possibility of relations between

vertices along the diagonal. Let d = µ2 − λ1 > 0. Then the vertices (λ1 +

k, λ1 + k) for all 0 ≤ k ≤ d may appear on paths λ → µ. Previously, we used

the relations around squares to rewrite p as a linear combination of paths going

strictly horizontally before vertically. While we may also do that here and the

surjective map ξ1 still applies, we can also use the relations around squares to

rewrite p as a linear combination of paths that take the route

(λ1, 0)→ (λ1, λ1)→ (λ1+1, λ1+1)→ · · · → (λ1+d, λ1+d) = (µ2, µ2)→ (µ1, µ2),

in other words, paths in p travel vertically from λ to the diagonal and then

staircase along it as much as possible, exiting horizontally towards µ at height

µ2. Define the sequence ν0 = λ, νi = (λ1 + i− 1, λ1 + i− 1) for all 1 ≤ i ≤ d+ 1,

and νd+2 = µ. Then there exists an element q2 ⊗k zd ⊗k · · · ⊗k z1 ⊗k q1 in

d+1⊗
i=0

eνi+1
kQ′eνi (5.9)
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such that [p] = [q2zd · · · z1q1] ∈ eµkQ′eλ/eµIeλ.
Following the strategy above, we take the quotient of each subspace in (5.9)

by the appropriate graded slice of I. For i = 0 we have straight vertical paths

(λ1, 0)→ (λ1, λ1) and for i = d+ 1 we have straight horizontal paths (µ2, µ2)→
(µ1, µ2). Hence, using Proposition 5.8 we have

[q2] ∈
eµkQ′eνd+1

eµIeνd+1

∼= Symµ1−µ2 V, [q1] ∈ eν1kQ
′eλ

eν1Ieλ
∼= Symλ1 V.

Each of the remaining subspaces, eνi+1
kQ′eνi for 1 ≤ i ≤ d, is spanned by paths

starting at a vertex on the diagonal and going horizontally then vertically to

the next vertex on the diagonal. These are precisely the paths considered in

Section 5.1.3 and therefore we have

[zi] ∈
eνi+1

kQ′eνi
eνi+1

Ieνi
∼=

2∧
V, 1 ≤ i ≤ d.

Consider the quotient

D :=
d+1⊗
i=0

eνi+1
kQ′eνi

eνi+1
Ieνi

.

Then by the prior discussion, there is a surjective homomorphism

ξ2 : D ∼= Symµ1−µ2 V ⊗k

(
2∧
V

)⊗d
⊗k Symλ1 V −−→→ eµkQ′eλ

eµIeλ

where [q2]⊗k [zd]⊗k · · · ⊗k [z1]⊗k [q1] 7→ [q2zd · · · z1q1] = [p].

We must now find the irreducible decomposition of D, which we accomplish

using the Pieri rules; see Proposition 4.7. We first decompose the central col-

lection of terms (
∧2 V )⊗d. The second Pieri rule states that tensoring a Schur

power SγV by
∧2 V yields a direct sum taken over the ways of adding two new

boxes to distinct rows of γ. Starting with S(1,1)V =
∧2 V and applying this rule

d− 1 times, we have (
2∧
V

)⊗d
∼= S(d,d)V ⊕X,

where X is a direct sum of Schur powers of V defined by Young diagrams with

at least three rows.

Next we tensor S(d,d)V ⊕X by the Symλ1 V term. By the first Pieri rule this

has decomposition given over the ways of adding λ1 boxes to each partition in

the sum S(d,d)V ⊕ X with no two in the same column. By adding λ1 boxes to
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the top row of (d, d) we have the term S(λ1+d,d)V = S(µ2,µ2−λ1)V , but again, every

other term has at least three rows in this second decomposition. Amending X

to X ′ (we don’t care exactly what these terms with at least three rows are), we

have (
2∧
V

)⊗d
⊗k Symλ1 V ∼= S(µ2,µ2−λ1)V ⊕X ′.

Lastly, we must tensor this decomposition by Symµ1−µ2 V . Using the first Pieri

rule again and focusing only on the terms that will produce Young diagrams

with at most two rows, we have D ∼= (
⊕

γ SγV ) ⊕ X ′′ where γ ranges over

the partitions (max{m1,m2},min{m1,m2}), (max{m1,m2} + 1,min{m1,m2} −
1), . . . , (µ1, µ2 − λ1). By Lemma 4.36 these partitions are precisely those that

describe the irreducible decomposition of HomOY
(SλW ,SµW). Therefore,

D ∼= HomOY
(SλW ,SµW)⊕X ′′.

Hence, we have a diagram of surjective maps

Symm2 V ⊗k Symm1 V

D ∼= HomOY
(SλW ,SµW)⊕X ′′

eµkQ′eλ
eµIeλ

HomOY
(SλW ,SµW)

ξ1

ξ2

Ψλ,µ

Since ξ1 and ξ2 are surjective, eµkQ′eλ/eµIeλ must be isomorphic to a sub-

space of the direct sum of the summands that appear in both the irreducible

decompositions of Symm2 V ⊗k Symm1 V and D. Since the decomposition of

Symm2 V ⊗k Symm1 V consists of only partitions with at most two rows, of which

those comprising HomOY
(SλW ,SµW) form a proper subset, we conclude that

eµkQ′eλ/eµIeλ is isomorphic to a subspace of HomOY
(SλW ,SµW). This forces

the surjective map Ψλ,µ to be an isomorphism, and in particular is injective as

required.

We now conclude Chapters 4 and 5 with the full presentation of Kapranov’s

tilting algebra for Gr(n, 2).
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Theorem 5.10. Let Y = Gr(n, 2), let E be the tilting bundle (4.1) and let

A = EndOY (E). Let Q′ be the quiver defined in Definition 4.31. Then the k-

algebra A is isomorphic to kQ′/I, where

I =

 ⋃
(λ,µ)∈P2

Kλ,µ


and

(i) if µ = (λ1 + 2, λ2), Kλ,µ =
{
fujf

λ
ui
− fuifλuj | 1 ≤ i, j ≤ n

}
.

(ii) if µ = (λ1, λ2 + 2), Kλ,µ =
{
gujg

λ
ui
− guigλuj | 1 ≤ i, j ≤ n

}
.

(iii) if λ1 = λ2 and µ = (λ1 + 1, λ1 + 1), Kλ,µ =
{
gujf

λ
ui

+ guif
λ
uj
| 1 ≤ i, j ≤ n

}
.

(iv) if λ1 > λ2 and µ = (λ1 + 1, λ2 + 1),

Kλ,µ =
{

(λ1 − λ2) gujf
λ
ui
− (λ1 − λ2 + 1) fuig

λ
uj

+ fujg
λ
ui
| 1 ≤ i, j ≤ n

}
.

Proof. In Chapter 4 we defined a k-algebra homomorphism Φ: kQ′ → A and

proved it is surjective. After establishing that ker(Φ) = (
⋃

(λ,µ)∈P Kλ,µ), we

presented the ideal I = (
⋃

(λ,µ)∈P2
Kλ,µ) ⊆ ker(Φ) in Proposition 5.6. Propo-

sitions 5.8 and 5.9 then prove that 〈Kλ,µ〉 = ker(Φλ,µ) = eµIeλ ⊆ I for all

(λ, µ) ∈ P \ P2. This completes the proof that ker(Φ) = I.

Example 5.11. Let Y = Gr(5, 2). The tilting quiver is given by Figure 5.6, and

below we list the relations that span I = ker(Φ). Following Notation 5.7, we only

require a superscript for the first arrow in a path since the f and g-type notation

determines the remaining arrows. For all 1 ≤ i, j ≤ 5, we have the following.

• Horizontal paths: for λ = (0, 0), (1, 0), (1, 1) we have

fujf
λ
ui

= fuif
λ
uj
.

• Vertical paths: for λ = (2, 0), (3, 0), (3, 1) we have

gujg
λ
ui

= guig
λ
uj
.

• Paths on the main diagonal: for λ = (0, 0), (1, 1), (2, 2) we have

gujf
λ
ui

= −guifλuj .
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• Lower-left and upper squares: for λ = (1, 0), (2, 1) we have

gujf
λ
ui

= 2fuig
λ
uj
− fujgλui .

• Lower-right square: for λ = (2, 0) we have

2gujf
λ
ui

= 3fuig
λ
uj
− fujgλui .

OY W

OY (1)

Sym2W

OY (1)⊗W

OY (2)

Sym3W

OY (1)⊗ Sym2W

OY (2)⊗W

OY (3)

f
(0,0)
• f

(1,0)
•

f
(1,1)
•

g
(1,0)
• g

(2,0)
•

g
(2,1)
•

f
(2,0)
•

f
(2,1)
•

f
(2,2)
•

g
(3,0)
•

g
(3,1)
•

g
(3,2)
•

Figure 5.6: The tilting quiver for Y = Gr(5, 2). Each arrow represents 5 arrows
corresponding to the basis B of V .

Remark 5.12. Following Example 5.11, consider the full sub-quiver of Q′ for

Gr(5, 2) defined by deleting the vertices (3, 0), . . . , (3, 3) ∈ Q′0 and any arrows

with head or tail at those vertices. By also removing all arrows associated to

u5 ∈ B, we recover the tilting quiver for Gr(4, 2); see Figure 6.1. In particular,

the relations defining ker(Φ) for Gr(4, 2) form a sublist of those in the above

73



example; these were calculated by Buchweitz, Leuschke and Van den Bergh in

[BLV15, Example 8.4].

5.3 Comparison with the work of Buchweitz,

Leuschke and Van den Bergh

First of all, given the tilting quiver for Gr(n, 2) in Figure 4.2 it is easy to predict

the tilting quiver for Gr(n, r): we have a vertex per indecomposable summand

of the tilting bundle (one for each λ ∈ Young(n − r, r)) and n arrows λ → µ

corresponding to a basis of V when λ < µ ∈ Young(n − r, r) differ by one box.

More precisely, we have the definition below.

Definition 5.13. For Y = Gr(n, r), define the tilting quiver Q′ by

Q′0 = {λ ∈ Zr | n− r ≥ λ1 ≥ · · · ≥ λr ≥ 0} ,

Q′1 =

aλ,iρ
∣∣∣∣∣∣∣

1 ≤ ρ ≤ n

i ∈ {1 . . . , r}, λ, λ+ ei ∈ Q′0
t(aλ,iρ ) = λ, h(aλ,iρ ) = λ+ ei

 .

Similar to the r = 2 case, Q′ is acyclic and (0, . . . , 0) is the unique source vertex.

One can reconstruct the quiver Q′ in Definition 5.13 from the quiver in

[BLV16, Theorem B] by removing any arrows labelled by the space ‘G’ (these

all go in the opposite direction). Recall that we have A = EndOY (E) where E is

the tilting bundle (4.1) on Y = Gr(n, r).

Theorem 5.14 ([BLV16, Theorems B, 6.9]). Let Q′ be the quiver in Defini-

tion 5.13. Then there exists an ideal J ⊂ kQ′ such that kQ′/J ∼= A.

Example 5.15. Suppose Y = Gr(6, 3). The indecomposable summands of E are

given by SλW where λ ∈ Young(3, 3), and following Definition 5.13 the tilting

quiver for Y is given by Figure 5.7.
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OY

W

Sym2W

Sym3W

∧2W

∧2W ⊗W

∧2W ⊗ Sym2W

(
∧2W)⊗2

(
∧2W)⊗2 ⊗W

(
∧2W)⊗3

∧3W

∧3W ⊗W

∧3W ⊗ Sym2W

∧3W ⊗
∧2W

∧3W ⊗
∧2W ⊗W

∧3W ⊗ (
∧2W)⊗2

(
∧3W)⊗2

(
∧3W)⊗2 ⊗W

(
∧3W)⊗2 ⊗

∧2W

(
∧3W)⊗3

Figure 5.7: The tilting quiver Q′ for Gr(6, 3) drawn in Z3. Each arrow in the figure
represents 6 arrows in the quiver. The sub-bundle of exchange relations Eλ (see (4.2))
is implicit.
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Our construction of the map Φ, the proof of Proposition 4.30 (surjectivity),

and our description of the kernel in Theorem 5.10 gives us a deep understanding

of the isomorphism kQ′/ ker(Φ) ∼= A in the Gr(n, 2) case. In the general case for

Gr(n, r) with r > 2 however, this success is limited by the surjectivity argument.

Besides not knowing the form of the homomorphisms SγW → Sγ+eiW for i > 2,

the problem with generalising the proof of Proposition 4.30 to r > 2 is that

we may no longer take advantage of Schur’s lemma; indeed, the multiplicity of

each irreducible summand of SγV ⊂ Sµ/λV , which is given by the Littlewood-

Richardson number cµλ,γ, may be greater than one.

We now briefly describe the method of proof behind Theorem 5.14. Unlike

our direct calculations of the spaces HomOY (SλW ,SµW) for all pairs λ < µ ∈
Young(n − 2, 2) in Lemma 4.36, the indirect approach of Buchweitz, Leuschke

and Van den Bergh instead computes the internal Ext groups of vertex simple

modules.

Define a quiver with vertices λ ∈ Young(n − r, r) and let Sλ be the simple

module associated to the vertex λ. Define the set of arrows from λ to µ by a

basis for Ext1
A(Sλ, Sµ)∨. The calculations in [BLV16, Section 5.5] yield

Ext1
A(Sµ, Sλ) =

V if λ < µ with |µ| = |λ|+ 1,

0 otherwise.

The tensor algebra then determines the resulting quiver which is equal to the

tilting quiver Q′ from Definition 5.13.

Since A admits a grading by N, the A∞ structure on Ext•A(⊕Sλ,⊕Sλ) defines

a map

Ext2
A(⊕Sλ,⊕Sλ)∨ −→

⊕
k≥2

(
Ext1

A(⊕Sλ,⊕Sλ)∨
)⊗k

(5.10)

whose image is an ideal J ⊂ kQ′. Theorem 2.13 of [Seg08] now implies that

the quiver Q′ with relations J satisfies kQ/J ∼= A; for further reference, see

[BP08, Section 1]. Therefore in order to present the ideal J , Ext2
A(Sµ, Sλ) must

be calculated for all λ, µ ∈ Young(n− r, r). We have the following.
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Proposition 5.16 ([BLV16, 5.5]). Let λ, µ ∈ Young(n − r, r) with n − r > 1.

Then

Ext2
A(Sµ, Sλ) =


Sym2 V if µ = λ+ two boxes in a column,∧2 V if µ = λ+ two boxes in a row,

V ⊗ V if µ = λ+ two disconnected boxes.

(5.11)

Observe that these are the same spaces calculated in Sections 5.1.1-5.1.2, 5.1.3

and 5.1.4 respectively. With these calculations in mind, Buchweitz, Leuschke and

Van den Bergh construct J as an ideal generated by a collection of kernels of cer-

tain linear maps; see [BLV16, Definition 5.5]. By demonstrating that the degree

2 graded slice of this ideal is equal to (5.11) as λ and µ vary, they conclude

by observing that J generates all the necessary relations of kQ′ by comparison

with the dimension of Ext2
A(⊕Sλ,⊕Sλ)∨ in the proof of [BLV16, Theorem 6.9].

Indeed, they point out in [BLV16, Proposition A.10] that the relations are gener-

ated quadratically. While this approach has the clear advantage of being able to

state the spaces of relations for the tilting quiver of Gr(n, r) for any n > r ≥ 1,

the drawback is that these relations are not given explicitly, though a recipe is

provided for how these relations can be calculated. This is essential for Chapter 6,

and we do this for Gr(n, 2) in Theorem 5.10.

In Proposition 4.28 we write down maps SλW → Sλ+eiW for i = 1, 2 where

W is the tautological bundle of Gr(n, 2); the fact we did this explicitly was key

to describing I = ker(Φ) in Theorem 5.10. An important point is that there is

no canonical way to write down these maps: they form an example of what is

known as a Pieri system (actually, they form part of what Buchweitz, Leuschke

and Van den Bergh call a compatible Pieri system, since maps are required for

the arrows going in the opposite direction that also satisfy various commuting

diagrams). Given a (compatible) Pieri system and a collection of scalars which

must be calculated as a result of the choice of system, [BLV16, Theorem 7.18]

tells us that the generators for J are given by the kernels of certain linear maps.

Unfortunately, even writing a compatible Pieri system is not at all trivial, so

to exhaustively find relations for kQ′ when r > 2 turns out to be an extensive

combinatorial exercise. We discuss this further in Chapter 7.
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Chapter 6

Reconstructing Gr(n, 2) from a

tilting bundle

Given our presentation of A ∼= kQ′/ ker(Φ) from Theorem 5.10, we are now in a

position to prove the following:

Theorem 6.1. Let Y be the Grassmannian Gr(n, 2). Then the morphism

fE : Y →M(E) from (2.7) is an isomorphism.

To prove Theorem 6.1 we first prove a more technical result using induction in

Sections 6.1 and 6.2; see Lemma 6.5. Then we complete the proof in Section 6.3.

Due to the notation involved, rather than state Lemma 6.5 immediately it will

be easier to prove the base case Gr(4, 2) as an example first, and only after that

state the induction hypothesis in the following section.

6.1 Base case: Gr(4, 2)

Begin by fixing a basis u1, u2, u3, u4 of V . By Theorem 5.10 we have the tilting

quiver given in Figure 6.1 and for all 1 ≤ i, j ≤ 4 the ideal of relations is generated

by the following.

• g(1,0)
ui

f (0,0)
uj

+ g(1,0)
uj

f (0,0)
ui

• f (1,0)
ui

f (0,0)
uj
− f (1,0)

uj
f (0,0)
ui

• g(2,0)
ui

f (1,0)
uj
− 2f (1,1)

uj
g(1,0)
ui

+ f (1,1)
ui

g(1,0)
uj

• g(2,1)
ui

f (1,1)
uj

+ g(2,1)
uj

f (1,1)
ui

• g(2,1)
ui

g(2,0)
uj
− g(2,1)

uj
g(2,0)
ui

(6.1)
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OY W

∧2W

Sym2W

∧2W ⊗W

(
∧2W)⊗2

f
(0,0)
• f

(1,0)
•

f
(1,1)
•

g
(1,0)
• g

(2,0)
•

g
(2,1)
•

Figure 6.1: The tilting quiver for Gr(4, 2). Each • varies independently across
u1, . . . , u4.

Once and for all fix a point w ∈ M(E) = M(A,v, θ). Then w is a θ-stable

representation of Q′ with dimension vector v subject to the relations given by

(6.1), and as such, we may decompose w into two distinct collections of matrices

as follows.

Notation 6.2. (i) Firstly, as a matrix for each a ∈ Q′1 as per (2.1). Denote the

matrix of fλui by F λ
i , and define the matrix of gλui by Gλ

i . Since w ∈M(E),

these matrices must satisfy the matrix relations corresponding to those in

(6.1).

(ii) Secondly, by grouping together the matrices in (i) as per (2.3). Write Wλ

for the matrix defined by concatenating, side by side, the columns of the

matrices whose corresponding arrows have head at λ to form a single long

matrix (formally, this new matrix is the co-product); see W(1,0) below, for

example. Hereafter we will simply use the term ‘concatenation’ to describe

this process. Since w ∈ M(A,v, θ), θ-stability implies that each Wλ must

be full rank ([Cra11, Lemma 2.1]).

Remark 6.3. In order to know what the orders of the matrices F λ
i and Gλ

i are

we must calculate the dimension vector v. This is given by the ranks of the

vector bundles at each vertex. Using the formula [FH91, Theorem 6.3(1)], we

have rank(S(λ1,λ2)W) = λ1−λ2 +1. This means that the bundles on the diagonal
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have rank 1, the bundles just below that have rank 2, and so on until reaching

the bottom right corner Symn−2W , which has rank n − 1. More precisely, all

bundles along the diagonal line λ1 = λ2 + k have rank k + 1.

For the matrices corresponding to the arrows between OY and W we write

F
(0,0)
1 =

(
a1

a2

)
, F

(0,0)
2 =

(
b1

b2

)
, F

(0,0)
3 =

(
c1

c2

)
, F

(0,0)
4 =

(
d1

d2

)
.

Then for λ = (1, 0) we have

W(1,0) =

(
a1 b1 c1 d1

a2 b2 c2 d2

)
,

which must be full rank; without loss of generality, re-index the basis of V if

necessary so that F
(0,0)
1 , F

(0,0)
2 (the first two columns of W(1,0)) are linearly inde-

pendent. Then we may use the group action to change basis at the vertex (1, 0)

and write

W(1,0) =

(
1 0 x1 x3

0 1 x2 x4

)
,

where x1, . . . , x4 ∈ k. Denote the entries of all the other F λ
i , G

λ
i matrices using

elements y1, . . . , y72 ∈ k as in Figure 6.2, where for fixed λ and i < j the entries

of F λ
i and Gλ

i are indexed lower than the entries of F λ
j and Gλ

i respectively.

Claim: All of the matrices F λ
i and Gλ

i comprising the point w can be chosen to

take a distinguished form, modulo the group action, with entries in polynomial

terms of only x1, x2, x3, x4 as in Figure 6.3.

In other words, the entries of W(1,0) are enough to determine all of the data of

the point w. The proof of this claim comprises of the remainder of this section.

Step 1: The maps OY →W →
∧2W.

In this first part of the quiver we have the matrices

F
(0,0)
1 =

(
1

0

)
, F

(0,0)
2 =

(
0

1

)
, F

(0,0)
3 =

(
x1

x2

)
, F

(0,0)
4 =

(
x3

x4

)
(6.2)

and

G
(1,0)
1 =

(
y1 y2

)
, G

(1,0)
2 =

(
y3 y4

)
, G

(1,0)
3 =

(
y5 y6

)
, G

(1,0)
4 =

(
y7 y8

)
,

which are subject to the relations G
(1,0)
i F

(0,0)
j + G

(1,0)
j F

(0,0)
i = 0 for 1 ≤ i, j ≤ 4.
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OY W

∧2W

Sym2W

∧2W ⊗W

(
∧2W)⊗2

(
1
0

)(
0
1

)(
x1

x2

)(
x3

x4

)

(
y1 y2

)(
y3 y4

)(
y5 y6

)(
y7 y8

)

 y9 y10

y11 y12

y13 y14

y15 y16

y17 y18

y19 y20

y21 y22

y23 y24

y25 y26

y27 y28

y29 y30

y31 y32



(
y33

y34

)(
y35

y36

)(
y37

y38

)(
y39

y40

)

(
y41 y42 y43

y44 y45 y46

)
(
y47 y48 y49

y50 y51 y52

)
(
y53 y54 y55

y56 y57 y58

)
(
y59 y60 y61

y62 y63 y64

)

(
y65 y66

)(
y67 y68

)(
y69 y70

)(
y71 y72

)

Figure 6.2: General form of w ∈M(E) using decomposition (i), e.g. the matrix with

entries y5, y6 is G
(1,0)
3 .

By first considering when i = 1 = j and i = 2 = j, we find that y1 = 0 = y4.

When i = 1, j = 2 we have

(
0 y2

)(0

1

)
+
(
y3 0

)(1

0

)
= 0 =⇒ y3 = −y2.

Next, setting i = 1, j = 3 yields

(
0 y2

)(x1

x2

)
+
(
y5 y6

)(1

0

)
= 0 =⇒ y5 = −y2x2,
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OY W

∧2W

Sym2W

∧2W ⊗W

(
∧2W)⊗2

(
1
0

)(
0
1

)(
x1

x2

)(
x3

x4

)

(
0 1

)(
−1 0

)(
−x2 x1

)(
−x4 x3

)

1 0
0 1
0 0

0 0
1 0
0 1

x1 0
x2 x1

0 x2

x3 0
x4 x3

0 x4



(
1
0

)(
0
1

)(
x1

x2

)(
x3

x4

)

(
0 1 0
0 0 2

)
(
−2 0 0
0 −1 0

)
(
−2x2 x1 0

0 −x2 2x1

)
(
−2x4 x3 0

0 −x4 2x3

)

(
0 1

)(
−1 0

)(
−x2 x1

)(
−x4 x3

)

Figure 6.3: The unique solution, up to change of basis, of the system of relations
with the full rank stability conditions.

and setting i = 2, j = 3 yields

(
−y2 0

)(x1

x2

)
+
(
y5 y6

)(0

1

)
= 0 =⇒ y6 = y2x1.

Repeating the above two substitutions with j = 4 yields y7 = −y2x4 and y8 =

y2x3. So far we have

W(1,1) =
(

0 y2 −y2 0 −y2x2 y2x1 −y2x4 y2x3

)
.

Since W(1,1) is full rank we must have y2 6= 0. We now use the GL(1) action at
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the vertex
∧2W to multiply W(1,1) by y−1

2 , giving

G
(1,0)
1 =

(
0 1

)
, G

(1,0)
2 =

(
−1 0

)
, G

(1,0)
3 =

(
−x2 x1

)
, G

(1,0)
4 =

(
−x4 x3

)
(6.3)

as required.

Step 2: The maps OY →W → Sym2W.

Here we have the matrices

F
(1,0)
1 =

 y9 y10

y11 y12

y13 y14

 , F
(1,0)
2 =

y15 y16

y17 y18

y19 y20

 , F
(1,0)
3 =

y21 y22

y23 y24

y25 y26

 , F
(1,0)
4 =

y27 y28

y29 y30

y31 y32


subject to the relations F

(1,0)
i F

(0,0)
j −F (1,0)

j F
(0,0)
i = 0. First set i = 1, j = 2. Then

 y9 y10

y11 y12

y13 y14

(0

1

)
−

y15 y16

y17 y18

y19 y20

(1

0

)
=

0

0

0

 =⇒


y10 = y15

y12 = y17

y14 = y19

,

so the second column of F
(1,0)
1 equals the first column of F

(1,0)
2 . Next fix j = 3

and in turn substitute i = 1 then i = 2, yielding

 y9 y10

y11 y12

y13 y14

(x1

x2

)
−

y21 y22

y23 y24

y25 y26

(1

0

)
=

0

0

0

 =⇒


y21 = y9x1 + y10x2

y23 = y11x1 + y12x2

y25 = y13x1 + y14x2

,

y10 y16

y12 y18

y14 y20

(x1

x2

)
−

y21 y22

y23 y24

y25 y26

(0

1

)
=

0

0

0

 =⇒


y22 = y10x1 + y16x2

y24 = y12x1 + y18x2

y26 = y14x1 + y20x2

.

Similarly, fix j = 4 while substituting i = 1 and i = 2 as above to get

y27 = y9x3 + y10x4 y28 = y10x3 + y16x4

y29 = y11x3 + y12x4 y30 = y12x3 + y18x4

y31 = y13x3 + y14x4 y32 = y14x3 + y20x4

.
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Substituting all of the above into W(2,0), we have

W(2,0) =


y9 y10 y10 y16 y9x1 + y10x2 y10x1 + y16x2 y9x3 + y10x4 y10x3 + y16x4

y11 y12 y12 y18 y11x1 + y12x2 y12x1 + y18x2 y11x3 + y12x4 y12x3 + y18x4

y13 y14 y14 y20 y13x1 + y14x2 y14x1 + y20x2 y13x3 + y14x4 y14x3 + y20x4

 .

We now show that the minor of W(2,0) given by the first, second and fourth

columns must be full rank. Suppose for a contradiction that it is not full rank.

Then we may use the group action (specifically, GL(3) acting at the vertex

Sym2W) to produce a row of zeros in this minor. Suppose this is the top row,

i.e. y9, y10, y16 become zero in the new basis (the argument is similar for the other

rows). The effect this has on the rest of W(2,0) is that now the entire top row

is zero. This contradicts the condition that W(2,0) must be full rank, thus we

conclude that the chosen minor must be full rank. Consequently, we may use

the group action to turn this minor into the identity matrix. The matrix with

respect to this new basis is

W(2,0) =

1 0 0 0 x1 0 x3 0

0 1 1 0 x2 x1 x4 x3

0 0 0 1 0 x2 0 x4

 ,

thereby yielding the matrices F
(1,0)
1 , . . . , F

(1,0)
4 in Figure 6.3 as required.

Step 3: The central square, including the maps W →
∧2W →

∧2⊗W and

W → Sym2W →
∧2⊗W.

Figure 6.4 summarises the progress of the first two steps. Around the square

we have the relations

G
(2,0)
i F

(1,0)
j = 2F

(1,1)
j G

(1,0)
i − F (1,1)

i G
(1,0)
j , 1 ≤ i, j ≤ 4. (6.4)

When i = j this simplifies to G
(2,0)
i F

(1,0)
i = F

(1,1)
i G

(1,0)
i . Additionally, the ma-

trix W(2,1), which is formed by concatenating the eight matrices F
(1,1)
1 , . . . , F

(1,1)
4 ,

G
(2,0)
1 , . . . , G

(2,0)
4 , must be full rank.

Step 3A: Write y41, . . . , y52 (the entries of G
(2,0)
1 , G

(2,0)
2 ) in terms of y33, . . . , y36

(the entries of F
(1,1)
1 , F

(1,1)
2 ).
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W

∧2W

Sym2W

∧2W ⊗W

(
0 1

)(
−1 0

)(
−x2 x1

)(
−x4 x3

)

1 0
0 1
0 0

0 0
1 0
0 1

x1 0
x2 x1

0 x2

x3 0
x4 x3

0 x4



(
y33

y34

)(
y35

y36

)(
y37

y38

)(
y39

y40

)

(
y41 y42 y43

y44 y45 y46

)
(
y47 y48 y49

y50 y51 y52

)
(
y53 y54 y55

y56 y57 y58

)
(
y59 y60 y61

y62 y63 y64

)

Figure 6.4: Progress after Steps 1 and 2.

First, consider (6.4) when i, j = 1 and i, j = 2 in turn. We have

(
y41 y42 y43

y44 y45 y46

)1 0

0 1

0 0

 =

(
y33

y34

)(
0 1

)
=⇒

(
y41 y42

y44 y45

)
=

(
0 y33

0 y34

)
,

(
y47 y48 y49

y50 y51 y52

)0 0

1 0

0 1

 =

(
y35

y36

)(
−1 0

)
=⇒

(
y48 y49

y51 y52

)
=

(
−y35 0

−y36 0

)
.

Next, for i = 1 and j = 2 we have G
(2,0)
1 F

(1,0)
2 = 2F

(1,1)
2 G

(1,0)
1 −F (1,1)

1 G
(1,0)
2 , giving

(
y41 y42 y43

y44 y45 y46

)0 0

1 0

0 1

 = 2

(
y35

y36

)(
0 1

)
−

(
y33

y34

)(
−1 0

)

=⇒

(
y42 y43

y45 y46

)
=

(
y33 2y35

y34 2y36

)
,

and when i = 2 and j = 1, we have G
(2,0)
2 F

(1,0)
1 = 2F

(1,1)
1 G

(1,0)
2 − F (1,1)

2 G
(1,0)
1 so
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that

(
y47 y48 y49

y50 y51 y52

)1 0

0 1

0 0

 = 2

(
y33

y34

)(
−1 0

)
−

(
y35

y36

)(
0 1

)

=⇒

(
y47 y48

y50 y51

)
=

(
−2y33 −y35

−2y34 −y36

)
.

Combining all of the above, we are able to write the entries of G
(2,0)
1 , G

(2,0)
2 in

terms of those in F
(1,1)
1 , F

(1,1)
2 as follows:

G
(2,0)
1 =

(
0 y33 2y35

0 y34 2y36

)
, G

(2,0)
2 =

(
−2y33 −y35 0

−2y34 −y36 0

)
.

Step 3B: Write y37, y38 (the entries of F
(1,1)
3 ) in terms of y33, . . . , y36, x1, x2.

Taking i = 3 and j = 1 we have

(
0 y33 2y35

0 y34 2y36

)x1 0

x2 x1

0 x2

 = 2

(
y37

y38

)(
0 1

)
−

(
y33

y34

)(
−x2 x1

)

=⇒

(
y33x2 y33x1 + 2y35x2

y34x2 y34x1 + 2y36x2

)
=

(
y33x2 2y37 − y33x1

y34x2 2y38 − y34x1

)

=⇒

y37 = y33x1 + y35x2

y38 = y34x1 + y36x2

and so

F
(1,1)
3 =

(
y33x1 + y35x2

y34x1 + y36x2

)
.

Step 3C: Write y53, . . . , y58 (the entries of G
(2,0)
3 ) in terms of y33, . . . , y36, x1, x2.

Taking i = 1 and j = 3 we have

(
y53 y54 y55

y56 y57 y58

)1 0

0 1

0 0

 = 2

(
y33

y34

)(
−x2 x1

)
−

(
y33x1 + y35x2

y34x1 + y36x2

)(
0 1

)

=⇒

(
y53 y54

y56 y57

)
=

(
−2y33x2 y33x1 − y35x2

−2y34x2 y34x1 − y36x2

)
.
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Now take i = 2 and j = 3 to get

(
y53 y54 y55

y56 y57 y58

)0 0

1 0

0 1

 = 2

(
y35

y36

)(
−x2 x1

)
−

(
y33x1 + y35x2

y34x1 + y36x2

)(
−1 0

)

=⇒

(
y54 y55

y57 y58

)
=

(
y33x1 − y35x2 2y35x1

y34x1 − y36x2 2y36x1

)
.

Combining the above and summarising steps 3B and 3C, we have

F
(1,1)
3 =

(
y33x1 + y35x2

y34x1 + y36x2

)
, G

(2,0)
3 =

(
−2y33x2 y33x1 − y35x2 2y35x1

−2y34x2 y34x1 − y36x2 2y36x1

)
.

Step 3D: Write y39, y40, y59, . . . , y64 (the entries of F
(1,1)
4 and G

(2,0)
4 ) in terms

of y33, . . . , y36, x3, x4.

This step is identical to Steps 3B and 3C, only whenever i or j equals 3, we

instead substitute 4. This gives

F
(1,1)
4 =

(
y33x3 + y35x4

y34x3 + y36x4

)
, G

(2,0)
4 =

(
−2y33x4 y33x3 − y35x4 2y35x3

−2y34x4 y34x3 − y36x4 2y36x3

)
.

Step 3E: We complete Step 3 by repeating the same argument used to

conclude Step 2. The matrix W(2,1), formed by concatenating F
(1,1)
1 , . . . , F

(1,1)
4 ,

G
(2,0)
1 , . . . , G

(2,0)
4 , is a 2× 16 matrix where, due to Steps 3A-3D, every term on

the top row is a multiple of either y33 or y35 and every term on the bottom row is a

multiple of either y34 or y36. The argument at the end of Step 2 now applies: the

minor formed by the first two columns of W(2,1) must be full rank, otherwise it is

possible to use the group action in such a way that an entire row of W(2,1) becomes

zero, which contradicts the condition that W(2,1) must be full rank. Therefore,

the group action allows us to change basis such that (F
(1,1)
1 F

(1,1)
2 ) becomes the

identity matrix. This forces y33, y36 7→ 1 and y34, y35 7→ 0, and the resulting

change to the rest of W(2,1) yields the matrices F
(1,1)
1 , . . . , F

(1,1)
4 , G

(2,0)
1 , . . . , G

(2,0)
4

in Figure 6.3 as required.

Step 4: The maps
∧2W →

∧2⊗W → (
∧2W)⊗2.

The final step is identical to Step 1 because the matrices for the maps∧2W →
∧2⊗W coincide with those for OY →W , and the relations involved are

identical. This implies G
(2,1)
i = G

(1,0)
i for 1 ≤ i ≤ 4 as required (see Figure 6.3)

and ensures that W(2,2) is full rank. It is routine to check that the relations
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G
(2,1)
i G

(2,0)
j −G(2,1)

j G
(2,0)
i = 0 hold. This completes the proof of the claim.

Remark 6.4. It should be noted that there is an alternative method of produc-

ing the distinguished matrices in Figure 6.3. Indeed, the forms of those matrices

are not arbitrary and in fact correspond to the choice of maps defined in Propo-

sition 4.28.

As observed in (4.8), for 1 ≤ i ≤ 4 the basis ui of V gives us a basis of

sections zui of H0(Y,W) which hereafter we simply denote zi. Then for any point

y ∈ Y there exists an open set Ui,j ⊂ Y , 1 ≤ i < j ≤ 4, such that zi(y), zj(y)

forms a basis of the fibreWy. However, we will simply reorder the basis elements

if necessary as in (6.2) and assume that y ∈ U1,2, thus we write b1 := z1(y)

and b2 := z2(y) for the basis of Wy. We then write z3(y) = x1b1 + x2b2 and

z4(y) = x3b1 + x4b2. Now, the basis b1, b2 of Wy induces a basis on each fibre

(SλW)y = SλWy for all λ ∈ Young(2, 2) in the canonical way. For example,∧2Wy has basis b2 ∧ b1 and Sym2Wy has basis b1b1, b1b2, b2b2.

Consider the maps f
(1,0)
ui : W → Sym2W . Using Proposition 4.28 we can

evaluate these maps on the fibres of the bundles at y. Then for all 1 ≤ i ≤ 4 and

1 ≤ j ≤ 2 we have

(f (1,0)
ui

)y(bj) = bjzi(y).

For i = 1 we have (f
(1,0)
u1 )y(b1) = b1b1 and (f

(1,0)
u1 )y(b2) = b1b2. In the ordered

basis b1b1, b1b2, b2b2 of Sym2 V mentioned above, this produces the matrix1 0

0 1

0 0


which is precisely the matrix F

(1,0)
1 as calculated above. Similarly, for i = 3 we

have (f
(1,0)
u3 )y(b1) = x1b1b1 + x2b1b2 and (f

(1,0)
u3 )y(b2) = x1b1b2 + x2b2b2, yieldingx1 0

x2 x1

0 x2


which is equal to F

(1,0)
3 . All of the remaining matrices in Figure 6.3 may be

calculated in the same way; we prove this in general in Remark 6.7. This demon-

strates that the system of distinguished matrices we have constructed is precisely

the θ-stable A-module of dimension vector v parametrised by y, and therefore

we have described the image of the morphism fE at the point y.
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6.2 The induction step

Now suppose n > 4 and Y = Gr(n, 2). As before, begin by fixing a basis B =

{u1, . . . , un} of V and for all pairs λ, λ + ej ∈ Young(n− 2, 2) we obtain a basis

of HomOY
(SλW ,Sλ+ejW), namely fλui for 1 ≤ i ≤ n if j = 1, or gλui for 1 ≤ i ≤ n

if j = 2; see Proposition 4.28. These provide the arrows in the tilting quiver.

Now fix a point w ∈ M(E) and recall the two decompositions of w given in

Notation 6.2: we have a matrix per arrow, denoted F λ
i or Gλ

i as appropriate, and

also the concatenation of these matrices whose corresponding arrows have head

at the same vertex, denoted Wλ.

First consider W(1,0), the 2× n matrix with columns F
(0,0)
1 , . . . , F

(0,0)
n that by

assumption must be full rank. Without loss of generality, assume that the first

two columns are linearly independent (if they’re not, simply re-index the basis).

Using the group action we may change basis to make these columns into the 2×2

identity matrix and rename the remaining entries to give a general form of W(1,0)

as follows:

W(1,0) =

(
1 0 x1 x3 · · · x2n−7 x2n−5

0 1 x2 x4 · · · x2n−6 x2n−4

)
.

Lemma 6.5. All of the matrices F λ
i and Gλ

i comprising the point w ∈ M(E)

can be chosen to take a distinguished form, modulo the group action, with entries

in polynomial terms of only x1, . . . , x2n−4 as described below.

We prove this lemma by induction on Y = Gr(n, 2), where the base case n = 4

was completed in the previous section.

Induction hypothesis: Suppose that the result holds for n−1; then Lemma 6.5

holds for all matrices corresponding to arrows in the tilting quiver of Gr(n−1, 2),

i.e. the sub-quiver S of Q′ defined by

S0 :=
{
λ ∈ Z2 | n− 3 ≥ λ1 ≥ λ2 ≥ 0

}
,

S1 :=

aλ,iρ
∣∣∣∣∣∣∣

1 ≤ ρ ≤ n− 1

i ∈ {1, 2}, λ, λ+ ei ∈ B0

t(aλ,iρ ) = λ, h(aλ,iρ ) = λ+ ei

 .
(6.5)

Remark 6.6. Observe that S is not a full sub-quiver of Q′ as the arrows corre-

sponding to un ∈ B are missing.

Before stating what the hypothesised forms of these matrices are, we make an

important observation and establish some notation. Recall from Remark 6.3 that

all vector bundles on the diagonal line λ1 = λ2 +k in S have rank k+1. Consider
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two vertices λ < µ with |µ| = |λ| + 2 and write k1 := rank(SλW) and k2 :=

rank(SµW). Now consider another pair of vertices λ′ < µ′ with |µ′| = |λ′| + 2,

rank(Sλ′W) = k1 and rank(Sµ′W) = k2. Then paths λ → µ are in bijective

correspondence with paths λ′ → µ′ and the sizes of the matrices corresponding

to arrows in these paths are the same. Moreover, by Theorem 5.10, the relations

between these matrices correspond. We therefore suppose as part of the induction

hypothesis that any two matrices corresponding to the same basis vector ui and

that have the same order are identical. For example, in Figure 6.3 compare the

matrices for OY → W with
∧2W →

∧2W ⊗ W (2 × 1 matrices), and the

matrices for W →
∧2W with

∧2W ⊗W → (
∧2W)⊗2 (1× 2 matrices). Hence,

the following notation is well-defined for all 1 ≤ i ≤ n− 1:

For all 1 ≤ k ≤ n− 3, F
(k)
i := F λ

i for any λ ∈ S0 with rank(SλW) = k,

For all 2 ≤ k ≤ n− 2, G
(k)
i := Gλ

i for any λ ∈ S0 with rank(SλW) = k.
(6.6)

Hence every matrix corresponding to an arrow in S1 ⊂ Q′1 is of the form F
(k)
i or

G
(k)
i ; observe that these are always (k+1)×k or (k−1)×k matrices respectively.

We now describe the matrices F
(k)
i and G

(k)
i . For 1 ≤ k ≤ n − 3, F

(k)
1 is the

k×k identity matrix with an extra row of zeroes at the bottom, while F
(k)
2 is the

k × k identity matrix with an extra row of zeroes at the top.

F
(k)
1 =



1 0 · · · 0

0 1 · · · 0
...

...
. . .

...

0 0 · · · 1

0 0 · · · 0


, F

(k)
2 =



0 0 · · · 0

1 0 · · · 0

0 1 · · · 0
...

...
. . .

...

0 0 · · · 1


.

For F
(k)
3 we have

F
(k)
3 =



x1 0 0 · · · · · · 0

x2 x1 0 · · · · · · 0

0 x2 x1 · · · · · · 0
...

. . . . . . . . . . . .
...

0 0 · · · · · · x2 x1

0 0 · · · · · · 0 x2


For 4 ≤ i ≤ n− 1, F

(k)
i takes the same form as F

(k)
3 but with x1, x2 replaced

by the entries of the ith column of W(1,0). Observe that for k = 1 and 1 ≤ i ≤ 4
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we recover the matrices F λ
i for λ = (0, 0) and λ = (1, 1); see (6.2).

Next, for 2 ≤ k ≤ n− 2, we have

G
(k)
1 =


0 1 0 · · · 0

0 0 2 · · · 0
...

...
...

. . .
...

0 0 0 · · · k − 1

 , G
(k)
2 =


−(k − 1) · · · 0 0 0

...
. . .

...
...

...

0 · · · −2 0 0

0 · · · 0 −1 0

 ,

and

G
(k)
3 =



−(k − 1)x2 x1 0 · · · · · · · · · 0

0 −(k − 2)x2 2x1 · · · · · · · · · 0
...

. . . . . . . . . . . . . . .
...

0 · · · · · · · · · −2x2 (k − 2)x1 0

0 · · · · · · · · · 0 −x2 (k − 1)x1


.

In the same way as above, G
(k)
i for 4 ≤ i ≤ n − 1 takes the same form as G

(k)
3

but with x1, x2 replaced by the entries of the ith column of W(1,0). As above, for

k = 1 and 1 ≤ i ≤ 4 we recover the matrices Gλ
i for λ = (1, 0), see (6.3), and

λ = (2, 1).

It is routine to check that all the hypothesised matrices satisfy the relations

in Theorem 5.10 and when appropriately concatenated, provide full rank Wλ for

each λ ∈ S0 so long as W(1,0) is full rank.

Proof of Lemma 6.5: Recall the sub-quiver S of Q′ from (6.5). It remains to

show that all matrices corresponding to arrows in Q′1 \ S1 satisfy the conditions

in Lemma 6.5, and in particular, that they also follow the pattern of matrices

described in the induction hypothesis.

We first deal with arrows in Q′1 corresponding to the basis vector un that have

head at a vertex in S0. For these matrices we make the observation that for any

given λ ∈ S0, the work done to find F λ
3 , G

λ
3 is identical to the work required to

find F λ
i , G

λ
i for any i > 3. Indeed, see Step 3D in the base case where we noted

that the working required to find F λ
4 and Gλ

4 was identical to finding F λ
3 and Gλ

3

for certain λ. We therefore extend our above definition of the matrices F
(k)
i and

G
(k)
i to include i = n, and it is routine to check that these matrices satisfy all the

required conditions of Lemma 6.5.

Next we deal with all of the remaining arrows that do not have head or tail at

the bottom right corner vertex (n−2, 0). All of the vector bundles situated at the

head or tail of these arrows have rank less than or equal to n− 2. Therefore, by
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the observation in the induction hypothesis (comparing relations between paths

λ → µ and λ′ → µ′ between bundles of the same ranks), we may again simply

extend the definitions of F
(k)
i and G

(k)
i in (6.6) to all λ ∈ Q′0 rather than only the

proper subset S0.

It remains to check the arrows with head or tail at the vertex (n − 2, 0), i.e.

the arrows between Symn−3W , Symn−2W and
∧2W ⊗ Symn−3W in the lower

right corner of the tilting quiver as shown in Figure 6.5. This forms the rest of

Section 6.2. For consistency we will denote the matrices corresponding to these

arrows by F
(n−2)
i := F λ

i for λ = (n− 3, 0) and G
(n−1)
i := Gλ

i for λ = (n− 2, 0).

To show that Lemma 6.5 holds for F
(n−2)
i , G

(n−2)
i , 1 ≤ i ≤ n, we will take

inspiration from Step 2 and Step 3 of the base case.

Symn−4W Symn−3W

∧2W
⊗ Symn−4W

Symn−2W

∧2W
⊗ Symn−3W

(
∧2W)⊗2

⊗ Symn−4W

F
(n−3)
i

G
(n−2)
i

F
(n−2)
i

F
(n−3)
i

G
(n−1)
i

G
(n−2)
i

Figure 6.5: The lower right corner of the tilting quiver for Gr(n, 2).

Step 1: Show that Lemma 6.5 holds for F
(n−2)
i , 1 ≤ i ≤ n.

To find the F
(n−2)
i we make use of the relations

F
(n−2)
i F

(n−3)
j = F

(n−2)
j F

(n−3)
i , 1 ≤ i, j ≤ n.

For 1 ≤ u ≤ n − 1 and 1 ≤ v ≤ n − 2, denote the (u, v)-th entry of F
(n−2)
i for
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i = 1, 2, 3 as follows:

(F
(n−2)
1 )u,v := au,v, (F

(n−2)
2 )u,v := bu,v, (F

(n−2)
3 )u,v := cu,v.

First we study i = 1 and j = 2. Since the F
(n−3)
1 and F

(n−3)
2 are just (n −

3) × (n − 3) identity matrices augmented by a row of zeroes at the bottom and

top respectively, the relation implies that colk(F
(n−2)
2 ) = colk+1(F

(n−2)
1 ) for all

1 ≤ k ≤ n− 3, i.e.

bu,v = au,v+1, 1 ≤ v ≤ n− 3, (6.7)

thus F
(n−2)
2 is entirely determined by F

(n−2)
1 apart from its final column.

Next we set i = 3 and j = 1. The relation is F
(n−2)
3 F

(n−3)
1 = F

(n−2)
1 F

(n−3)
3 ,

and we analyse each side separately. The left hand side is more straightforward

as multiplying by F
(n−3)
1 simply turns the last column of F

(n−2)
3 into zeroes while

leaving the rest unaltered, i.e.

(F
(n−2)
3 F

(n−3)
1 )u,v =

0 if v = n− 2,

cu,v otherwise.

For the right hand side recall that F
(n−3)
3 is the (n− 2)× (n− 3) matrix

F
(n−3)
3 =



x1 0 0 · · · · · · 0

x2 x1 0 · · · · · · 0

0 x2 x1 · · · · · · 0
...

. . . . . . . . . . . .
...

0 0 · · · · · · x2 x1

0 0 · · · · · · 0 x2


.

Left-multiplying by F
(n−2)
1 yields

(F
(n−2)
1 F

(n−3)
3 )u,v =

0 if v = n− 2,

au,vx1 + au,v+1x2 otherwise,

and comparing with the above we have

cu,v = au,vx1 + au,v+1x2, 1 ≤ u ≤ n− 1, 1 ≤ v ≤ n− 3.

By repeating the above with i = 3 and j = 2 we mostly get information about
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F
(n−2)
3 that we already have since F

(n−3)
2 is also an identity matrix with an extra

row of zeroes (this time at the top rather than the bottom), and F
(n−2)
2 is largely

determined by F
(n−2)
1 by (6.7). Importantly however, we do pick up the final

column of F
(n−2)
3 in this calculation which is given by

cu,n−2 = au,n−2x1 + bu,n−2x2.

Combining this with the above, we can now write F
(n−2)
3 in terms of only the

entries of F
(n−2)
1 , F

(n−2)
2 and x1, x2 as follows:

(F
(n−2)
3 )u,v = cu,v =

au,vx1 + au,v+1x2 if 1 ≤ v ≤ n− 3,

au,n−2x1 + bu,n−2x2 if v = n− 2.
(6.8)

We find a similar set of equations for F
(n−2)
i , 4 ≤ i ≤ n; simply replace x1, x2

in (6.8) with the i-th column of W(1,0).

To finish Step 1 we make the same observation as at the end of Step 2 of

the base case. Consider the matrix W(n−2,0), formed by concatenating the F
(n−2)
i ,

and suppose for contradiction that the (n− 1)× (n− 1) minor formed by taking

F
(n−2)
1 and the final column of F

(n−2)
2 is not full rank. Then it is possible to

use the group action (specifically, GL(n − 1) acting at the vertex Symn−2W)

to produce a row of zeros in this minor; suppose for example that this is the

top row (the argument for the other rows is similar). The effect this has on

the rest of W(n−2,0) is that the entire top row becomes zero. This contradicts

the stability condition that W(n−2,0) must be full rank, thus we conclude that

the chosen minor must be full rank. As a result, we may use the group action

to change the chosen minor into the identity matrix. The resulting change to

W(n−2,0) is that the F
(n−2)
i take precisely the required forms as in the induction

hypothesis, and so Lemma 6.5 holds for these matrices. Moreover, F
(n−2)
1 and

F
(n−2)
2 are (n − 2) × (n − 2) identity matrices augmented by a row of zeroes at

the bottom and top respectively, and for i > 3, F
(n−2)
i takes the required forms

similar to F
(n−3)
i in the induction hypothesis. This completes Step 1.

Step 2: Show that Lemma 6.5 holds for G
(n−1)
i , 1 ≤ i ≤ n.

This step is slightly simpler than Step 3 of the base case since it remains only

to prove that the G
(n−1)
i take the required forms. By Theorem 5.10(iv), across

the lower right corner square we have the relations

(n− 3)G
(n−1)
i F

(n−2)
j = (n− 2)F

(n−3)
j G

(n−2)
i − F (n−3)

i G
(n−2)
j , 1 ≤ i, j ≤ n. (6.9)
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We will refresh notation from Step 1 and for 1 ≤ u ≤ n − 2, 1 ≤ v ≤ n − 1,

denote the (u, v)-th entry of G
(n−1)
i for i = 1, 2, 3 as follows:

(G
(n−1)
1 )u,v := au,v, (G

(n−1)
2 )u,v := bu,v, (G

(n−1)
3 )u,v := cu,v.

We first consider the cases when i, j ∈ {1, 2}. Note that when i = j, (6.9)

simplifies to G
(n−1)
i F

(n−2)
i = F

(n−3)
i G

(n−2)
i . Recall that F

(n−3)
i , F

(n−2)
i for i =

1, 2 are identity matrices augmented by a row of zeroes at the bottom and top

respectively, and that

G
(n−2)
1 =


0 1 0 · · · 0

0 0 2 · · · 0
...

...
...

. . .
...

0 0 0 · · · n− 3

 , G
(n−2)
2 =


−(n− 3) · · · 0 0 0

...
. . .

...
...

...

0 · · · −2 0 0

0 · · · 0 −1 0

 .

When i = 1 = j we have G
(n−1)
1 F

(n−2)
1 = F

(n−3)
1 G

(n−2)
1 . The left hand side is

equal to G
(n−1)
1 with the final column removed, and the right hand side is equal

to G
(n−2)
1 augmented by a row of zeroes at the bottom. Comparing both sides

entry-wise yields

G
(n−1)
1 =



0 1 0 · · · 0 a1,n−1

0 0 2 · · · 0 a2,n−1

...
...

...
. . .

...
...

0 0 0 · · · n− 3 an−3,n−1

0 0 0 · · · 0 an−2,n−1


.

Repeating for i = 2 = j yields

G
(n−1)
2 =



b1,1 0 · · · 0 0 0

b2,1 −(n− 3) · · · 0 0 0
...

...
. . .

...
...

...

bn−3,1 0 · · · −2 0 0

bn−2,1 0 · · · 0 −1 0


.

To find the remaining entries of G
(n−1)
1 and G

(n−1)
2 we use (6.9) with i = 1 and

j = 2. This reads

(n− 3)G
(n−1)
1 F

(n−2)
2 = (n− 2)F

(n−3)
2 G

(n−2)
1 − F (n−3)

1 G
(n−2)
2 ,
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which becomes

(n− 3)



1 0 · · · 0 a1,n−1

0 2 · · · 0 a2,n−1

...
...

. . .
...

...

0 0 · · · n− 3 an−3,n−1

0 0 · · · 0 an−2,n−1


=

(n− 2)



0 0 0 · · · 0

0 1 0 · · · 0

0 0 2 · · · 0
...

...
...

. . .
...

0 0 0 · · · n− 3


−



−(n− 3) · · · 0 0 0
...

. . .
...

...
...

0 · · · −2 0 0

0 · · · 0 −1 0

0 · · · 0 0 0


,

and so we get au,n−1 = 0 for 1 ≤ u ≤ n − 3 and an−2,n−1 = n − 2. We now

repeat the above with i = 2 and j = 1 to get a similar equation and ultimately

discover that the first column of G
(n−1)
2 satisfies bu,1 = 0 for 2 ≤ u ≤ n − 2 and

b1,1 = −(n− 2). We thus have the required forms for G
(n−1)
1 and G

(n−1)
2 as shown

below:

G
(n−1)
1 =


0 1 0 · · · 0

0 0 2 · · · 0
...

...
...

. . .
...

0 0 0 · · · n− 2

 , G
(n−1)
2 =


−(n− 2) · · · 0 0 0

...
. . .

...
...

...

0 · · · −2 0 0

0 · · · 0 −1 0

 .

It remains to investigate G
(n−1)
3 (as usual the process of finding G

(n−1)
i for

4 ≤ i ≤ n will be identical). With i = 3 and j = 1, equation (6.9) becomes

(n− 3)G
(n−1)
3 F

(n−2)
1 = (n− 2)F

(n−3)
1 G

(n−2)
3 − F (n−3)

3 G
(n−2)
1
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and so we have

(n− 3)



c1,1 c1,2 · · · · · · c1,n−2

c2,1 c2,2 · · · · · · c2,n−2

...
. . . . . . . . .

...
...

. . . . . . . . .
...

cn−2,1 · · · · · · · · · cn−2,n−2


=

(n− 2)



−(n− 3)x2 x1 0 · · · · · · · · · 0

0 −(n− 4)x2 2x1 · · · · · · · · · 0
...

. . . . . . . . . . . . . . .
...

0 · · · · · · · · · −2x2 (n− 4)x1 0

0 · · · · · · · · · 0 −x2 (n− 3)x1

0 · · · · · · · · · 0 0 0



−



0 x1 0 0 · · · · · · 0

0 x2 2x1 0 · · · · · · 0

0 0 2x2 3x1 · · · · · · 0
...

. . . . . . . . . . . . . . .
...

0 0 0 · · · · · · (n− 4)x2 (n− 3)x1

0 0 0 · · · · · · 0 (n− 3)x2


.

This gives us most of G
(n−1)
3 . For 1 ≤ u, v ≤ n− 2, we have

cu,v =


−(n− 2− u+ 1)x2 if u = v,

ux1 if 1 ≤ u ≤ n− 3, v = u+ 1,

0 otherwise.

Finally, we must find the last column cu,n−1. We repeat the above with i = 3 and

j = 2 and, similar to previous steps, pick up largely the same set of equations

but with the final column included. In particular,

cu,n−1 =

(n− 2)x1 if u = n− 2,

0 otherwise.
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In conclusion, we have

G
(n−1)
3 =



−(n− 2)x2 x1 0 · · · · · · · · · 0

0 −(n− 3)x2 2x1 · · · · · · · · · 0
...

. . . . . . . . . . . . . . .
...

0 · · · · · · · · · −2x2 (n− 3)x1 0

0 · · · · · · · · · 0 −x2 (n− 2)x1


,

which is precisely the form required by the induction hypothesis. As mentioned

above, the proof is identical to show that G
(n−1)
i for 4 ≤ i ≤ n takes the same

form as G
(n−1)
3 except that x1, x2 are replaced by the entries of the i-th column

of W(1,0). Hence, we have shown that each G
(n−1)
i is of the form defined in the

induction hypothesis. This completes Step 2 and the proof of Lemma 6.5.

Remark 6.7. We now prove the claim in Remark 6.4 that the matrices F k
i , G

k
i

may be deduced from the choices of maps in Proposition 4.28. Recall that for

λ ∈ Young(n−2, 2) we have SλW = (
∧2W)⊗λ2⊗Symλ1−λ2W , and following the

notation of Remark 6.4 for each y ∈ Y we have a basis of the fibre SλWy given

by

pj := (b2 ∧ b1)⊗λ2 ⊗ bλ1−λ2−j1 bj2 , 0 ≤ j ≤ λ1 − λ2.

It suffices to prove the result for only i = 3 where zu3(y) = x1b1 + x2b2; for other

values of i we simply substitute the appropriate column of W(1,0).

First fix λ such that λ + e1 ∈ Young(n − 2, 2). We will calculate F k
3 where

k = λ1 − λ2 + 1. The induced basis of Sλ+e1Wy is given by

qj := (b2 ∧ b1)⊗λ2 ⊗ bλ1−λ2+1−j
1 bj2 , 0 ≤ j ≤ λ1 − λ2 + 1

Then for all 0 ≤ j ≤ λ1 − λ2, we have

(fλu3)y(pj) = x1 (b2 ∧ b1)⊗λ2 ⊗ bλ1−λ2−j+1
1 bj2 + x2 (b2 ∧ b1)⊗λ2 ⊗ bλ1−λ2−j1 bj+1

2

= x1qj + x2qj+1

which yields the matrix F k
3 as required.

Now fix λ such that λ + e2 ∈ Young(n − 2, 2). We will calculate Gk
3 where

k = λ1 − λ2 + 1. The induced basis of Sλ+e2Wy is given by

sj := (b2 ∧ b1)⊗λ2+1 ⊗ bλ1−λ2−1−j
1 bj2 , 0 ≤ j ≤ λ1 − λ2 − 1
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Then for all 0 ≤ j ≤ λ1 − λ2, we have

(gλu3)y(pj) = jx1(b2 ∧ b1)⊗λ2+1 ⊗ bλ1−λ2−j1 bj−1
2

− (λ1 − λ2 − j)x2(b2 ∧ b1)⊗λ2+1 ⊗ bλ1−λ2−j−1
1 bj2

=


−x2(k − 1)s0 if j = 0

jx1sj−1 − (k − 1− j)x2sj if 1 ≤ j ≤ λ1 − λ2 − 1

x1(k − 1)sλ1−λ2−1 if j = λ1 − λ2

which yields the matrix Gk
3 as required.

6.3 Proof of Theorem 6.1

Given the closed immersion fE : Y → M(E), we now construct a morphism

f ′ : M(E) → Y satisfying f ′ ◦ fE = idY and fE ◦ f ′ = idM(E), thereby proving

that fE is an isomorphism.

As a fine moduli space, the multigraded linear seriesM(E) =M(A,v, θ) car-

ries a tautological bundle V :=
⊕

i∈Q′ Vi where each Vi is globally generated by

[CIK18, Corollary 2.4] and satisfies rank(Vi) = vi. Since M(E) is also the space

of isomorphism classes of representations of the tilting quiver Q′ with dimension

vector v subject to the relations in Theorem 5.10, it is therefore a subvariety

of the quiver flag variety X formed using the same quiver and dimension vec-

tor but with no relations. Write V ′(1,0) for the tautological bundle on X at the

vertex (1, 0). By Proposition 2.4(iii), the n arrows (0, 0) → (1, 0) in Q′ imply

that dim(H0(X,V ′(1,0))) = n. Since V(1,0) is the restriction of V ′(1,0) to M(E)

and there are no relations amongst paths (0, 0) → (1, 0), we therefore also have

dim(H0(M(E),V(1,0))) = n.

Now consider the sub-bundle E ′ := V(0,0) ⊕ V(1,0) of E, where V(0,0) = OM(E)

and V(1,0) is globally generated. Then by [CIK18, Theorem 2.6] there is a mor-

phism

fE′ : M(E) −→M(E ′),

where M(E ′) is the multigraded linear series of E ′. The bundles V(0,0) and

V(1,0) have ranks 1 and 2 respectively and we have dim(H0(M(E),V(1,0))) = n

from above. Hence, the quiver for M(E ′) has only two vertices with n arrows

between them and no relations. Following Example 2.5(ii), M(E ′) is therefore

isomorphic to the Grassmannian Gr(n, 2) = Y , and so in fact we have constructed
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a morphism

fE′ : M(E) −→ Y.

Using the content of Sections 6.1 and 6.2, it remains to show that fE′ ◦ fE = idY

and fE ◦ fE′ = idM(E).

Now, as observed in Remarks 6.4 and 6.7, fE takes a point y ∈ Y to the θ-

stable A-module of dimension vector v parametrised by y, i.e. to the fibre of the

bundle E over Y , and this image fE(y) is described by the distinguished matrices

defined in the induction hypothesis for Lemma 6.5. See Figure 6.3 when n = 4,

for example. Since y provides the data for the matrices corresponding to the

arrows (0, 0) → (1, 0) and fE′ is simply the projection back onto these arrows,

we have fE′ ◦ fE = idY .

Now suppose w is an arbitrary point ofM(E). Then Lemma 6.5 implies that

w is equivalent modulo the group action to a distinguished point w′ ∈ M(E),

where every entry of each matrix comprising w′ is a polynomial in the entries of

the matrix W(1,0). As a matrix, the point y′ = fE′(w
′) ∈ Y is equal to W(1,0), and

so applying fE to y′ simply reconstructs w′ in the same way as described above.

Thus fE(fE′([w])) = fE(fE′([w
′])) = [w′] = [w], and therefore fE ◦ fE′ = idM(E)

as required. This completes the proof of Theorem 6.1.
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Chapter 7

Future directions

As a result of Theorem 6.1 it is natural to conjecture the following.

Conjecture 7.1. For any 1 ≤ r < n let Y = Gr(n, r). Then the morphism

fE : Y →M(E) is an isomorphism.

To prove this using the methods in this thesis requires two main steps: firstly,

using Theorem 5.14 we must write down the ideal of relations for kQ′ explicitly,

and secondly, take a similar approach to the proof in Chapter 6 to get the result.

7.1 Describing the ideal of relations for the tilt-

ing quiver of Gr(n, r)

While the strategy has been roughly laid out, actually writing down generators

in general for the ideal of relations J from Theorem 5.14 poses a far greater

combinatorial challenge than the r = 2 case. As alluded to in Section 5.3, we

must first write down a compatible Pieri system for the tilting quiver. In other

words, we must define a system of well-defined maps SλW → Sλ+eiW for all

λ ∈ Young(n− r, r) and 1 ≤ i ≤ r, where W is the rank r tautological quotient

bundle on Gr(n, r). Proposition 4.28 covers the i = 1, 2 cases. For i ≥ 3, more

complicated exchange relations on the Young diagram λ (see Definition 4.2) need
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to be considered. One example is S(2,2,0)W → S(2,2,1)W where v ∈ V and we have

x1 ∧ x2 ⊗ y1 ∧ y2 7→ 2x1 ∧ x2 ∧ zv ⊗ y1 ∧ y2

+ 2y1 ∧ y2 ∧ zv ⊗ x1 ∧ x2

+ x1 ∧ y1 ∧ zv ⊗ x2 ∧ y2

+ y1 ∧ x2 ∧ zv ⊗ x1 ∧ y2

+ x1 ∧ y2 ∧ zv ⊗ y1 ∧ x2

+ y2 ∧ x2 ∧ zv ⊗ y1 ∧ x1.

To complete this task in general, Buchweitz, Leuschke and Van den Bergh

mention that Olver was the first to write down such a Pieri system in the preprint

[Olv82], though it is unclear to what degree this is accomplished. Since then there

has been more potentially helpful work that has considered these maps (or similar

ones); see [ABW82], [MO92], [SW11], [Sam09]. The last reference describes a

package called PieriMaps written for the Macaulay2 software by the author of

the paper.

If a Pieri system can be written down in as simple a way as possible, then

by observing the spaces calculated in Proposition 5.16 it is now a matter of

composing these maps as appropriate to find explicit generators of J . While it is

likely that in the cases where these relations span either Sym2 V or
∧2 V we have

the usual bases of these spaces as generators, the hard part is calculating the

relations around squares in the tilting quiver, i.e. cases when the relations span

V ⊗ V and non-trivial linear combinations appear; see for example Section 5.1.4.

7.2 Reconstructing quiver flag varieties from a

tilting bundle

Despite the description of A = EndOY (E) for Y = Gr(n, r) in [BLV16], the

problems detailed above mean that we do not currently have explicit generators

for the ideal of relations J ⊂ kQ′, and therefore little can be said about a potential

proof of Theorem 6.1 in the general case. We do however suspect that such a

proof, while combinatorially unpleasant, would be quite similar to the Gr(n, 2)

case.

The methods used in this thesis are very hands-on. An alternative approach

altogether would be to recall Remark 2.12: the results of Bergman-Proudfoot

imply that fE identifies Y with a connected component of M(E), because Y is
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smooth, E is a tilting bundle, and our stability condition θ is great; see [BP08,

Theorem 2.4]. A proof of Conjecture 7.1 would therefore follow from showing

that for Y = Gr(n, r), the moduli spaceM(E) is connected. In fact, a successful

implication of this approach may even lead to generalising the result further to

all quiver flag varieties:

Conjecture 7.2. Let Y be any quiver flag variety and E the tilting bundle from

Theorem 2.9. Then the morphism fE : Y →M(E) is an isomorphism.
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