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Abstract

In this project we show how the combinatorics of Young tableaux can be applied to a wide variety
of mathematical objects. These applications include constructing the irreducible representations
of the symmetric group and all irreducible finite-dimensional holomorphic representations of the
general linear group for finite-dimensional complex vector spaces. Moreover, the underlying use of
Young tableaux in these different areas allows us to relate these constructions in powerful ways.
This includes identifying representations of the symmetric group with a ring of polynomials and
we also obtain a similar identification for representations of the general linear group.

In addition to applications in representation theory, some of the techniques derived in construct-
ing irreducible representations can be used to express flag varieties as subvarieties in projective
space. In particular, we explore how the quadratic relations, which arise naturally in tableaux
combinatorics, can be used to construct flag varieties.
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0 Introduction

The aim of this project is to explore how the combinatorics of Young tableaux can be applied to
polynomial rings, representation theory and algebraic geometry. We begin with Chapter 1 where we
introduce the basic definitions and notation used for Young tableaux. We also discuss the orderings
on tableaux that will be required in other sections.

Section 2 discusses how to define the product of two tableaux and as a result introduces the tableau
ring. We then define a homomorphism from the tableau ring to the polynomial ring and, in particular,
explain how Schur polynomials can be constructed using tableau. The structure of the tableaux ring
can then be used to deduce properties about symmetric polynomials. For example, we use the Pieri
formulas and the Littlewood-Richardson rule to deduce analogue results for symmetric polynomials.
The rest of Section 2 defines the ring of symmetric functions and proves that it has basis given by
Schur polynomials. The exploration of symmetric functions allows us to easily prove properties of
representations of the symmetric group and the general linear group in Section 3 and Section 4.

Section 3 begins by constructing representations of the symmetric group using Young tableaux. We
then define Specht modules and prove that they define all irreducible representations of the symmetric
group up to isomorphism. After this, we construct an isomorphism between the ring of symmetric
functions, discussed in Section 2, and the ring of representations of the symmetric group. Thereafter,
lots of the results of Section 2 can be transferred easily to their analogues in the ring of representations
of the symmetric group. The rest of Section 3 is devoted to building two alternative constructions of
Specht modules. The first of which allows us to view Specht modules as a quotient space and second
of which will add to our intuition of Specht modules. The relations that define the quotient space
above are called the quadratic relations and are of fundamental importance in the combinatorics of
tableaux.

Section 4 uses tableaux to construct irreducible representations of the general linear group for a
finite-dimensional complex vector space, called Schur modules. We then discuss the structure of Schur
modules, weight space decompositions of representations and prove that Schur modules define all irre-
ducible finite-dimensional holomorphic representations of the general linear group up to isomorphism.
We then look into the relationship between Schur modules and Specht modules and construct an
exact functor between the category of Sn-modules and the category of GL(E)-modules, where E is a
finite-dimensional complex vector space. Section 4 ends by exploring and combining the relationships
between the ring of symmetric polynomials, the ring of representations of symmetric functions, the
representation ring of the general linear group and characters of representations of the general linear
group.

Section 5 starts by using the relationships given at the end of Section 4 to generalise the use of
the quadratic relations to the symmetric algebra. We then define the Grassmannian and consider its
embedding, called the Plücker embedding, into projective space. The rest of the section expresses the
Plücker embedding as a subvariety of projective space using the quadratic relations and goes on to
discuss that we have similar results for flag varieties.

The majority of this project has been adapted from the textbook Young Tableaux [3, Fulton]. Content
that has not been adapted from Young Tableaux has been cited at the location of its appearance in
the text and sections that are entirely original are marked with the symbol ⋄.
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1 Young Tableau

1.1 Nomenclature

We begin by introducing some essential nomenclature.

Definition 1.1.1 (Young Diagram). A Young diagram is a collection of boxes arranged so that their
rows are left-aligned and there is a (weakly) decreasing number of boxes in each row.

Counting the number of boxes in each row of a Young diagram corresponds to a partition of the total
number of boxes n. For example, with n = 19 the partition (7, 5, 4, 3) corresponds to the Young
diagram

.

If λ is a partition of n we write λ ⊢ n and |λ| = n. We can also define the conjugate of a partition,
denoted by λ̃, where λ̃ is obtained by flipping a diagram over its main diagonal. For example, the
conjugate of the above Young diagram is

.

Now the purpose of Young diagrams it to put stuff in the boxes. As such we define a filling of a
Young diagram to be any way of putting a positive integer in each box. Then when the entries are
distinct we refer to a filling as a numbering.

Definition 1.1.2 (Young tableau). A Young tableau is a filling that is

(1) weakly increasing across each row;

(2) strictly increasing down each column.

We say that λ is the shape of the tableau for some partition λ. A standard tableau is a Young tableau
in which the entries are 1, . . . , n, each occurring once.

⋄ Example 1.1.3. On the shape λ = (3, 3, 2, 1) consider

6 7 6
3 4 2
3 5
1

9 8 7
6 5 4
3 2
1

1 2 2
2 3 4
4 5
5

1 2 7
3 6 8
4 9
5 .

These are a filling, numbering, tableau and standard tableau (respectively).

1.2 Tableaux Ordering

We can define orderings on tableaux in a number of different ways. This is because an ordering can
be defined using the shape, the numbering or both the shape and the numbering.
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Definition 1.2.1 (Dominance ordering). Let λ = (λ1, . . . , λk) and µ = (µ1, . . . , µℓ) be partitions of
n. Then we say that λ dominates µ, denoted by µE λ, if

µ1 + · · · + µi ≤ λ1 + · · · + λi (1.1)

for all i. Similarly, we say that λ strictly dominates µ, denoted by µ ⊳ λ, if

µ1 + · · · + µi < λ1 + · · · + λi (1.2)

for all i.

⋄ Example 1.2.2. We have that

6E

since equation (1.1) holds for the first and second row, but not the third and fourth row. However,
changing the number of boxes in the third and fourth rows of the two diagrams yields

⊳ .

Definition 1.2.3 (Lexicographic ordering). Let λ = (λ1, . . . , λk) and µ = (µ1, . . . , µℓ) be partitions
of n. The lexicographic ordering is defined so that if the first i for which µi 6= λi, if any, has µi < λi,
then we write µ ≤ λ.

Remark 1.2.4. Note that µ E λ implies µ ≤ λ. However, the implication cannot be reversed. For
example,

≤ and 6E .

The lexicographic ordering can be used to define an ordering on numberings of n boxes with distinct
entries in {1, . . . , n}. We say that T ′ < T if either

(1) the shape of T is larger in the lexicographic ordering; or

(2) T and T ′ have the same shape and the largest entry that is in a different box in the two
numberings occurs earlier in T than in T ′, whereby we list the entries from the bottom to top
in each column starting in the left column and moving to the right.

Example 1.2.5. We can use the above to order all the standard tableaux on λ = (3, 2)

1 2 3
4 5

> 1 2 4
3 5

> 1 3 4
2 5

> 1 2 5
3 4

> 1 3 5
2 4

.

2 Schur Polynomials

This section uses the combinatorics of tableaux to construct and prove properties of an important
collection of polynomials called Schur polynomials. We then go on to define the ring of symmetric
functions. These constructions will be useful in Section 3 for proving assertions made about irreducible
representations of the symmetric group and in Section 4.5 for finding the characters of irreducible
representations of the general linear group.
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2.1 The Tableaux Ring

We begin by imparting some structure on the set of tableaux with entries in [m] := {1, . . . ,m}. There
are a few ways to define the product of tableaux, which (rather interestingly [3, pp.17-23]) can be
shown to be equivalent. For our purposes, we just give one of these definitions.

We start by defining how to row-insert a single positive integer x into a tableau T . The procedure
is as follows: if x is greater than (or equal to) one of the integers in the first row of T then simply
add x to the end of the first row. Else, replace the left-most entry in the first row of T that is strictly
greater than x, call it y, with x. Now use the same process to insert y into the second row. Repeat
until the bumped entry can be put on the end of a row, or until we run out of rows, in which case the
bumped entry starts a new row at the bottom.

Example 2.1.1. We row-insert the integer 1 into the tableau given below with the following iterations:

1 2 3
2 3 5 5
4 4 6
5 6

2 1 1 1 2 3
2 5 5
4 4 6
5 6

3 2
1 1 2 3
2 2 5 5

4 6
5 6
4 3

1 1 2 3
2 2 5 5
3 4 6

65 4

Thus the resulting tableau is given by
1 1 2 3
2 2 5 5
3 4 6
4 6
5 .

By construction, row-inserting an integer into a tableau will always result in another tableau. From
here it is simple to define the product tableaux. Given two tableaux T and U we define T ·U to be the
result of progressively row-inserting the entries of U into T , starting with the left-most entry in the
bottom row of U and continuing left to right, bottom to top (such that the bottom row is emptied
first) until U is empty. As each row-insertion results in a tableau, it follows that the final product
T · U is also a tableau.

⋄ Example 2.1.2. (1) It follows from Example 2.1.1 that

1 2 2 3
2 3 5 5
4 4 6
5 6

· 1 =

1 1 2 3
2 2 5 5
3 4 6
4 6
5

.

(2) The examples below demonstrate that the products of tableaux with the same shapes, but different
numberings, don’t always result in the same shaped tableau

1 2 3
4 5

· 1 1
2 2

=

1 1 1 2
2 2
3 5
4

1 2 2
4 4

· 1 2
2 3

=
1 1 2 2 2
2 3
4 4

.

(3) Combined with (2), the example below demonstrates that the product is not commutative

1 1
2 2

· 1 2 3
4 5

= 1 1 1 2 3
2 2 4 5

.

This turns the set of tableaux (on all shapes) into a monoid where the identity is given by the
empty tableau. The proof that this is associative is omitted.1 Now restrict the monoid of tableaux
to entries in [m] and define R[m] to be the free Z-module with basis the tableaux with entries in [m]
where multiplication is given by the tableaux product as above. We call R[m] the tableau ring.

1See [3, p.23]
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2.2 Schur Polynomials

We can now use the tableaux ring to define Schur polynomials and make deductions about their be-
haviour. Observe that there is a natural homomorphism from the tableau ringR[m] into the polynomial
ring Z[x1, . . . , xm]. For a tableau T consider the map

T 7→ xT (2.1)

where xT is the monomial in Z[x1, . . . , xm] which is the product of variables x
T (i)
i with T (i) being the

number of times i occurs in T . For example,

1 1 3 6
3 4 4 7
4 5 5

7→ x21x
2
3x

3
4x

2
5x6x7.

This map respects addition by construction and respects multiplication since the number of entries i in
the product tableaux T ·U will be will T (i)+U(i). Now define Sλ = Sλ[m] to be the sum of tableaux
T of shape λ in the tableau ring R[m], where λ ⊢ n. Define the image of Sλ under the homomorphism
above to be the Schur polynomial sλ(x1, . . . , xm).

⋄ Examples 2.2.1. (1) Let m = 2 and consider the shape λ = (4). Then we have that S(4) is given by

S(4) = 1 1 1 1 + 1 1 1 2 + 1 1 2 2 + 1 2 2 2 + 2 2 2 2 .

Hence the Schur polynomial is given by s(4) = x41 + x31x2 + x21x
2
2 + x1x

3
2 + x42. This is the complete

symmetric polynomial2 of degree p = 4 in two variables; where, in general, the complete symmetric
polynomial of degree p in m variables is defined to be hp(x1, . . . , xm) := s(p)(x1, . . . , xm).

(2) Let m = 4 and consider the shape λ = (13). Then we have that S(13) is given by

S(13) =
1
2
3

+
1
2
4

+
1
3
4

+
2
3
4
.

Hence the Schur polynomial is given by s(13) = x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4. This is
the elementary polynomial of degree p = 3 in four variables; where, in general, the elementary
polynomial of degree p in m variables is defined to be ep(x1, . . . , xm) := s(1(p))(x1, . . . , xm).

The combinatorics of the tableaux ring can now be applied to prove properties of Schur polynomials.
Indeed, using the algorithm for computing the product of tableaux in Section 2.1 it can be shown that

Sλ · S(p) =
∑

µ

Sµ (2.2)

where the sum is over all shapes µ that are obtained by adding p boxes to λ, with no two in the same
column; and

Sλ · S(1p) =
∑

µ

Sµ (2.3)

where the sum is over all shapes µ that are obtained by adding p boxes to λ, with no two in the same
row. Together (2.2) and (2.3) are called the Pieri formulas.

Applying our homomorphism (2.1) to the Pieri formulas immediately yields

sλ(x1, . . . , xm) · hp(x1, . . . , xm) =
∑

µ

sµ(x1, . . . , xm)

sλ(x1, . . . , xm) · ep(x1, . . . , xm) =
∑

µ

sµ(x1, . . . , xm)

2We will see in Corollary 2.2.6 that these polynomials are indeed symmetric.
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where the sums are as described for equations (2.2) and (2.3) respectively. Now define the content
µ = (µ1, . . . , µℓ) of a tableau T so that µi = T (i) is the number of times the entry i appears in T .
Also define the Kostka number Kλµ to be the number of tableaux of shape λ with content µ. As a
consequence of (2.2) we have

S(µ1) · S(µ2) · . . . · S(µℓ) =
∑

λ

KλµSλ. (2.4)

⋄ Example 2.2.2. (1) Let m = 2 and µ = (1, 2) and consider

S(1) = 1 + 2 S(2) = 1 1 + 1 2 + 2 2

Now there are only two tableaux of content µ = (1, 2), namely 1 2 2 and
1 2
2 . Hence, by equation

(2.4), we have

S(1) · S(2) = S(3) + S(2,1).

Indeed,

S(1) · S(2) =
(

1 · 1 1 + 1 · 1 2 + 1 · 2 2
)
+
(

2 · 1 1 + 2 · 1 2 + 2 · 2 2
)

= 1 1 1 + 1 1 2 + 1 2 2 + 1 1
2

+ 1 2
2

+ 2 2 2 .

= S(3) + S(2,1).

(2) Now let m = 3 and µ = (1, 2, 1) so that 1 2 2 3 ,

1 2 3
2 ,

1 2 2
3 ,

1 2
2 3 are the tableaux of content

µ. Hence, by equation (2.4), we have

S(1) · S(2) · S(1) = S(4) + 2S(3,1) + S(2,2).

As before, (2.4) gives us an analogous formula for complete symmetric polynomials

h(µ1) · h(µ2) · . . . · h(µℓ) =
∑

λ

Kλµsλ (2.5)

and similarly for elementary polynomials

e(µ1) · e(µ2) · . . . · e(µℓ) =
∑

λ

K
λ̃µ
sλ (2.6)

where λ̃ is the conjugate of λ.
Now fix three partitions λ, µ, and ν. Let V be a tableau of shape ν. Define cνλµ, called a Littlewood-

Richardson number, to be the number of ways V can be written as a product T · U , where T is a
tableau of shape λ and U is a tableau of shape µ. It can be shown that cνλµ is independent of the
choice of V .

Theorem 2.2.3 (Littlewood-Richardson Rule). For Sλ, Sµ ∈ R[m] we have

Sλ · Sµ =
∑

ν

cνλµSν . (2.7)

Theorem 2.2.3 states exactly that each tableau V of shape ν can be written as a product of tableaux
of shape λ and a tableau of shape µ in cνλµ ways. Analogously to above, we obtain an equivalent formula
for Schur polynomials: sλ · sµ =

∑

ν c
ν
λµsν.
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⋄ Example 2.2.4. Let n = 4, m = 2 and consider s(3,1) = x31x2 + x21x
2
2 + x1x

3
2 and s(2,2) = x21x

2
2. By

the Littlewood-Richardson rule (Theorem 2.2.3) we have

s(3,1) · s(2,2) = s(5,3).

This is because there are exactly three tableaux (with entries in {1, 2}) that can be written as a
product of tableaux of shape (3, 1) and (2, 2), specifically

1 1 1 1 1
2 2 2

1 1 1 1 2
2 2 2

1 1 1 2 2
2 2 2

which all have shape (5, 3). Indeed, we can verify this result

s(3,1) · s(2,2) = (x31x2 + x21x
2
2 + x1x

3
2) · (x

2
1x

2
2) = x51x

3
2 + x41x

4
2 + x31x

5
2 = s(5,3).

We now show that the Schur polynomials are symmetric polynomials and therefore belong to the
ring of symmetric functions defined in the next section (2.3). To prove this fact we will need the
following lemma about Kostka numbers:

Lemma 2.2.5. For partitions λ, µ of n we have that Kλµ 6= 0 if and only if µE λ.

⋄ Proof: Suppose that µ 6E λ. Now, to show that there are no partitions of shape λ and content µ, it is
sufficient to consider the tableau whereby we put all the entries in a list

(

µ1 times
︷ ︸︸ ︷

1, . . . , 1,

µ2 times
︷ ︸︸ ︷

2, . . . , 2, . . . ,

µℓ times
︷ ︸︸ ︷

ℓ, . . . , ℓ) (2.8)

and place them into the tableau of shape λ from left to right, top to bottom. For example, if
µ = (4, 5, 2, 3) and λ = (6, 4, 3, 1) we would have

1 1 1 1 2 2
2 2 2 3
3 4 4
4 .

This is sufficient because if this fails to be a tableau, then no tableau with shape λ and content µ
exists. Now if µ1 6≤ λ1 then the entries 1 in our tableau of shape λ must spill over to the second row
which contradicts the strictly increasing property of tableaux. Hence we may assume there exists an
i > 1 such that

µ1 + · · ·+ µi−1 + a = λ1 + · · ·+ λi−1

µ1 + · · ·+ µi−1 + µi = λ1 + · · ·+ λi−1 + λi + b

for a ∈ {0, 1, 2, . . . } and b ∈ {1, 2, . . . }. Combining these expressions yields µi = λi + a + b. Now
consider entering the µi entries i into the diagram as above. We fill the a empty slots on the (i− 1)th

row, followed by the λi empty slots on the ith row and then put the remaining b ≥ 1 entries on the
(i+ 1)th row. This contradicts our strictly increasing property of tableaux. Hence, Kλµ = 0.

Conversely, if µ E λ then we can easily construct a tableau of shape λ and content µ using the
filling process described above.

Corollary 2.2.6. The Schur polynomials sλ are symmetric.

Proof: We claim that (2.5) and (2.6) can be solved to express the Schur polynomials sλ in terms of
symmetric polynomials; then they themselves will be symmetric polynomials. With this aim, order all
partitions of n lexicographically. Then, since µE λ implies that µ ≤ λ, by Lemma 2.2.5 we have that
the matrix Kλµ is a lower triangular matrix with entries 1 on the diagonal. This proves the claim.
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Remark 2.2.7. We can also use Lemma 2.2.5 to simplify some of the formulae derived in Section 2.2.
In particular, (2.5) and (2.6) become

h(µ1) · h(µ2) · . . . · h(µℓ) = sµ +
∑

λ⊲µ

Kλµsλ (2.9)

e(µ1) · e(µ2) · . . . · e(µℓ) = sµ̃ +
∑

λ̃⊲µ

K
λ̃µ
sλ (2.10)

where the content µ = (µ1, . . . , µℓ) is viewed as a partition.

2.3 Ring of Symmetric Functions

In this section, we construct a Z-module that will be essential for Section 3.4, where we will define a
ring isomorphism that relates representations of the symmetric group to Schur polynomials.

Define a symmetric function of degree n to be a collection of symmetric polynomials p(x1, . . . , xm)
of degree n, one for each m, such that

p(x1, . . . , xℓ, 0, . . . , 0) = p(x1, . . . , xℓ) (2.11)

for all ℓ ≤ m. Let Λn denote the Z-module of all such functions with integer coefficients. Then set

Λ :=

∞⊕

n=0

Λn

which is called the ring of symmetric functions.

⋄ Example 2.3.1. (1) Consider the 2nd complete symmetric polynomials defined in Examples 2.2.1 (2)

h2(x1) = x21

h2(x1, x2) = x21 + x1x2 + x22

h2(x1, x2, x3) = x21 + x1x2 + x22 + x1x3 + x2x3 + x23

which satisfy the equations (2.11) and so are elements of Λ2.

(2) Let λ = (3, 1, 1) be a partition of n = 5. Then the monomial symmetric polynomial of λ is defined
to be

mλ(x1, x2, x3) = x31x2x3 + x1x
3
2x3 + x1x2x

3
3.

We analogously define monomial symmetric polynomials for any partition λ. Note that they
satisfy the equations (2.11) by setting mλ to be zero if k, such that λ = (λ1, . . . , λk), is larger than
the number of variables m.

Following from the example above, write x = (x1, . . . , xm) and let λ = (λ1, . . . , λk) be a partition.
Then we can define symmetric polynomials

hλ(x) := hλ1(x) · . . . · hλk
(x)

eλ(x) := eλ1(x) · . . . · eλk
(x)

where hp(x) and ep(x) are the pth complete and elementary symmetric polynomials in the variables
x1, . . . , xm. Recall that the Schur polynomials sλ(x1, . . . , xm) are symmetric (Corollary 2.2.6) and,
using Example 2.3.1 above, we note that the monomial symmetric polynomials mλ(x1, . . . , xm) are
also symmetric polynomials. This leads us to the following proposition.

Proposition 2.3.2. The sets {sλ} and {hλ}, as λ varies over all partitions of n, are Z-bases for Λn.
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Proof: To prove this we first show a similar result for the monomial symmetric polynomials, defined
in Examples 2.3.1 (2), for then the result will follow more easily. Define M to be the set {mλ} for all
partitions λ of n with at most m rows. We show that M is a basis for the symmetric polynomials in
m variables x1, . . . , xm.

To show that M is spanning consider an arbitrary symmetric polynomial. Let xλ = xλ1
1 · · · xλm

m

be its maximal monomial in said polynomial whereby the partitions λ = (λ1, . . . , λm) are ordered
lexicographically. Let r ∈ Z be the coefficient of xλ and note that, by symmetry, our symmetric
polynomial contains a copy of the monomial symmetric polynomial rmλ. Thus subtract rmλ to
obtain a polynomial which has maximal monomial that is smaller with respect to this ordering. We
can repeat this process until we obtain 0 and thus we can express any symmetric polynomial as a
linear combination of the mλ.

To show linear independence of M suppose that
∑

rλmλ = 0 with the sum over partitions λ of n
with at most m rows. Let λ be the maximal partition such that rλ 6= 0. However, this then means that
xλ appears in the sum with non-zero coefficient. In other words, no such λ exists and M is linearly
independent.

Therefore monomial symmetric polynomials mλ, as λ varies over all partitions of n, are a basis for
all symmetric functions of degree n with any number of variables m and hence for Λn.

We can now show that the set of Schur polynomials sλ, as λ varies over partitions of n, is basis for
Λn. For this it suffices to show that the Schur polynomials span Λn, since the cardinality of the set of
Schur polynomials is the same as the cardinality of the set of monomial symmetric polynomials. Now
it can be shown that the Schur polynomials satisfy [9, p.57]

sλ =
∑

µ

Kλµmµ (2.12)

where Kλµ are the Kostka numbers seen in Section 2.2. Thus, by Lemma 2.2.5, we can solve (2.12)
to express the monomial symmetric polynomials in terms of Schur polynomials. This means that the
set {sλ} spans Λn.

It remains to show that the set {hλ} forms a basis for Λn. However, the proof of this is extremely
similar to the previous paragraph except we replace equation (2.12) with equation (2.5) and use that
the knowledge that the sλ are a basis.

Corollary 2.3.3. The hλ form a Z-basis for Λ as λ varies over all partitions.

Remark 2.3.4. Since the Schur polynomials sλ form a basis for Λn, we can define a symmetric inner
product (·, ·) on Λn by requiring that the Schur polynomials sλ form an orthonormal basis. That is,

(sλ, sλ) = 1 and (sλ, sµ) = 0

for µ 6= λ. We will need this in Section 3.4 to prove that the isomorphism that relates Λ to irreducible
representations of Sn is indeed an isomorphism.

3 Representations of the Symmetric Group

We now use the tools we have created using tableaux to derive all the irreducible representations of
the symmetric group, called Specht modules. Later in this section we’ll relate these representations
to Schur polynomials and give some alternative constructions of Specht modules. In this section all
numberings T of a diagram with n boxes will have distinct entries in {1, . . . , n}. This means that any
tableau is also a standard tableau.

3.1 Specht Module Construction

We begin by constructing Specht modules. Notice that the symmetric group Sn defines a natural
action on a numbering T of a Young diagram with n boxes. For σ ∈ Sn we have that σ · T is the
numbering that puts σ(i) in the box in which T puts i.

11



For each numbering T this action generates a natural subgroup of Sn called the row group of T
denoted by R(T ). It is defined as

R(T ) := {σ ∈ Sn | σ preserves the rows of T}.

That is, for σ ∈ R(T ), we have that T and σ · T have the same entries in their rows. If λ =
(λ1, . . . , λk) is the shape of T then R(T ) is the product of symmetric groups

Sλ1 × · · · × Sλk
.

Analogously, we can define the column group of T denoted by C(T ). The construction of the row
group allows us to define an equivalence class of numberings on a Young diagram.

Definition 3.1.1 (Tabloid). A tabloid is an equivalence class of numberings on a Young diagram such
that two numberings T and T ′ are equivalent if and only if there exists p ∈ R(T ) such that

T ′ = p · T.

We denote the equivalence classes with curly brackets and so write {T ′} = {T}.

We display tabloids in a similar fashion to tableaux, except we drop the vertical bars. For example,

1 4 7

3 6

2 5

=

4 7 1

6 3

2 5

.

The action of Sn on tableaux also translates nicely to tabloids whereby for σ ∈ Sn we have

σ · {T} = {σ · T}.

This is well-defined because Sn permutes the numbers, not the boxes. Tabloids are the main ingredient
in our first construction of the irreducible representations of Sn. Define Mλ to be the complex vector
space with basis of tabloids {T} of shape λ, where λ ⊢ n. The action of Sn on tabloids thus makes
Mλ into C[Sn]-module.

⋄ Examples 3.1.2. (1) If λ = (5) then M (5) is the 1-dimensional C-vector space with basis vector
1 2 3 4 5 and for any σ ∈ S5 we have

σ·
(

1 2 3 4 5
)

= 1 2 3 4 5 .

Thus we have that M (5) is isomorphic to the trivial representation.

(2) If λ = (1, 1, 1) then M (1,1,1) is the 6-dimensional C-vector space with basis vectors

1

2

3

,

1

3

2

,

2

1

3

,

2

3

1

,

3

1

2

,

3

2

1

.

It is clear that we can identify each of these basis elements with an element in Sn and so M (1,1,1)

is isomorphic to the regular representation.

(3) If λ = (2, 1) then M (2,1) is a 3-dimensional vector space over C with basis

{T1} =
2 3

1
, {T2} =

1 3

2
, {T3} =

1 2

3
.
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The representations Mλ of Sn are, in general, not irreducible. Thus we now define elements of the
group algebra C[Sn] that will cut out the irreducible components of an Mλ.

Given a numbering T of a diagram with n boxes, we define Young symmetrizers

aT :=
∑

p∈R(T )

p bT :=
∑

q∈C(T )

sgn(q)q cT := bT · aT .

These have the following useful properties. Firstly, for p ∈ R(T ) and q ∈ C(T ), we have

p · aT = aT · p = aT , q · bT = bT · q = sgn(q)bT . (3.1)

We also have
aT · aT = |R(T )| · aT , bT · bT = |C(T )| · bT . (3.2)

We can now define Specht modules:

Definition 3.1.3 (Specht Module). Let λ be a partition of n. For each numbering T of shape λ define

vT := bT · {T} =
∑

q∈C(T )

sgn(q){q · T}. (3.3)

Then we define the Specht module Sλ to be the subspace of Mλ spanned by all the elements vT , as T
varies over all numberings of λ.

⋄ Remark 3.1.4. Notice that a tabloid {T} ignores the row position in a numbering. Also notice that
the Young symmetrizer bT , if we’re given the resulting sum bT · T , makes it impossible to distinguish
the original column position of the entries of T .3 Therefore it seems that vT = bT · {T} ignores the
row and column position of an entry. So the question is: what are we left with? The answer to this
question relates to what are called the quadratic relations (which we will see many times in later
sections).

⋄ Example 3.1.5. Let λ = (2, 1) so that Mλ has basis {T1}, {T2}, {T3} as in Examples 3.1.2 (3). We
therefore obtain

bT1 = 1− (12) bT2 = 1− (12) bT3 = 1− (13)

and thus Sλ is spanned by the elements

vT1 =
2 3

1
−

1 3

2
vT2 =

1 3

2
−

2 3

1
vT3 =

1 2

3
−

3 2

1
.

We will see later (Example 3.3.5) that dim(S(2,1)) = 2. Therefore, in this case, we have Sλ 6= Mλ.

3.2 Irreducible Representations of the Symmetric Group

This section amounts to proving the following:

Theorem 3.2.1. For each partition λ of n the Specht module Sλ is an irreducible representation of
Sn. Furthermore, every irreducible representation of Sn is isomorphic to exactly one Sλ.

Before embarking on the proof of Theorem 3.2.1 we require some extra tableaux theory.

Lemma 3.2.2. Let T and T ′ be numberings of the shapes λ and λ′. Assume that λ does not strictly
dominate λ′. Then either

(i) There are two distinct integers that occur in the same row of T ′ and the same column of T ; or

(ii) λ = λ′ and there is some p ∈ R(T ′) and q ∈ C(T ) such that p · T ′ = q · T .

3A column permutation is also assigned an orientation that depends on T . This orientation can be ignored for now
but is something we’ll see in more detail later.
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Proof: Assume that (i) is false. We construct q ∈ C(T ) as given in (ii). Now, since (i) is false, all
the entries in the first row of T ′ are in distinct columns in T . Therefore there exists a q1 ∈ C(T ) that
moves all these entries to the first row of T .

•

•

•

•

•

action of q1

Note that this also implies that λ′
1 ≤ λ1. Similarly, all the entries in the second row of T ′ are also

in distinct columns in T and thus in distinct columns in q1 ·T . Thus we can find q2 ∈ C(T ) = C(q1 ·T )
that moves these entries to the second row of q1 · T and preserves the first row of q1 · T . Again, note
that this implies that λ′

2 ≤ λ2.
Iterate this process for all rows 1 to k in λ and set q = q1 · · · qk ∈ C(T ). Then if an entry i is in the

jth row of T ′ then i is also in the jth row of q ·T . Furthermore, we have λ′
1+ · · ·+λ′

j ≤ λ1+ · · ·+λj, for
j = 1, . . . , k, so that λ′ E λ. However, by assumption λ does not strictly dominate λ′ which therefore
gives λ = λ′. Hence, {T ′} = {q · T} which means there exists p ∈ R(T ) such that p · T ′ = q · T .

Corollary 3.2.3. Using the ordering given at the end of Section 1.2, we have that if T and T ′ are
standard tableaux with T ′ > T , then there is a pair of integers in the same row of T ′ and the same
column of T .

Proof: Since T ′ > T , we can apply Lemma 3.2.2. Indeed, T ′ > T ensures that the shape of T cannot
strictly dominate the shape of T ′ (see Remark 1.2.4). In search of a contradiction assume that we’re
in the case (ii) of Lemma 3.2.2 so that there exists p ∈ R(T ′) and q ∈ C(T ) such that p · T ′ = q · T.

Now note that, since T and T ′ are standard tableau, p ∈ R(T ′) and q ∈ C(T ), we have that

T ′ ≤ p · T ′ and q · T ≤ T

since the largest entry of T that is moved by p moves to the left and the largest entry of T that is
moved by q moves upwards. (Note that above ≥ and ≤ do not represent the lexicographic ordering
but instead represent the ordering given at the end of Section 1.2).

Therefore we can conclude that T ′ ≤ p · T ′ = q · T ≤ T . This contradicts T ′ > T and so we must
be in case (i) of Lemma 3.2.2.

Lemma 3.2.4. Let T and T ′ be numberings of shape λ and λ′, and assume that λ does not strictly
dominate λ′. If there is a pair of integers in the same row of T ′ and the same column of T , then
bT · {T ′} = 0. Else, λ = λ′ and we have bT · {T ′} = ±vT .

Proof: This is an extension of the result in Lemma 3.2.2. Firstly, suppose there is a pair of integers
in the same row of T ′ and the same column of T . Let t ∈ R(T ′) be the transposition that permutes
them. Then

bT ·
{
T ′
}
= (bT · t) ·

{
T ′
}

(t ∈ R(T ′))

= sgn(t)bT ·
{
T ′
}

(3.1)

= −bT ·
{
T ′
}
. (t a transposition)

Thus we must have bT · {T ′} = 0. Now if there is no such pair we are in case (ii) of Lemma 3.2.2 and
so there is a p ∈ R(T ′) and q ∈ C(T ) such that p · T ′ = q · T . Thus

bT ·
{
T ′
}
= bT ·

{
p · T ′

}
(p ∈ R(T ′))

= bT · {q · T}

= (bT · q) · {T}

= sgn(q)bT · {T} (3.1)

= ±vT .

This concludes the proof.
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Analogously to the relationship between Corollary 3.2.3 and Lemma 3.2.2 we also have

Corollary 3.2.5. If T and T ′ are standard tableaux with T ′ > T , then bT · {T ′} = 0.

We now have all the necessary tools to show that the Specht modules Sλ do indeed give rise to all
the irreducible representations of Sn.

Proof of Theorem 3.2.1: We first show that for each partition λ of n the Specht module Sλ is a
submodule of Mλ. For this it suffices to show that σ · vT = vσ·T for all T and σ ∈ Sn. Indeed,

σ · vT = σ ·




∑

q∈C(T )

sgn(q){q · T}





=
∑

q∈C(T )

sgn(q){σ · q · T}

=
∑

q∈C(T )

sgn(q){(σ · q · σ−1) · σ · T}

=
∑

p∈C(σ·T )

sgn(p){σ · T}

= vσ·T ,

where we have used the fact that σ · C(T ) · σ−1 = C(σ · T ) and that sgn(σ · q · σ−1) = sgn(q). This
also shows that Sλ = C[Sn] · vT . Indeed, if T ′ is a different numbering of λ and σ · T = T ′ then we
have σ · vT = vσ·T = vT ′ ∈ C[Sn] · vT .

Secondly, we show that no two Specht modules are isomorphic. Let λ and µ be partitions of n
such that µ > λ4. Choose a numbering T of λ. Then, applying the latter case of Lemma 3.2.4, we
have

bT · Sλ = C · vT 6= 0. (3.4)

Now applying the former case of Lemma 3.2.4 we have

bT · Sµ = 0.

We conclude that Sλ 6∼= Sµ.
To show that Specht modules are irreducible suppose that Sλ = V ⊕W for submodules V and W

of Mλ. Then by (3.4) above we have

C · vT = bT · Sλ = bT · V ⊕ bT ·W ⊆ V ⊕W.

Therefore, without loss of generality, V contains vT . However, since V is a submodule it is closed
under the action of the group algebra C[Sn] which means

Sλ = C[Sn] · vT ⊆ V.

Thus Sλ = V and so Sλ is irreducible.
Finally, we conclude that every irreducible representation is isomorphic to a Specht module. Indeed,

there is an irreducible representation of Sλ (up to isomorphism) for each conjugacy class in Sn.
However, the conjugacy classes in Sn consist of permutations of the same cycle type and each cycle
type clearly corresponds to a partition of n. Therefore, as λ varies over all partitions of n, the Sλ

must define all irreducible representations of Sn.

4µ is strictly larger than λ in lexicographic ordering, which implies that λ does not strictly dominate µ. Hence,
Lemma 3.2.4 applies.
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3.3 Mλ and Sλ Structure

We now analyse the structure of the representations Mλ using the Specht modules Sλ. Some of this
analysis will be used in Section 3.4 to draw parallels between the representations of the symmetric
group and the symmetric polynomials from Section 2.3. We will also give a basis for Sλ.

Lemma 3.3.1. Let φ : Mλ → Mλ′

be a homomorphism of representations of Sn. If Sλ is not in the
kernel of φ, then λ′ E λ.

Proof: Let T be a numbering of λ where vT is not in the kernel of φ. Then

bT · φ({T}) = φ(vT ) 6= 0.

Thus there is a numbering T ′ of shape λ′ such that bT · {T ′} 6= 0. Therefore, if λ does not strictly
dominate λ′, then by Lemma 3.2.4 we must have λ′ = λ. Hence, either λ′ ⊳ λ or λ = λ′.

Theorem 3.3.2. There are non-negative integers kνλ, for ν ⊲ λ, such that

Mλ ∼= Sλ ⊕
⊕

ν⊲λ

(Sν)⊕kνλ .

Proof: For each ν, let kνλ be the number of times Sν occurs in the decomposition of Mλ. Now

bT ·Mλ = bT · Sλ

and so kλλ = 1. Now suppose Sν appears in Mλ and consider the projection from Mν to Sν followed
by the embedding of Sν in Mλ

Mν → Sν → Mλ

which defines a homomorphism from Mν to Mλ such that Sν is not in the kernel. Thus Lemma 3.3.1
applies to give λ E ν.

Proposition 3.3.3. The elements vT , as T varies over tableaux of shape λ, form a basis for Sλ.

Proof: Firstly, to show linear independence, suppose that
∑

rT vT = 0, where the sum is over all
tableaux T of shape λ. Consider the ordering defined at the end of Section 1.2. We aim to show that
the maximal T in the above sum has non-zero coefficient. Now each vT is a linear combination of {T}
and {q · T} for q ∈ C(T ). Furthermore, {T} appears with coefficient 1 in vT . Recall, from the proof
of Corollary 3.2.3, that for all q ∈ C(T ) we have q ·T < T (when T is a tableau). Hence, the maximal
T in

∑
rT vT = 0 occurs only in vT as {T} with coefficient 1.

To show that the elements vT are spanning we make use of the Robinson correspondence [3, p.52].
From this we can deduce

n! =
∑

λ⊢n

(

fλ
)2

where fλ is the number of standard tableaux of shape λ. Therefore, using that the sum of the squares
of the dimension of the irreducible representations is equal to the order of the group, we have

n! =
∑

λ⊢n

(

fλ
)2

≤
∑

λ⊢n

(

dim
(

Sλ
))2

= n!.

Hence, we must have dim
(
Sλ
)
= fλ for all λ. This means that the vT must be a basis for Sλ.

Remark 3.3.4. We will see another proof of Theorem 3.3.3 in Section 3.5 using a dual construction
of Sλ.

⋄ Example 3.3.5. Recall Example 3.1.5 in which we showed that Sλ, for λ = (2, 1), is spanned by
vT1 , vT2 , vT3 . By Proposition 3.3.3, we have that Sλ has basis vT2 , vT3 . This is because

T2 =
1 3
2

T3 =
1 2
3

are all the tableaux of shape λ with distinct entries in {1, 2, 3}. Therefore, vT1 can be expressed
as a linear combination of vT2 and vT3 . Indeed, vT1 = −vT2 . This means that S(2,1) is the unique
2-dimensional representation of S3 (up to isomorphism).
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3.4 Ring of Representations

The aim of this section is to introduce a relationship between the ring of symmetric functions Λ (Section
2.3) and the irreducible representations of the symmetric group. This will allow us to transfer some
of the properties of Λ to representations of the symmetric group.

Firstly define Rn to be the free abelian group on the isomorphism classes of irreducible repre-
sentations of Sn. That is, if V ∼=

⊕
(Sλ)⊕aλ is a representation of Sn, then its class [V ] is given

by

[V ] =
∑

aλ[S
λ].

Now define R :=
⊕∞

n=0Rn where R0 = Z. We will see later that this defines a ring, called the ring
of representations of Sn, and that is isomorphic to the ring of symmetric functions. However, we first
need to construct a multiplication operation on R.

Definition 3.4.1 (Induced Representation). Let G be a group and let V be a C[H]-module for some
subgroup H of G. Then we define the induced representation of V from H to G as

IndGH(V ) := C[G]⊗C[H] V.

Examples 3.4.2. (1) ⋄ Consider Sn and the alternating group An for n ≥ 2. Let 1 denote the trivial
representation of An. Then the induced representation of 1 from An to Sn is

IndSn

An
(1) = C[Sn]⊗C[An] C

which is isomorphic to the sign module. Indeed, let τ ∈ Sn and σ ∈ IndSn

An
(1). The cosets of An

in Sn are An and (12)An, which partition Sn into even and odd permutations. Thus the action of
τ on σ in IndSn

An
(1) is given by

τ · σ =

{

(12) · σ τ odd;

σ τ even.

Hence the action of τ is uniquely determined by its sign.

(2) Fix a numbering T of λ so that Mλ has basis σ · {T} as σ varies over class representatives of
Sn/R(T ). Hence, again letting 1 denote the trivial representation, we have

Mλ ∼= IndSn

R(T )(1) = C[Sn]⊗C[R(T )] C.

We now define multiplication Rn×Rm → Rn+m on R, for representations V and W of Sn and Sm

(respectively), as

[V ] ◦ [W ] :=
[

Ind
Sn+m

Sn×Sm
V ⊗W

]

= C[Sn+m]⊗C[Sn×Sm] (V ⊗W ) (3.5)

where V ⊗W is viewed as a representation of Sn × Sm with

(σ × τ) · (v ⊗ w) = σ · v ⊗ τ · w

for σ ∈ Sn, τ ∈ Sm, v ∈ V and w ∈ W . Furthermore, we view Sn × Sm as a subgroup of Sn+m by
letting Sn act on the first n integers and Sm act on the remaining m integers. This multiplication
makes R into a commutative (graded) ring with unit. Furthermore, we can equip Rn with a symmetric
inner product (·, ·) by requiring that the irreducible representations [Sλ] form an orthonormal basis.
In particular, if V ∼= ⊕(Sλ)⊕aλ and W ∼= ⊕(Sλ)⊕bλ , we have

([V ], [W ]) =
∑

aλbλ.

Now since the polynomials hλ form a basis for the ring of symmetric functions (Corollary 2.3.3),
we can define an additive homomorphism φ : Λ → R such that

φ(hλ) = [Mλ].

We can now state and prove the main result of this section:
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Theorem 3.4.3. The map φ : Λ → R is an (isometric) isomorphism such that φ(sλ) = [Sλ].

Proof: As we saw in Examples 3.1.2 (1), we have that φ takes hn to the trivial representation M (n).
Then, since Λ is a polynomial ring in the variables hn, to show that φ is ring homomorphism we need
only show that

M (λ1) ◦M (λ2) ◦ · · · ◦M (λk) = Mλ (3.6)

for λ = (λ1, . . . , λk) a partition. Since then, if (3.6) holds, we have

φ(hλ1 · · · hλk
) = φ(hλ) = [Mλ] = [M (λ1)] ◦ · · · ◦ [M (λk)] = φ(hλ1) · · · φ(hλk

)

so that φ respects multiplication. To prove that (3.6) holds we use the description of Mλ given in
Example 3.4.2 (2). By induction, it suffices to show that

M (λ1,...,λk) ◦Mλk+1 = M (λ1,...,λk+1)

where λ = (λ1, . . . , λk) is a partition of n and λk ≥ λk+1. Hence, fix a numbering T of λ whereby the
numbers 1 to n are entered into T in order from left to right, top to bottom (so that the top row has
entries 1 < · · · < λ1). Similarly, fix a numbering U of (λk+1) which has entries n+1, . . . , n+ k placed
in order from left to right. By definition we have

M (λ1,...,λk) ◦Mλk+1 = C[Sn+λk+1
]⊗C[Sn×Sλk+1

] (M
λ ⊗M (λk+1))

= C[Sn+λk+1
]⊗C[Sn×Sλk+1

]

(
(C[Sn]⊗C[R(T )] C)⊗ (C[Sλk+1

]⊗C[R(U)] C)
)
.

Then, since R(T ) = Sλ1 × · · · × Sλk
, we have

C[R(T )] = C[Sλ1 ]⊗C · · · ⊗C C[Sλk
]

and we also have R(U) = Sλk+1
. Hence,

M (λ1,...,λk) ◦Mλk+1 = C[Sn+λk+1
]⊗C[Sn]⊗CC[Sλk+1

]

(

(C[Sn]⊗C[Sλ1
]⊗C···⊗CC[Sλk

] C)⊗ (C[Sλk+1
]⊗C[Sλk+1

] C)
)

= C[Sn+λk+1
]⊗C[Sn]⊗CC[Sλk+1

]

(

(C[Sn]⊗C[Sλ1
]⊗C···⊗CC[Sλk

] C)⊗C

)

= C[Sn+λk+1
]⊗C[Sλ1

]⊗C···⊗CC[Sλk+1
] C

= M (λ1,...,λk+1).

Thus, (3.6) holds and so φ is a ring homomorphism.
We now show that the [Mλ] form a basis for R. Then it will follow that φ is an isomorphism of

Z-algebras. To prove this it suffices to show that the [Mλ] are linearly independent because the set
of [Sλ] is a basis for R and there is an Mλ for every Sλ. Suppose that

∑

λ rλ[M
λ] = 0. Then using a

similar argument to the one used in the proof of Lemma 2.2.5, order the partitions lexicographically
and let [Mλ′

] be the maximal term in the sum such that rλ′ 6= 0. Thus we can use Theorem 3.3.2 to
express Mλ′

as a sum of Sλ. Therefore, since λ E µ implies λ ≤ µ, we have that Sλ′

only occurs once
in
∑

λ rλ[M
λ] = 0 (specifically in the decomposition of Mλ′

) and thus occurs with coefficient rλ′ 6= 0.
This shows that the [Mλ] are linearly independent.

Finally, we show that φ(sλ) = [Sλ] by making use of the fact that φ is an isometry5. In Theorem
3.3.2 we saw that [Mλ] = [Sλ] +

∑

ν⊲λ kνλ[S
ν ] and (2.9) gives us that hλ = sλ +

∑

ν⊲λ Kνλsν . Then,
as φ(hλ) = [Mλ], we must have

φ(sλ) +
∑

ν⊲λ

Kνλφ(sν) = [Sλ] +
∑

ν⊲λ

kνλ[S
ν ]. (3.7)

Using this we aim to show that [Sλ] appears in the decomposition of φ(sλ) with coefficient 1. Assume
that this is true for now. Therefore that we can write

φ(sλ) = [Sλ] +
∑

mνλ[S
ν ]

5The proof of this is omitted, see [3, Page 92]

18



for some integers mνλ. Therefore, recalling Remark 2.3.4, we can use that φ is an isometry to obtain

1 = (sλ, sλ) = (φ(sλ), φ(sλ)) = 1 +
∑

(mνλ)
2

and so the mνλ must vanish. Hence, φ(sλ) = [Sλ].
Now we prove that [Sλ] does indeed appear in φ(sλ) with coefficient 1. Suppose, for contradiction,

that it does not. Then by (3.7) we have that [Sλ] must appear with non-zero coefficient in φ(sν1)
for some ν1 ⊲ λ. We can then apply (3.7) again to φ(sν1) to obtain ν2 whereby [Sλ] appears with
non-zero coefficient in φ(sν2) and ν2 ⊲ ν1. We can thus iterate this process to find that [Sλ] appears
with non-zero coefficient in φ(sµ), where µ = (n) for |λ| = n. However,

φ(sµ) = φ(sµ) +

=0
︷ ︸︸ ︷
∑

ν⊲µ

Kνµφ(sν) = [Sµ] +
∑

ν⊲µ

kνµ[S
ν ] = [Sµ]

where we have used that no partition dominates µ = (n). Hence, we have the desired contradiction
and this concludes the proof.

This powerful result allows us to transfer the properties of symmetric polynomials from Section
2.2 directly to properties of irreducible representations of Sn. Firstly, (2.9) yields:

Corollary 3.4.4 (Young’s rule).

Mλ ∼= Sλ ⊕
⊕

µ⊲λ

(Sµ)⊕Kµλ

where Kµλ is the Kostka number.

Also, the Littlewood-Richardson rule (2.7) gives an equivalent rule for Specht modules

Corollary 3.4.5 (Littlewood-Richardson rule - for Specht modules).

Sλ ◦ Sµ ∼=
⊕

ν

(Sν)⊕cν
λµ .

3.5 Dual Construction of Specht Modules

We can also construct Specht modules using column tabloids in place of row tabloids. This will allow
us to express Specht modules as quotients of a larger space. This will allow us to see the similarities
between Specht modules and later constructions in Sections 4 and 5.

Definition 3.5.1 (Column Tabloid). A column tabloid is an equivalence class of numberings (with
entries in {1, . . . , n}) on a Young diagram such that two numberings T and T ′ are equivalent if and
only if there exists q ∈ C(T ) such that

T ′ = q · T.

The equivalent numberings T ′ and T have the same or opposite orientation according to whether q
has positive or negative sign. We denote the equivalence classes with square brackets and so write
[T ′] = [T ] or [T ′] = −[T ], depending on the sign of q.

We display column tabloids exactly as expected. For example6

1 3 2

4 6 5

7

= −
4 3 2

1 6 5

7

=
4 6 2

1 3 5

7 .

6Please admire this diagram (there is no LATEX package for column tabloids!)
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Let λ be a partition of n and define M̃λ to be the complex vector space with basis of column tabloids
[T ] of shape λ, but with the corresponding basis element defined only up to sign, depending on
orientation. The action of Sn on tabloids thus makes M̃λ into C[Sn]-module, where σ · [T ] := [σ · T ].

We can equivalently define M̃λ to be the quotient of the complex vector space with basis [T ], for
each numbering T of λ, by the subspace generated by all [T ]− sgn(q)[T ] for all q ∈ C(T ).

Analogously to Specht modules, we define S̃λ to be the submodule spanned by all elements

ṽT = aT · [T ] =
∑

p∈R(T )

[p · T ].

All of the results of Section 3.2 have analogues in this dual setting.

Theorem 3.5.2. In this dual setting we have:

(1) If there is a pair of integers in the same row of T ′ and the same column of T , then aT ′ · [T ] = 0.
Else, T and T ′ have the same shape and we have aT ′ · [T ] = ±ṽT ′.

(2) Each S̃λ is an irreducible representation and every irreducible representation of Sn is isomorphic
to exactly on S̃λ.

(3) Let φ : M̃λ′

→ M̃λ be a homomorphism of representations of Sn. If S̃λ′

is not in the kernel of
φ, then λ.E λ′.

(4) The elements ṽT , as T varies over the tableaux of shape λ, form a basis for S̃λ.

(5) We have that

M̃λ ∼= S̃λ ⊕
⊕

ṽ⊲λ̃

(S̃ν)⊕K
ν̃λ̃

where K
ν̃λ̃

is the Kostka number.

The proofs are omitted since they are almost identical to the proofs of the analogue results Lemma
3.2.4, Theorem 3.2.1, Lemma 3.3.1, Proposition 3.3.3 and Theorem 3.3.2 respectively.

This dual construction now allows us to present Sλ as a quotient of M̃λ. Such realisations are an
important step towards relating representations of the general linear group in Chapter 4 to the Specht
modules Sλ (specifically Proposition 4.4.2).

Define α : M̃λ → Sλ; [T ] 7→ vT (with vT as defined in (3.3)). Then α is well-defined since if
[T ] = [T ′] then there is a σ ∈ C(T ) with sgn(σ) = 1 such that T ′ = σ ·T . Then, using results obtained
in Section 3.1, we have

vσ·T = σ · vT = sgn(σ) · vT = vT . (3.8)

In addition, we have that α is a homomorphism of Sn-modules since, for a general σ ∈ Sn, the first
equality in (3.8) shows that α commutes with the group action. Evidently, α is a surjection and so to
express Sλ as a quotient of M̃λ it suffices to find the kernel of α.

To this end let µ = λ̃ be the conjugate of λ, set ℓ = λ1 to be the length of µ. Then for any
1 ≤ j ≤ ℓ− 1, and 1 ≤ k ≤ µj+1, and any numbering T of λ define

πj,k(T ) =
∑

[S] ∈ M̃λ,

where the sum is over all S obtained from T by exchanging the top k elements in the (j+1)th column
of T with k elements in the jth column of T , preserving the vertical orders of each set of k elements.
For example,

π1,3









1 2

4 3

5 6

8 7









=

2 1

3 4

6 5

8 7

+

2 1

3 4

5 8

6 7

+

2 1

4 5

3 8

6 7

+

1 4

2 5

3 8

6 7

.

20



Now define Qλ to be the subspace of M̃λ spanned by all elements of the form

[T ]− πj,k(T ) (3.9)

as T varies over all numberings T of λ, and j and k vary as above. The relations defined in (3.9) are
called the quadratic relations which will manifest themselves in a few different ways in later sections.
Note that, since πj,k commutes with the action of Sn, we have that Qλ is an Sn-module.

Proposition 3.5.3. For any partition λ we have

Sλ ∼=
M̃λ

Qλ
.

Sketch proof: We first show that [T ], as [T ] varies over the tableaux of shape λ, span M̃λ/Qλ. Define
an ordering on fillings of λ whereby T ′ ≻ T if, in the right-most column in which they differ, the lowest
different entry in said column has a larger entry in T ′. It suffices to show that for any numbering
T , that we can use the relations in Qλ to express [T ] as a linear combination of classes [S] with
S ≻ T . Indeed, S ≻ T means that S is “closer”7 to being a tableau and so the fact that the [T ], as T
varies over tableaux of shape λ, are spanning will thus follow. We assume that the columns of T are
strictly increasing. If not then there is a numbering T ′ ≻ T that has strictly increasing columns and
[T ] = ±[T ′]. Now suppose that T is not a tableau. Suppose that the kth entry of the jth column is
strictly larger than the kth entry of the (j +1)th column. Then each of the numberings S that appear
in πj,k(T ) have S ≻ T (after reordering the columns) and so the result follows.

Now we will have an isomorphism if Qλ is in the kernel of α. Indeed, this would mean that α
defines a surjection M̃λ/Qλ → Sλ. By the first part of the proof, we know that the dimension of
M̃λ/Qλ is at most fλ, the number of standard tableaux on λ. On the other hand, by Proposition
3.3.3, we have that dim(Sλ) = fλ. Therefore α determines an isomorphism M̃λ/Qλ → Sλ. Proving
that Qλ is in the kernel of α is detail heavy and is thus omitted.

Corollary 3.5.4. The Specht module Sλ is the vector space with generators vT , as T varies over
numberings of λ, and with relations of the form vT −

∑
vS, where the sum is over all S obtained

from T by exchanging the top k elements of one column with any k elements of the preceding column,
maintaining the vertical orders of each set exchanged. (There is one such relation for each numbering
T , each choice of adjacent columns, and each k at most equal to the length of the shorter column).

Proof: Note, in the proof of Proposition 3.5.3, that α maps [T ] to vT . Then the result follows easily
using the relations that define Qλ.

Remark 3.5.5. The first part of the proof of Proposition 3.5.3 shows that [T ], as T varies over tableaux
of shape λ, span M̃λ/Qλ. In particular, the proof gives us a methodology, called the “straightening
algorithm”, for expressing an element of M̃λ/Qλ as a linear combination of classes of tableaux. For
example, consider the column tabloid [T ] below. As in the proof, the 2nd entry in the 1st column,
namely 4, is strictly larger than its neighbour, namely 3. Hence, we change the representative of [T ]
in M̃λ/Qλ to π1,2(T ) so that only the top row of the resulting tabloids fail to satisfy the increasing
property of tableaux.

1 2

4 3

5 6

=
2 1

3 4

5 6

−
2 1

3 5

4 6

+
1 4

2 5

3 6
.

We then apply the same process to the first two tabloids above and cancel to obtain

1 2

4 3

5 6

=
1 2

3 4

5 6

−
1 3

2 4

5 6

−
1 4

2 5

3 6

−
1 2

3 5

4 6

+
1 3

2 5

4 6
.

7In the sense that S has fewer rows breaking the “increasing” property of tableau.
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The straightening algorithm, using the isomorphism Sλ ∼= M̃λ/Qλ, thus also gives us a procedure for
expressing any generator vT of Sλ in terms of generators vT ′ where T ′ is a tableau.

Remark 3.5.6. It can also be shown that S̃λ is isomorphic to Sλ (which gives another proof of
Theorem 3.5.2 (2)) and we can dually construct an isomorphism between S̃λ and a quotient of Mλ.

3.6 Alternative Construction of Specht Modules

We now make one final construction of the Specht modules Sλ [1]. The goal of this section is to prove
the following result:

Proposition 3.6.1. Fix a tableau T0 of shape λ ⊢ n. Then8

Sλ ∼= C[Sn] · cT0

where cT0 = bT0 · aT0 is as defined in Section 3.1.

Firstly, we note that there is a one-to-one correspondence between tabloids {T} and sums of the
form aT · T =

∑

σ∈R(T ) σ · T . Indeed, we have {T} = {T ′} if and only if aT · T = aT ′ · T ′. Now recall

that Sλ is the subspace of Mλ that is spanned by the elements vT , where

vT = bT · {T} =
∑

q∈C(T )

sgn(q){q · T} (3.10)

as defined in equation (3.3). Thus, for each numbering T , we can associate vT with

bT · (aT · T ). (3.11)

Furthermore, we can fix a tableau T0 of shape λ and write every numbering T in the form T = π · T0

for some π ∈ Sn. Therefore, the elements in (3.11) can be identified with the elements of C[Sn] · cT0

given by
bπT0aπT0π = πbT0aT0

for π ∈ Sn, where we have used that bπT = πbTπ
−1 and aπT = πaTπ

−1. We have thus constructed a
map vπT0 7→ πbT0aT0 from Sλ to C[Sn] · cT0 .

Proof of Proposition 3.6.1: We show that the map defined above is an isomorphism of Sn-modules.
Firstly, it is clear that this map is surjective and a homomorphism of Sn-modules. It remains to
show that Sλ and C[Sn] · cT0 have the same dimension. However, this follows from the Hook length
formula [4, p.57] which states that the number of tableaux of shape λ is given by

fλ =
n!

∏

i≤λj
h(i, j)

where (i, j) is the box on the diagram of shape λ in the ith row and jth column, and h(i, j), called the
hook length, is the number of boxes (i′, j′) on λ where i′ ≥ i, j′ = j or i′ = i, j′ ≥ j. However, it can
also be shown that [2, p.119]

dim(C[Sn] · cT0) =
n!

∏

i≤λj
h(i, j)

.

Therefore, using Proposition 3.3.3, the dimensions of the two spaces are the same and so

Sλ ∼= C[Sn] · cT0 .

This concludes the proof.

Remark 3.6.2. Dually to Proposition 3.6.1 we can also construct an isomorphism between S̃λ and
C[Sn] · aT0 · bT0 .

8This construction is often referred to as Zoë’s construction.
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⋄ Remark 3.6.3. It is intuitive to see that our four constructions of Specht modules9 are essentially
the same. Multiplying a numbering T by the Young symmetrizers aT and bT is the analogue of taking
the column tabloid [T ] or the row tabloid {T} respectively. Indeed, just under Proposition 3.6.1 we
saw that aT · T can be identified with {T} and, similarly, we also have that bT · T can be identified
with [T ]. Therefore our constructions can be viewed as four different ways of constructing the same
equivalence classes in C[Sn], where each class can be represented by a tableau.

4 Representations of the General Linear Group

In this section we will construct all10 irreducible representations of the general linear group GL(E).
Furthermore, similarly to Section 3.4, we will define a representation ring that contains all the rep-
resentations of GL(E) (for E of fixed dimension). This representation ring will allow us to construct
homomorphisms that relate Specht modules Sλ with irreducible representations of GL(E).

4.1 Schur Module Construction

Let E be a finite-dimensional complex vector space of dimension m. For each partition λ of n we
will construct an irreducible representation, denoted by Eλ, of GL(E). Let E×λ denote the cartesian
product of n copies of E so that an element of E×λ can be thought of as a Young diagram where
each box contains a vector in E. Now let F be a complex vector space, we will later define the
representations Eλ to be the universal target module of maps φ : E×λ → F satisfying the following
properties

(1) φ is C-multilinear;

(2) φ is alternating in the entries of any column of λ;

(3) for any v in E×λ, we have φ(v) =
∑

φ(w), where the sum is over all w obtained from v by
exchanging between two given columns, with a given subset of boxes in the right-hand chosen
column.

Note that (1) and (2) imply that φ(v) = −φ(v′), where v′ is obtained from v by interchanging two
entries in a column. For example, with λ = (2, 2, 2), we have

φ







y u

x v

z w







+ φ







x u

y v

z w







(1)
= φ







x+y u

x+y v

z w







(2)
= 0 (4.1)

where the entries in the boxes are vectors in E. The presence of (1) and (2) also means that (3) can
be altered so that the sum is only over exchanges where the boxes are chosen from the top of the
column. For example, let our given subset of the right-hand column be the middle box in a tableau of
shape λ = (2, 2, 2). Then use (4.1) to swap the entry in the middle box with the entry in the top box,
apply the relations (3), where the given subset of the right-hand column is the top box, and finally
use (4.1) to put everything back. Explicitly,

φ







x u

y v

z w







u↔v
= −φ







x v

y u

z w







(3)
= −φ







v x

y u

z w







−φ







x y

v u

z w







− φ







x z

y u

v w







= φ







v u

y x

z w







+φ







x u

v y

z w







+φ







x u

y z

v w







.

9Sλ in Section 3.1, S̃λ in Section 3.5, C[Sn] · aT0
· bT0

and C[Sn] · bT0
· aT0

in Section 3.6.
10All finite-dimensional, holomorphic representations. Holomorphic representations are defined in Section 4.3.
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The properties (1) − (3) appear in the following useful identity for the multiplication of determi-
nants:

Lemma 4.1.1 (Sylvester). For any p× p matrices M and N , and 1 ≤ k ≤ p,

det(M) · det(N) =
∑

det(M ′) · det(N ′),

where the sum is over all pairs of matrices (M ′, N ′) obtained from M and N by exchanging a fixed
set of k columns of N with any k columns of M , preserving the ordering of the columns.

The proof is omitted (see [3, pp.108-109]).

Definition 4.1.2 (Schur Module). We define the Schur module Eλ to be the universal target module
of such maps φ, i.e. this means that Eλ is a complex vector space, we have a map E×λ → Eλ, denoted
by v 7→ vλ, which satisfies (1) − (3), and if F is another such complex vector space then there is a
unique linear map φ̃ which satisfies the following commuting diagram

E×λ Eλ

F

φ

v 7→v
λ

φ̃

Examples 4.1.3. (1) Consider the case λ = (n), which corresponds to a tableau with just one row.
This means property (2) may be dropped and (3) says that all entries commute. Hence, E(n) is
the symmetric power Symn(E).

(2) For λ = (1n) we have a single column and so property (3) may be dropped and (2) says that the
entries are alternating. Thus E(1n) is the exterior algebra

∧n(E).

In order to show that Eλ exists for any λ, we construct it by considering each property (1) − (3)
in turn. Firstly, the universal module with property (1) is the tensor product E⊗λ of n copies of E.
We use this notation to emphasise that each copy of E corresponds to a box in λ. Then the universal
module satisfying properties (1) and (2) is the quotient of E⊗λ generated by all the elements which
have equal entries in a column. If we let µ = (µ1, . . . , µℓ) denote the heights of the columns of λ,
that is µ = λ̃, this module can be identified with

µ1∧

E ⊗C · · · ⊗C

µℓ∧

E.

The map from E×λ to
⊗∧µi E is intuitive to construct. For example,

x1 y1 z1 w1

x2 y2 z2

x3 y3

7→ (x1 ∧ x2 ∧ x3)⊗ (y1 ∧ y2 ∧ y3)⊗ (z1 ∧ z2)⊗ w1 (4.2)

wherein this case
⊗∧µi E =

∧3 E ⊗
∧3 E ⊗

∧2E ⊗ E. This map is denoted by v 7→ ∧v.

Remark 4.1.4. Elements of
⊗∧µi E are strongly linked to the column tabloids we saw in Section

3.5. Indeed, swapping two entries in the column of a column tabloid results in a change of sign. This
mimics the behaviour of elements in the exterior algebra since swapping entries in a wedge product
also results in a change of sign.

Finally, we use property (3) to give

Eλ =

∧µ1 E ⊗C · · · ⊗C

∧µℓ E

Qλ(E)
(4.3)

where Qλ(E) is the submodule generated by all the elements of the form ∧v−
∑

∧w where the sum
is over all w obtained from v as described in (3). It is clear to see that the map E×λ → Eλ induced

24



by v 7→ ∧v satisfies the properties (1)− (3). The relations given by Qλ(E) are another manifestation
of the quadratic relations that we first saw in (3.9).

The fact that Eλ is unique up to canonical isomorphism follows since Eλ is the solution to a
universal problem.

Example 4.1.5. Let λ = (2, 1, 1) and so µ = (3, 1). Then we have that Eλ is the quotient of
∧3E⊗E

generated by the submodule generated by all elements of the form x∧ y ∧ z ⊗ u− u ∧ y ∧ z ⊗ x− x ∧
u ∧ z ⊗ y − x ∧ y ∧ u⊗ z.

⋄ Remark 4.1.6. Following on from Remark 4.1.4, taking the quotient of
⊗∧µi E by Qλ(E) is entirely

analogous to taking the quotient of M̃λ by Qλ. Therefore, using Proposition 3.5.3, we can already see
that there is a strong relationship between Schur modules Eλ and Specht modules Sλ.

4.2 Schur Module Generators

In this section we aim to show that if E has basis e1, . . . , em, then Eλ has basis {eT }, as T varies over
the tableaux on λ with entries in [m] where eT is defined as follows: take a filling T of λ with elements
in [m], then we can build an element in Eλ by replacing any i in a box of T by the element ei. Then
eT is the image of this element in Eλ.

We first need an alternative construction of Eλ.

Lemma 4.2.1. If E has basis e1, . . . , em, then Eλ ∼= E⊗λ/Q, where E⊗λ has basis comprising elements
eT for all fillings T of λ with entries in [m], and Q is generated by the elements

(i) eT , where T has equal entries in any column;

(ii) eT + eT ′ , where T ′ is obtained from T by interchanging two entries in a column;

(iii) eT −
∑

eS , where the sum is over all S obtained from T by an exchange as in (3).

Proof: This follows from the construction (4.3) and noting that the map E⊗λ → Eλ is multilinear.
(For more details see [3, p.108].)

Before proving that Eλ has basis {eT }, as T varies over the tableaux with entries in [m], we show
that there is a linear map from Eλ to a subring of the polynomial ring C[Z1,1, Z1,2, . . . , Zn,m] where
Zi,j are indeterminates for 1 ≤ i ≤ n, 1 ≤ j ≤ m. This will allow us to work in C[Z1,1, Z1,2, . . . , Zn,m]
making said result easier to prove.

For each p-tuple i1, . . . , ip of integers from [m], with p ≤ n, set

Di1,...,ip = det






Z1,i1 · · · Z1,ip
...

...
Zp,i1 · · · Zp,ip




 .

For an arbitrary filling T of λ with numbers in [m], define

DT =

ℓ∏

j=1

DT (1,j),T (2,j),...,T (µj ,j), (4.4)

where µ = (µ1, . . . , µℓ) is the conjugate of λ and T (i, j) is the entry of T in the ith row and jth column.

Example 4.2.2. Let T =
3 2
1 and so we have

DT = D3,1D2 =

∣
∣
∣
∣

Z1,3 Z1,1

Z2,3 Z2,1

∣
∣
∣
∣
· Z1,2 = Z1,2Z1,3Z2,1 − Z1,1Z1,2Z2,3.

Lemma 4.2.3. If E has basis e1, . . . , em, then there is a homomorphism of C-vector spaces

Eλ → C[Z1,1, Z1,2, . . . , Zn,m]

such that eT 7→ DT .
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Proof: Using Lemma 4.2.1 it suffices to show that the DT satisfy (i)−(iii). Indeed, we would then have
that there is a unique linear map from Eλ to the span of DT in C[Z1,1, Z1,2, . . . , Zn,m]. Firstly, if T has
two equal entries in column j, then DT (1,j),T (2,j),...,T (µj ,j) is the determinant of a matrix with two equal
columns and thus DT (1,j),T (2,j),...,T (µj ,j), and hence DT , is zero. This gives us (i). Secondly, suppose

that T ′ is obtained from T by transposing two entries in the jth column. Then DT (1,j),T (2,j),...,T (µj ,j)

and DT ′(1,j),T ′(2,j),...,T ′(µj ,j) are the determinant of the same matrix, except that two columns have
been swapped. Therefore, by the properties of determinants, we have that DT = −DT ′ so that (ii)
holds.

Finally, consider an exchange as in (3). Suppose that the exchange takes place between the ith

and jth columns of T . Let i1, . . . , ip and j1, . . . , jq be the entries in these columns respectively. Define
p× p matrices

M =






Z1,i1 . . . Z1,ip
...

...
Zp,i1 . . . Zp,ip




 , N =






Z1,j1 . . . Z1,jq 0...
...

Ip−qZp,j1 . . . Zp,jq






and observe that detM = DT (1,i),T (2,i),...,T (p,i) and detN = DT (1,j),T (2,j),...,T (q,j). Hence,

DT = (detM · detN)
∏

s 6=i,j

DT (1,s),T (2,s),...,T (µs,s).

From here we can apply Sylvester’s Lemma (4.1.1) to M and N with the exchange between columns
of M and the fixed subset of the columns of N that correspond to the same fixed subset of boxes in
the jth column of T . This gives us (iii) and so we’re done.

We can now prove the main result of Section 4.2.

Theorem 4.2.4. If E has basis e1, . . . , em, then Eλ has basis eT , as T varies over the tableaux on λ
with entries in [m]. Moreover, the map from Eλ to C[Z1,1, Z1,2, . . . , Zn,m] is injective and its image
Dλ has basis DT , as T varies over the tableaux on λ with entries in [m].

Proof: Consider the ordering T ′ ≻ T as defined in the proof of Proposition 3.5.3. Let T be some filling
of λ with entries in [m]. Using Eλ ∼= E⊗λ/Q we show that eT can be written as a linear combination
of eS , where S ≻ T , and elements of Q. Indeed, S ≻ T means that S is “closer” to being a tableau (as
we saw in the proof of Proposition 3.5.3) and so the fact that the eT , as T varies over tableaux, are
spanning will thus follow. Now we may use the properties (i) and (ii) of Lemma 4.2.1 to assume that
the columns of T are strictly increasing. If not then, either T has two equal entries in a column and
is thus zero, or there is a filling T ′ ≻ T that has strictly increasing columns and is equivalent to T in
this presentation. Now suppose that T is not a tableau. Suppose that the kth entry of the jth column
is strictly larger than the kth entry of the (j + 1)th column. Then using sums as in (iii) we can write
eT =

∑
eS where the sum is over all fillings S whereby the top k entries in the (j + 1)th column are

replaced with k entries in the jth column. Then, since the columns of T are strictly increasing, this
guarantees that each filling S (after reordering the columns) satisfies S ≻ T .

We now show that the eT are linearly independent. By Lemma 4.2.3 it suffices to show that the
DT are linearly independent (as T varies over tableaux). Firstly we define an ordering on monomials
in the variables Zi,j. We say that Zi,j < Zi′,j′ if i < i′ or if we have i = i′ and j < j′. Using this we
order the monomials lexicographically whereby M1 < M2 if the smallest Zi,j that occurs (in either)
has a smaller power in M1 than in M2. Note that this ordering is preserved by multiplication. It
follows that the smallest monomial in Di1,...,ip , if i1 through ip are strictly increasing, is the diagonal
term Z1,i1 , . . . , Zp,ip . Hence, if T has strictly increasing columns, the smallest monomial in DT is

∏

(Zi,j)
mT (i,j),

where mT (i, j) is the number of times j occurs in the ith row of T . Notice that this monomial occurs
with a coefficient of 1.
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Now suppose that
∑

rTDT = 0 where the sum is over tableaux T . Now order the tableaux in
this sum as follows. Say that T is smaller than T ′ if for the smallest i for which there exists a j with
mT (i, j) 6= mT ′(i, j), and the smallest such j, then mT (i, j) < mT ′(i, j). Let T be the maximal tableau
in this ordering. Then

rTDT +
∑

T 6=T ′

rT ′DT ′ = 0

and the above ordering guarantees that the smallest monomial in DT , namely
∏
(Zi,j)

mT (i,j), is the
smallest monomial in the entire sum. Thus if rT 6= 0 (else ignore T and take next smallest tableau)
the coefficient of

∏
(Zi,j)

mT (i,j) in the sum must be rT . This shows linear independence.
Finally, by the above, we have that the map Eλ → Dλ sends basis vectors to basis vectors and is

therefore a linear isomorphism. Hence, Eλ → C[Z1,1, Z1,2, . . . , Zn,m] is injective.

Before using Schur modules Eλ to construct all the irreducible representations of GL(E) we give
one more lemma that will later allow us to decompose the Eλ (in a manner we will see later). This
will consequently help us prove the results of Section 4.3 about irreducible representations of GL(E).

Lemma 4.2.5. Let g = (gi,j) ∈ Mm(C) and let T be a filling with entries j1, . . . , jn in its n boxes.
Then

g · eT =
∑

gi1,j1 · . . . · gin,jneT ′ ,

where the sum is over the mn fillings T ′ obtained from T by replacing the entries (j1, . . . , jn) with
(i1, . . . , in).

⋄ Example 4.2.6. Here is an example of the formula given in Lemma 4.2.5. Suppose E has dimension
2 and basis e1, e2.

(1) Let g =
(
a b
c d

)
∈ M2(C) and let T = 1

2 . Then

g · eT = g ·
e1

e2
= ab ·

e1

e1
+ ad ·

e1

e2
+ bc ·

e2

e1
+ cd ·

e2

e2

which is indeed a sum over mn = 22 = 4 fillings of T .

(2) Let g = ( 1 1
0 1 ) ∈ M2(C) and let T = 1 2

2 . Then

g · eT = g ·
e1 e2

e2
=

e1 e1

e1
+

e1 e1

e2
+

e1 e2

e1
+

e1 e2

e2
.

Note that in the above examples the structure of Eλ has been ignored. In particular, Young diagrams
with equal entries in a column should vanish.

4.3 Irreducible Representations of GL(E)

We now show that the Schur modules Eλ are irreducible representations and that all finite-dimensional
(holomorphic) representations of GL(E) can be described in terms of these representations.

Definition 4.3.1 (Polynomial/holomorphic Representation). A representation V of GL(E) is said
to be polynomial/holomorphic if the corresponding map ρ : GL(E) → GL(V ) is given by polynomi-
als/holomorphic functions.

Example 4.3.2. [8, p.1] We give a small example of a polynomial representation. Let λ = (2) and
let E be a 2-dimensional vector space with basis e1, e2. Then, using Examples 4.1.3 (1), we have that
E(2) = Sym2(E) and is a representation of GL(E) with basis e21, e1e2, e

2
2. Now let g =

(
a b
c d

)
∈ GL(E).

Then g acts on e1 and e2 as

e1 7→ ae1 + ce2
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e2 7→ be1 + de2

Thus g acts on the basis e21, e1e2, e
2
2 in E(2) as





a2 2ab b2

ac ad+ bc bd
c2 2cd d2



 .

Thus, since all the entries are polynomial expressions, we have that E(2) is a polynomial representation
(and therefore also a holomorphic representation). In fact, for all partitions λ of n, we have that Eλ

is a polynomial representation.

We will show later in this section that all irreducible polynomial representations of GL(E) are
exactly the Schur modules Eλ, where λ varies over all Young diagrams with at most m = dimE rows.
To prove this we first need to look at weight spaces which will allow us to characterise finite-dimensional
holomorphic representations.

Choose a basis for E and let H ≤ G denote the subgroup of G that consists of diagonal matrices
x = diag(x1, . . . , xm). Then a vector v in a representation V is called a weight vector with weight
α = (α1, . . . , αm), for integers αi, if

x · v = xα1
1 · · · xαm

m v

for all x ∈ H. It is a general fact that any representation of GL(E) is a direct sum of its weight spaces.
That is, V =

⊕
Vα, where

Vα :=
{

v ∈ V | x · v =
(∏

xαi

i

)

v ∀x ∈ H
}

.

Lemma 4.3.3. The Schur module Eλ decomposes into weight spaces

Eλ =
⊕

α

Vα

where, for α = (α1, . . . , αm), we have that Vα has basis eT as T varies over all tableaux that have αi

entries i.

⋄ Proof: Consider the basis {eT } for Eλ, as given in Theorem 4.2.4. It suffices to show that the eT are
weight vectors and have weight as given in the lemma. However, this all follows from Lemma 4.2.5
(For example, consider Examples 4.2.6 (1) with b = c = 0.)

We also define the highest weight vector. Let B ≤ G be the subgroup of all upper triangular
matrices. A weight vector v in V is called a highest weight vector if B · v = C

∗ · v. Highest weight
vectors uniquely determine irreducible finite-dimensional holomorphic representations (see Theorem
4.3.9 later) and, consequently, will be very useful for proving results about the irreducibility of Eλ.

Example 4.3.4. [7, p.33] We decompose E(2) = Sym2(E) from Example 4.3.2 into its weight spaces.
By said example we see that (m 0

0 n ) ∈ H ≤ G acts on the basis e21, e1e2, e
2
2 as

e21 7→ m2e21

e1e2 7→ mne1e2

e22 7→ n2e22.

Thus E(2) = V(2,0) ⊕V(1,1) ⊕ V(0,2) where V(2,0) = span{e21}, V(1,1) = span{e1e2} and V(0,2) = span{e22}.
Notice that this agrees with Lemma 4.3.3 since the tableaux with shape λ = (2) with entries in {1, 2}
are 1 1 , 1 2 , 2 2 which correspond to e21, e1e2, e

2
2 respectively.

From this example we can also see that all polynomial representations have non-negative weights.
Indeed, a negative weight in a polynomial representation will only occur if we have negative exponents
and this is absurd.
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We can also find the11 highest weight vector. We see that
(
a b
0 d

)
∈ H ≤ G acts on e21 as

e21 7→ a2e21.

Thus e21 is the highest weight vector in E(2) with weight (2, 0).

The last result in the example above can be generalised.

Lemma 4.3.5. The only highest weight vector in Eλ (up to scalar multiplication) is the vector eT ,
where T = U(λ) is the tableau on λ whose ith row only contains the integer i.

⋄ Example 4.3.6. For example if λ = (6, 4, 2, 2, 1) then U(λ) is given by

1 1 1 1 1 1
2 2 2 2
3 3
4 4
5 .

Proof of Lemma 4.3.5: Using Lemma 4.2.5 it is straight forward to show that eT , for T = λ(U), is a
highest weight vector. (Consider Example 4.2.6 (1) with c = 0.12) Indeed, for g = (gi,j) ∈ B we have

g · eT =
∑

gi1,j1 · . . . · gin,jneT ′ ,

where the sum is as described in Lemma 4.2.5. However, since B consists of upper unitriangular
matrices we have gi,j = 0 for i > j. Now consider eT ′ with T 6= T ′. Then let j be the smallest integer
such that the jth row of T and T ′ differ and let i be the smallest entry in the jth row of T ′ such that T
and T ′ differ in the box corresponding to i. Now if i > j then gi,j = 0 and so eT ′ has zero coefficient in
the sum that gives g · eT . On the other hand, if i < j, by the form of T we see there must be another
entry i in that column. Therefore, by the alternating property of Eλ, we have that eT ′ = 0 in Eλ.
We conclude that the only possible non-zero entry in the sum will be a multiple of eT and so eT is a
highest weight vector.

To conclude we show that eU(λ) is the only highest weight vector in Eλ. Consequently, suppose
that T 6= U(λ) is a tableau with entries in [m] and eT is a highest weight vector. (Note that we need
only consider the case where T is a tableau by Lemma 4.3.3.) Let p be such that the pth row of T is
the first row that contains an element larger than p and let q be the smallest such entry. Now define
g = (gi,j) ∈ B where

gi,j =

{

1 i = j or (i, j) = (p, q)

0 otherwise.

Then consider T ′ where T ′ is the filling obtained from T by changing every instance of q in the pth

row of T to a p. Then eT ′ has coefficient 1 in the sum g · eT and so eT is not a highest weight vector.
(See Example 4.3.7 for a demonstration of this argument.)

⋄ Example 4.3.7. We give an example of a weight vector that is not a highest weight vector. Let E
have basis e1, e2, e3 and let λ = (4, 2). Now adopt the notation at the end of the proof of Lemma 4.3.5
and set

T = 1 1 1 1
2 3

and thus we obtain p = 2, q = 3 and

g =





1 0 0
0 1 1
0 0 1





11See Lemma 4.3.5.
12where term with coefficient ab in the sum vanishes by the alternating property of Eλ.
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Now eT corresponds to the vector (e1 ∧ e2)⊗ (e1 ∧ e3)⊗ e1 ⊗ e1 in Eλ and so compute

g · eT = g ·
(
(e1 ∧ e2)⊗ (e1 ∧ e3)⊗ e1 ⊗ e1

)

= (e1 ∧ e2)⊗ (e1 ∧ (e2 + e3))⊗ e1 ⊗ e1

= (e1 ∧ e2)⊗ (e1 ∧ e3)⊗ e1 ⊗ e1 + (e1 ∧ e2)⊗ (e1 ∧ e2)⊗ e1 ⊗ e1

= eT + (e1 ∧ e2)⊗ (e1 ∧ e2)⊗ e1 ⊗ e1,

which is not a multiple of eT . Thus we see that eT is not a highest weight vector.

Remark 4.3.8. Note that the highest weight vector is literally the weight vector with the highest
weight. For example, using Lemma 4.3.3 we see that for Eλ the weight vector eT with the highest
possible weight α (in the lexicographic ordering) will be given by the tableaux T = U(λ).

The final step before characterising all irreducible representations of GL(E) is to consider some
basic facts about representation theory.

Theorem 4.3.9. A finite-dimensional, holomorphic representation V of GL(E) is irreducible if and
only if it has unique highest weight vector, up to multiplication by a scalar.

In addition, two representations are isomorphic if and only if their highest weight vectors have the
same weight.

For a proof of this theorem see Fulton and Harris [4]. Now let D⊗k denote the one-dimensional
representation of E such that g 7→ det gk. We are now in a position to give the theorem we have been
working towards:

Theorem 4.3.10. If λ has at most m rows, then the representation Eλ of GL(E) is an irreducible
representation with highest weight λ = (λ1, . . . , λm). These are all the irreducible polynomial repre-
sentations of GL(E). Furthermore, for any α = (α1, . . . , αm) with α1 ≥ · · · ≥ αm integers, there is
a unique irreducible representation of GL(E) with highest weight vector α, which can be realised as
Eλ ⊗D⊗k, for k ∈ Z with λi = αi − k ≥ 0 for all i.

Proof: For the first part we have by Lemma 4.3.5 that each Eλ has unique highest weight vector eT
where T = U(λ) and it is not difficult to show that eT has weight λ. Thus, by Theorem 4.3.9, we have
that Eλ is irreducible.

Conversely, by Theorem 4.3.9 again, any representation of GL(E) with weight λ = (λ1, . . . , λm)
(for λ1, . . . , λm > 0) must be isomorphic to Eλ. Hence, they define all the irreducible polynomial
representations of GL(E).

Now for the second part of the theorem, since Eλ is irreducible, we have that Eλ ⊗ D⊗k is an
irreducible representation with highest weight α where αi = λi+k. Indeed, for eT ∈ Eλ with T = U(λ)
and g = diag(g1, . . . , gm) ∈ GL(E) we have

g · (eT ⊗ 1) = (g · eT )⊗ det (g)k = (gλ1
1 · · · gλm

m eT )⊗ (gk1 · · · g
k
m) = gλ1+k

1 · · · gλm+k
m (eT ⊗ 1).

This concludes the proof.

4.4 Specht and Schur Module Relationship

We now construct an exact functor from the category of Sn-modules to the category of GL(E)-modules.
In particular, this will give us an alternative way to construct the Schur modules Eλ. Let M be a
representation of Sn and define

E(M) := E⊗n ⊗C[Sn] M

where for σ ∈ Sn we have (u1 ⊗ · · · ⊗ um) · σ = uσ(1) ⊗ · · · ⊗ uσ(m). Now the natural action of GL(E)
on E⊗n commutes with the action of Sn, thus we obtain an action of GL(E) on E(M)

g · (w ⊗ v) = (g · w)⊗ v.
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This construction defines an exact functor from the category of Sn-modules to the category of GL(E)
modules. That is, a representation M of Sn determines a representation E(M) of GL(E) and a
homomorphism of Sn-modules φ : M → N determines a homomorphism of GL(E)-modules E(φ) :
E(M) → E(N). Furthermore, E sends injective/surjective homomorphisms of Sn-modules to injec-
tive/surjective homomorphisms of GL(E)-modules. In addition to being an exact functor, we also
have that E preserves direct sum decompositions.

Examples 4.4.1. (1) Take M to be the trivial representation. Then for any σ ∈ Sn we have

(uσ(1) ⊗ · · · ⊗ uσ(m))⊗ 1 = (u1 ⊗ · · · ⊗ um)⊗ σ · 1 = (u1 ⊗ · · · ⊗ um)⊗ 1

and thus E(M) is the symmetric power Symn(E).

(2) If M = C[Sn] then E(M) = E⊗n.

(3) If Mλ is as defined in Section 3.1, then

E(Mλ) ∼= Symλ1(E) ⊗ · · · ⊗ Symλk(E),

for λ = (λ1 ≥ · · · ≥ λk). This can be seen by noting that if T is a numbering of λ with distinct
entries in {1, . . . , n} then {T} is invariant under the action of the row group R(T ). More rigorously,
the map C[Sn] → Mλ given by σ 7→ σ · {T} is a surjective homomorphism of C[Sn] modules and
has kernel generated by elements p− 1 for p ∈ R(T ). Thus, since E is an exact functor, we obtain
a surjection E⊗n → E(Mλ), whose kernel is generated by all elements

up(1) ⊗ · · · ⊗ up(n) − u1 ⊗ · · · ⊗ un

over all p ∈ R(T ).

(4) Now take M = M̃λ as in Section 3.5. Similarly to above, we have a surjective homomorphism of
C[Sn]-modules given by C[Sn] → M̃λ; σ 7→ σ · [T ]. This map has kernel generated by elements
q − sgn(q)1 for q ∈ C(T ) and again this induces a surjection E⊗n → E(M̃λ) whose kernel is
generated by the elements

uq(1) ⊗ · · · ⊗ uq(n) − sgn(q)u1 ⊗ · · · ⊗ un

over all q ∈ C(T ). Thus

E(M̃λ) ∼=

µ1∧

(E)⊗ · · · ⊗

µℓ∧

(E),

where µ = (µ1, . . . , µℓ) is the conjugate of λ. This is analogous to (4.2) whereby each column of
a tabloid (with entries being elements in E) is identified with wedge product.

We can now give an alternative construction of Eλ:

Proposition 4.4.2. There is a canonical isomorphism Eλ ∼= E(Sλ).

Proof: It is sufficient to show that

Eλ ∼=
E(M̃λ)

E(Qλ)
. (4.5)

Indeed, by Proposition 3.5.3, we know that Sλ ∼= M̃λ/Qλ. Then, since E is an exact functor, it sends
the short exact sequence

0 → Qλ → M̃λ → Sλ → 0

to the short exact sequence

0 → E(Qλ) → E(M̃λ) → E(Sλ) → 0.
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In order to prove (4.5), we first use the construction of Eλ given in (4.3), which gives us that

Eλ =

∧µ1 E ⊗C · · · ⊗C

∧µℓ E

Qλ(E)
.

Then, in Examples 4.4.1 (4), we saw that E(M̃λ) ∼=
∧µ1(E)⊗ · · · ⊗

∧µℓ(E). Using the same identifi-
cation, we also have that Qλ(E) ∼= E(Qλ). Indeed, Qλ(E) is the submodule of

∧µ1 E⊗C · · · ⊗C

∧µℓ E
generated by all the elements of the form ∧v−

∑
∧w where the sum is as described in (3) at the start

of Section 4.1. On the other hand, Qλ is the subspace of M̃λ spanned by all elements of the form

[T ]− πj,k(T )

as defined in Section 3.5. Therefore we see that these generators correspond under the identification
E(M̃λ) ∼=

∧µ1(E)⊗ · · · ⊗
∧µℓ(E).

Finally, we now have that

Eλ ∼=
E(M̃λ)

E(Qλ)
∼= E(Sλ)

and so this concludes the proof.

4.5 Characters of Representations of GL(E)

In the next section we construct maps that relate the ring of symmetric functions (Section 2.3),
representations of the symmetric group (Section 3.2), polynomial representations of the GL(E) and
their characters. In light of this, we first need to discuss the characters of Schur modules.

Recall that for representations V and W it is known that

Char(V ⊕W ) = Char(V ) + Char(W ) Char(V ⊗W ) = Char(V ) · Char(W ). (4.6)

Recall also, from Section 4.3, that any representation V of GL(E) can be written as a direct sum of its
weight spaces V =

⊕
Vα. Thus, letting χV denote that character of V , for x = diag(x1, . . . , xm) ∈ H

we see that
χV (x) =

∑

α

dim(Vα)x
α =

∑

α

dim(Vα)x
α1
1 · . . . · xαm

m ,

which defines the character for any element in G = GL(E) using the additive property in (4.6). In
particular, the weight space decomposition of Eλ in Lemma 4.3.3 gives us:

Lemma 4.5.1. The Schur module Eλ has character given by

Char(Eλ) =
∑

xT = sλ(x1, . . . , xm)

where the sum is over all tableaux of shape λ with entries in [m] and sλ is the Schur polynomial defined
in Section 2.2.

This result allows us to deduce some useful facts about Schur polynomials and, using that the
character of a representation is unique, deduce some useful facts about Schur modules using Schur
polynomials.

Firstly, by Proposition 3.3.3 and Theorem 3.2.1, we know that

C[Sn] =
⊕

λ⊢n

(Sλ)⊕fλ

where fλ is the number of standard tableaux on λ. This gives us

E⊗n = E(C[Sn]) ∼=
⊕

λ⊢n

(E(Sλ))⊕fλ ∼=
⊕

λ⊢n

(Eλ)⊕fλ

(4.7)

where we have used Examples 4.4.1 (2) in the first equality and made use of the fact that E preserves
direct sum decompositions. We can use (4.7) to give an alternative proof that the eT , as T varies
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over the tableaux on λ with entries in [m], are linearly independent (the second part of the proof of
Theorem 4.2.4). Indeed, the first part of the proof of Theorem 4.2.4 gives us that dim(E) ≤ dλ(m),
where dλ(m) is the number of tableaux of shape λ with entries in [m]. Now from the Robinson-
Schensted correspondence [3, p.52] it follows that

mn =
∑

λ⊢n

fλdλ(m).

Therefore ∑

λ⊢n

fλdλ(m) = mn = dim(E⊗n) =
∑

λ⊢n

fλ dim(Eλ) ≤
∑

λ⊢n

fλdλ(m)

and so Eλ has dimension dλ(m). Now there are dλ(m) many eT and they span Eλ (by the first part
of the proof of Theorem 4.2.4). Hence, the eT must be linearly independent.

Now using equations (4.6) and Lemma 4.5.1 (and Theorem 4.3.10) we have that any polynomial
representation V =

⊕
(Eλ)⊕aλ of GL(E) has character

∑
aλsλ(x1, . . . , xm). This also means that we

can determine the highest weights13 using the character. Indeed, each sλ has a monomial xU(λ), with
U(λ) as defined in Lemma 4.3.5, from which we can read off a highest weight.

Using the above we can find the decomposition of any polynomial representation of GL(E) by
expressing its character as a sum of Schur polynomials. For example, using Examples 4.1.3 (1) and
equation (2.9), since s(λk) = h(λk), we’re able to deduce that

Symλ1E ⊗ · · · ⊗ SymλnE = E(λ1) ⊗ · · · ⊗ E(λn) ∼= Eλ ⊕
⊕

ν⊲λ

(Eν)⊕Kνλ

where Kνλ is the Kostka number. Similarly, using Examples 4.1.3 (2) and equation (2.10), since
s1(µk) = eµk

, we have that

µ1∧

E ⊗ · · · ⊗

µℓ∧

E = E(1µ1 ) ⊗ · · · ⊗ E(1µℓ ) ∼= Eµ̃ ⊕
⊕

ν̃⊲µ

(Eν)⊕Kν̃λ .

Finally, using the Schur polynomial equivalent of equation (2.7), we have

Eλ ⊗ Eµ ∼=
⊕

ν

(Eν)⊕cν
λµ .

where cνλµ is the Littlewood-Richardson number.

4.6 Representation Ring of GL(E)

As mentioned at the start of Section 4.5, we now aggregate the results of Section 2.3, Section 3.2
and Section 4.5. Firstly, we need an analogous construction to the ring of representations of Sn

(defined in Section 3.4) for the general linear group GL(E). Define the representation ring of GL(E),
denoted by R(m), to be the free abelian group on the isomorphism classes of irreducible polynomial
representations of GL(E). This is a commutative ring with operations

[V ] + [W ] := [V ⊕W ], [V ] · [W ] := [V ⊗C W ].

Recall that Λ is the ring of symmetric functions (Section 2.3), R is the ring of representations of the
symmetric group (Section 3.4) and Λ(m) is the ring of polynomials in the variables x1, . . . , xm. We
are therefore now in a position to give the main statement of this section (and perhaps the entire
project):

Theorem 4.6.1. There are ring homomorphisms

Λ
∼
−→ R ։ R(m)

∼
−→ Λ(m) (4.8)

where the first and last are isomorphisms and the middle is surjective where the kernel, denoted by W ,
is the subring of R spanned by [Sλ] where λm+1 6= 0.

13We have weights not weight because these representations are not necessarily irreducible.
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Proof: The first homomorphism is given by φ : Λ → R, which we defined in Section 3.4. Further, φ
was shown to be an (isometric) isomorphism in Theorem 3.4.3 and the same theorem also showed that
φ takes the Schur polynomial sλ to the Specht module Sλ.

The second homomorphism is given by E, defined at the start Section 4.4, which sends a rep-
resentation M of Sn to a representation E(M) of GL(E). Indeed, we have already noted that E
preserves direct sum decompositions, and, if M is an Sn-module and N an Sm-module, it can be
shown that [3, p.118]

E(N ◦M) ∼= E(N)⊗ E(M)

where N ◦M is the representation of Sn+m defined in (3.5).
The last homomorphism sends representations of GL(E) to their characters. It follows from equa-

tions (4.6) that this defines a homomorphism R(m) → Λ(m). Now, to show that this is an isomor-
phism, we first note that injectivity follows because representations are uniquely determined by their
character. To prove surjectivity it suffices to show that the composition Λ → Λ(m) is surjective.
To this end, we observe that the first of the maps in the composition Λ → Λ(m) takes the Schur
polynomial sλ to the Specht module class [Sλ], the second takes [Sλ] to [Eλ] and the third takes Eλ

to its character sλ(x1, . . . , xm). By Proposition 2.3.2 the sλ form a basis for Λ, hence the composition
Λ → Λ(m) takes a symmetric function f to f(x1, . . . , xm, 0, . . . , 0). It is clear to see that this is
surjective.

The above shows that E : R → R(m) is surjective and so it remains to compute the kernel of the
middle homomorphism. Notice that the composition Λ → Λ(m) has kernel generated by the Schur
polynomials sλ for all λ with more than m rows. Indeed, if λ has more than m rows then a tableau
of shape λ with entries in [m] doesn’t exist and so sλ(x1, . . . , xm) = 0. Therefore we deduce that the
kernel of E is the subring of R spanned by [Sλ] where λm+1 6= 0, namely W .

The conclusions of Theorem 4.6.1 are summarised in the following diagram:

0

W

0 Λ 0R

0 R(m) Λ(m) 0

0

5 The Grassmannian

In this section we express some of the results of Chapter 4 in terms of symmetric algebras, express
the Grassmannian as a subvariety of projective space using the quadratic relations and draw parallels
between both of these.

5.1 The Ideal of Quadratic Relations

We firstly use the quadratic relations to define a symmetric algebra that is isomorphic to a direct sum
of Schur modules Eλ. We do this because this symmetric algebra will also play a role in expressing
the Grassmannian as a subvariety of projective space in Section 5.3.
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For a complex vector space V define

Sym V =
∞⊕

n=0

SymnV

where Sym0V = C. We can equip Sym V with the natural map

SymnV ⊗ SymmV 7→ Symn+m(V ); v1 · · · vn ⊗ w1 · · ·wm 7→ v1 · · · vnw1 · · · vm

which makes Sym V a commutative (graded) C-algebra. Taking a basis X1, . . . ,Xr for V we can
identify Sym V with the polynomial ringC[X1, . . . ,Xr], which is then the space of polynomial functions
on V ∗. Let E be a vector space of dimension m and fix integers m ≥ d1 > · · · > ds > 0. We define
the algebra

Sym(E; d1, . . . , ds) =

⊕

(a1,...,as)∈Ns Syma1(
∧d1 E)⊗ · · · ⊗ Symas(

∧ds E)

Q

where Q = Q(E; d1, . . . , ds) is the ideal generated by all relations, for p, q ∈ {d1, . . . , ds} with p ≥ q,
of the form

(v1 ∧ · · · ∧ vp) · (w1 ∧ · · · ∧ wq) −
∑

i1<···<ik

(v1 ∧ · · · ∧w1 ∧ · · · ∧ wk ∧ · · · ∧ vp) · (vi1 ∧ · · · ∧ vik ∧ wk+1 ∧ · · · ∧ wq) (5.1)

where v1, . . . , vp, w1, . . . , wq ∈ E and the vectors w1, . . . , wk are interchanged with vi1 , . . . , vik in the
sum. Also, note that if p > q then · in equation (5.1) represents ⊗ since the generator is in

∧pE⊗
∧q E.

If p = q then · can be ignored since the generator is in Sym2(
∧pE); this is because the d1, . . . , ds are

distinct and so none of the tensor components in Sym(E; d1, . . . , ds) are of the form
∧pE ⊗

∧pE.
This construction has connections with the Schur modules we discussed in Section 4. Let λ

be a partition with conjugate λ̃ = (da11 , . . . , dass ) for non-negative integers a1, . . . , as. In Section 4.1
(explicitly equation (4.3)) we saw that

Eλ =
Syma1

(
∧d1 E

)

⊗C · · · ⊗C Symas
(
∧ds E

)

Qλ(E)
(5.2)

where we have used the fact that

Symak
(
∧dk E

)

Qλ(E)
=

ak times
︷ ︸︸ ︷
(

dk∧

E ⊗C · · · ⊗C

dk∧

E

)

Qλ(E)
.

This follows from relation (3) in Section 4.1 since

(vi1 ∧ · · · ∧ vidk )⊗ (vj1 ∧ · · · ∧ vjdk ) = (vj1 ∧ · · · ∧ vjdk )⊗ (vi1 ∧ · · · ∧ vidk )

where we have exchanged all dk of the indices. Thus by (5.2), we have that Sym(E; d1, . . . , ds) is a
direct sum of copies of the Schur modules Eλ, one for each λ with columns of heights in {d1, . . . , ds}.

We can produce an analogous result for the identification of Eλ with the subalgebra Dλ of
C[Z1,1, Z1,2, . . . , Zn,m] (which we saw in Theorem 4.2.4). Choose a basis e1, . . . , em for E so that
we can identify Sym(E; d1, . . . , ds) with a quotient of a polynomial ring. Indeed, we saw above that

Sym
(
⊕∧di E

)

can be identified with the polynomial ring

C[Xi1,...,ip ; p ∈ {d1, . . . , ds}]
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where i1, . . . , ip ∈ [m] andXi1,...,ip is the indeterminant corresponding to the basis vector ei1∧· · ·∧eip ∈
∧pE. Then in this setting we can define

Sym(m; d1, . . . , ds) =
C[Xi1,...,ip ; p ∈ {d1, . . . , ds}]

Q
(5.3)

where Q is the ideal generated by all the quadratic relations

Xi1,...,ipXj1,...,jq −
∑

Xi′1,...,i
′

p
Xj′1,...,j

′

q
(5.4)

where the sum is over all ways in which we can exchange j1, . . . , jk with k of the indices i1, . . . , ip,
with p ≥ q ≥ k ≥ 1 and p, q ∈ {d1, . . . , ds}.

Now recall that Dλ(∼= Eλ) is generated by the elements DT , as T varies over the tableaux on
λ with entries in [m], where DT was defined in (4.4). Hence, if n ≥ d1, then Sym(m; d1, . . . , ds) is
isomorphic to the subalgebra of C[Z1,1, Z1,2, . . . , Zn,m] generated by all DT , where T varies over all
the tableaux with entries in [m] on Young diagrams whose columns have heights in {d1, . . . , ds}.

14

Indeed, we have already seen that each Eλ is isomorphic to Dλ and so the result follows since it can
be shown that the sum of Dλ in C[Z1,1, Z1,2, . . . , Zn,m] is direct.

The identification of Sym(m; d1, . . . , ds) with a subalgebra of C[Z1,1, Z1,2, . . . , Zn,m] allows us
to deduce an important result that will be useful for Section 5.3. Notice, since subrings of inte-
gral domains are integral domains, that Sym(E; d1, . . . , ds) is an integral domain. Then, using that
Sym(E; d1, . . . , ds) can also be defined as the symmetric algebra on

∧d1 E ⊕ · · · ⊕
∧ds E, we obtain:

Proposition 5.1.1. The ideal in Sym
(
∧d1 E

)
⊗

· · ·
⊗

Sym
(
∧dd E

)

generated by the quadratic re-

lations is a prime ideal.

5.2 Projective Embedding of the Grassmannian

In order to express the Grassmannian as a subvariety of projective space we first need to embed it in
projective space. This section, therefore, introduces the Plücker embedding, which does just that.

Let E be a vector space of dimension m over C. For 0 < d ≤ m define GrdE to be the collection
of subspaces of E of codimension d, we call GrdE the Grassmannian. We start by giving an explicit
construction of GrdE. Let e1, . . . , em be a basis for E and consider a k-dimensional subspace V of
E where k := m − d. Let v1, . . . , vk ∈ E be a basis for V and associate V to the matrix with rows
v1, . . . , vk. This does not give us a well-defined map GrdE → Mk×m(C). Indeed, left multiplication
by an element GL(E) can produce a different matrix with the same row span.

To assign a unique matrix to each element in GrdE we associate the matrix with rows v1, . . . , vk
to the vector that contains all the k × k matrix minors of the k ×m matrix. For example, consider
the case k = 3 and m = 4. The matrix

A =





1 2 0 2
0 4 0 1
3 0 0 0





is associated to the vector (0,−18, 0, 0). This association is unique for an element of GrdE (up to
scalar). Indeed, suppose that the vector described above, for two subspaces V1, V2 of E (with dimension
k), is exactly the same. Let A1, A2 be the matrices with row span equal to V1, V2 respectively. Then,
since A1 and A2 have rank k, we can apply Echelon row operations so that the k× k matrix minor in
the first m− d columns is the identity for both A1 and A2. Then observe that the other entries, not
in the first k columns, are maximal minors of this resulting matrix. Thus the two original matrices
must be equal. [6, pp.1-3]

It follows that, since there are
(
m
k

)
possible matrix minors, we can associate each element in GrdE

with a unique element in P(E(mk )). This is called the Plücker embedding, which by the above discussion
is injective.

14Notice the subtle difference; T is not fixed to a specific shape λ as for Eλ.
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The Plücker embedding is sometimes defined alternatively in terms of exterior powers. Indeed,
adopting the notation above, we associate the subspace spanned by v1, . . . , vk with [v1 ∧ · · · ∧ vk] ∈
P(
∧k E). Expanding v1 ∧ · · · ∧ vk with respect to a basis for E then gives us the

(
m
k

)
matrix minors

of the matrix with rows v1, . . . , vk.

Example 5.2.1. [6, p.3] Consider Gr2C4. Let v1 = (a, b, c, d)T and v2 = (e, f, g, h)T . Then the
two-dimensional subspace of C4 spanned by v1, v2 is mapped to P

5 as follows

(
a b c d
e f g h

)

7→ [af − be : ag − ce : ah− de : bg − cf : bh− df : ch− dg] ∈ P
5.

Alternatively, let e1, e2, e3, e4 be the standard basis of C4. Then

(ae1 + be2 + ce3 + de4) ∧ (ee1 + fe2 + ge3 + ge4)

= (af − be)e1 ∧ e2 + (ag − ce)e1 ∧ e3 + (ah− de)e1 ∧ e4

+ (bg − cf)e2 ∧ e3 + (bh− df)e2 ∧ e4 + (ch − dg)e3 ∧ e4

and so we see that our two definitions of the Plücker embedding are indeed the same for this example.

Now, for reasons we will see in Section 5.3, it will be more helpful to work with the dual projective
space P

∗(
∧dE) since then for any v1, . . . , vd in E, we have that v1 ∧ · · · ∧ vd is a linear form on

P
∗(
∧dE). In order to do this we construct the Plücker embedding in the dual space P

∗(
∧d E) as

follows. For a subspace V of dimension k (codimension d), the kernel of the map

d∧

(E) →
d∧
(
E

V

)

is a hyperplane in
∧d(E). Hence, if we associate this hyperplane to V we obtain an embedding

GrdE → P
∗(
∧dE) which we also call the Plücker embedding.

Using the result [5, p.7] from projective geometry that (
∧d E)∗ =

∧d(E∗) ∼=
∧m−d(E) we have

that P∗(
∧d E) ∼= P(

∧m−d E).15 In particular, if v1, . . . , vd are in E and we extend to a basis v1, . . . , vm
of E then this isomorphism takes [v∗m−d ∧ · · · ∧ v∗m] to [v1 ∧ · · · ∧ vd], where v

∗
1 , . . . , v

∗
m is the dual basis

for E∗. We claim:

⋄ Proposition 5.2.2. Our two constructions of the Plücker embedding are equivalent.

Proof: Let E be an m-dimensional vector space. Suppose that V is a k-dimensional subspace of E,
where k = m−d, with basis v1, . . . , vk and extend this to a basis v1, . . . , vm for E. Now, under our first
definition of the Plücker embedding, V corresponds to the point [v1∧· · ·∧vk] ∈ P(

∧m−d E). Therefore,
by the above discussion, it suffices to show that the corresponding point [v∗k+1 ∧ · · · ∧ v∗m] ∈ P

∗(
∧dE)

defines the kernel of the map
d∧

(E) →

d∧
(
E

V

)

. (5.5)

Now the quotient map E to E/V is spanned by v1, . . . , vk and so the kernel of the map in (5.5) is
spanned by the set {vi1 ∧ · · · ∧ vid | 1 ≤ i1 < · · · < id ≤ m} \ {vk+1 ∧ · · · ∧ vm}. By duality this

corresponds to the point [v∗k+1 ∧ · · · ∧ v∗m] ∈ P
∗(
∧dE) and so we’re done.

⋄ Examples 5.2.3. (1) Consider Example 5.2.1 in the specific case v1 = (0, 2, 0, 1)T , v2 = (1, 0, 1, 0)T

and let V have basis v1, v2. Then, as before, we compute the matrix minors of the matrix with
rows given by v1, v2 to obtain the Plücker coordinates of V

(
0 2 0 1
1 0 1 0

)

7→ [−2 : 0 : −1 : 2 : 0 : −1] = [2 : 0 : 1 : −2 : 0 : 1] ∈ P
5,

15Note that P∗(
∧d

E) = P((
∧d

E)∗).
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where V can also be associated with the point [v1 ∧ v2] ∈ P(
∧2

C
4). Now extend v1, v2 to a basis

v1, v2, v3, v4 where v3 = (0, 1, 0,−2)T and v4 = (−1, 0, 1, 0)T . Therefore, using the isomorphism
P
∗(
∧d E) ∼= P(

∧m−d E), we have that [v1 ∧ v2] ∈ P(
∧2

C
4) identifies with [v∗3 ∧ v∗4 ] ∈ P

∗(
∧2

C
4),

which has coordinates [1, 0,−2, 1, 0, 2] with respect to the basis e∗1 ∧ e∗2, e
∗
1 ∧ e∗3, e

∗
1 ∧ e∗4, e

∗
2 ∧ e∗3, e

∗
2 ∧

e∗4, e
∗
3 ∧ e∗4. Now we can verify this using the matrix with rows v3, v4, namely

A =

(
0 1 0 −2
−1 0 1 0

)

,

which has kernel spanned by v1, v2. Thus we can also find the Plücker coordinates of V in
P
∗(
∧2

C
4) by computing the kernel of

∧2(A) :
∧2

C
4 →

∧2(C4/V ). Now
∧2

C
4 has basis

e1∧e2, e1∧e3, e1∧e4, e2∧e3, e2∧e4, e3∧e4 and each such basis vector ei∧ej is mapped by
∧2(A)

to the determinant xi,j of the matrix minor using the ith and jth columns of A, so that

2∧

(A)(a1,2e1 ∧ e2 + a1,3e1 ∧ e3 + a1,4e1 ∧ e4 + a2,3e2 ∧ e3 + a2,4e2 ∧ e4 + a3,4e3 ∧ e4)

= a1,2x1,2 + a1,3x1,3 + a1,4x1,4 + a2,3x2,3 + a2,4x2,4 + a3,4x3,4

= a1,2 − 2a1,4 + a2,3 + 2a3,4.

Hence, as expected, the hyperplane that is the kernel of
∧2(A) corresponds to the point [1 : 0 :

−2 : 1 : 0 : 2] ∈ P
∗(
∧2

C
4).

(2) Consider [1 : 2 : 1 : 1 : 2 : 3] ∈ P
∗(
∧2

C
4). We seek the subspace of C4 with these Plücker coordinates.

Hence we set the maximal minors of (
1 0 a b
0 1 c d

)

equal to 1, 2, 1, 1, 2, 3 and solve for a, b, c, d ∈ C to obtain

A =

(
1 0 −1 −2
0 1 2 1

)

.

Then we compute the kernel of A to find that the subspace of C4 with these Plücker coordinates
is spanned by the vectors (1,−2, 1, 0)T and (2,−1, 0, 1)T .

5.3 The Grassmannian as a Subvariety of Projective Space

We are now in a position to show that the Grassmannian can be realised as a subvariety of projective
space.

Theorem 5.3.1. The Plücker embedding is a bijection from GrdE to the subvariety of P
∗(
∧dE)

defined by the quadratic equations

(v1 ∧ · · · ∧ vd) · (w1 ∧ · · · ∧ wd) −
∑

i1<···<ik

(v1 ∧ · · · ∧ w1 ∧ · · · ∧wk ∧ · · · ∧ vd) · (vi1 ∧ · · · ∧ vik ∧wk+1 ∧ · · · ∧wd) = 0,

for v1, . . . , vd, w1, . . . , wd in E. Any polynomial vanishing on the image of GrdE is in the ideal gener-
ated by these quadratic equations.

Remark 5.3.2. Note that the relations given in Theorem 5.3.1 are a special case of the quadratic
relations in (5.1) with p = q = d.

Before embarking on the proof we make life easier for ourselves by first reframing the result using
coordinates. Let e1, . . . , em be a basis for E and write Xi1,...,id = ei1 ∧ · · · ∧ eid so that Xi1,...,id is a

linear form on P
∗(
∧d E). Now for a subspace V of E the homogeneous coordinates of V given by the

Plücker embedding in P
∗(
∧d E) are determined similarly to Examples 5.2.3 (1). Explicitly, let A be
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a d × m matrix with kernel V and consider the map
∧d(A) :

∧d(Cm) →
∧d(Cd) = C which maps

ei1 ∧ · · · ∧ eid to the determinant of the matrix minor of A using the columns numbered i1, . . . , id.

Thus the hyperplane that is the kernel of
∧d(A) corresponds to the point in P

∗(
∧d E) whereby the

Plücker coordinate xi1,...,id is this determinant.
In particular, the relations in Theorem 5.3.1 can be written in the form

Xi1,...,id ·Xj1,...,jd =
∑

Xi′1,...,i
′

d
·Xj′1,...,j

′

d
(5.6)

where the sum is over all pairs obtained by interchanging a fixed set of k of the subscripts j1, . . . , jd
with k of the subscripts i1, . . . , id, maintaining the order in each. Since the wedge product is skew-
commutative, it suffices to use the first k subscripts j1, . . . , jk in such an exchange.

Proof of Theorem 5.3.1: By the discussion at the start of Section 5.2 and Proposition 5.2.2 we have
that the Plücker embedding is injective. Therefore, for the first statement of the theorem, it suffices
to show that the Plücker coordinates of any linear subspace of codimension d satisfies (5.6) and that
any point in P

∗(
∧dE) satisfying (5.6) corresponds to a subspace of codimension d.

Firstly, if a subspace V of codimension d is the kernel of a matrix A : E → E/V then the
corresponding Plücker coordinates satisfy (5.6) by Sylvester’s Lemma (4.1.1). This is because the
Plücker coordinates are given by the matrix minors of A.

Conversely, suppose that the coordinates xi1,...,id in P
∗(
∧d E) satisfy (5.6). Now choose a particular

coordinate 0 6= xi1,...,id and set xi1,...,id = 1. Then define A : Cm → C
d by writing down its matrix

A = (as,t) where
as,t = xi1,...,is−1,t,is+1,...,id

where 1 ≤ s ≤ d, 1 ≤ t ≤ m. We need to show that the kernel of A is a subspace of codimension d
whose Plücker coordinates are the given xj1,...,jd . Firstly, the columns i1, . . . , id of A give the identity
which means that A has full rank and so its kernel is of codimension d. Moreover, the determinant
of this matrix minor is 1 = xi1,...,id . Now let I = (i1, . . . , id) and J = (j1, . . . , jd). Consider the case
where I and J have d − 1 entries in common so that J is obtained from I by replacing is with t.
The corresponding minor is then the identity but where the sth column has diagonal entry as,t. Thus
the determinant of this minor is ast = xi1,...,is−1,t,is+1,...,id, which is precisely the Plücker coordinate
we desire. Finally, suppose that I and J differ so that jr ∈ J is not in I. We argue by induction.
Therefore suppose that the determinant of any minor corresponding to J ′ = (j′1, . . . , j

′
d), where J ′

has more in common with I than J , has determinant xj′1,...,j′d . Then (5.6) applied to I and J with
k = 1, making the exchanges with jr, gives xj1,...,jd as a linear combination of products whereby the
subscripts have more in common with I than J does. Thus the result follows by Sylvester’s lemma.

It remains to show that any polynomial vanishing on the image of GrdE is in the ideal generated
by these quadratic relations. We saw in Proposition 5.1.1 that the ideal of quadratic relations Q is a
prime ideal. Thus, by the Nullstellansatz, the ideal of polynomials that vanish on the set of zeros of
Q is Q itself. Finally, as GrdE is this set of zeros, the result follows.

The relations in Theorem 5.3.1 are the same as the relations used to define Sym(E; d1, . . . , ds) in
the specific case s = 1 and d1 = d (see equations (5.1)). Hence, we have identified the homogeneous
coordinate ring of GrdE ⊆ P

∗(
∧d E) with the ring

Sym(m; d) =
Sym

(
∧d E

)

Q
=

C[Xi1,...,id ]

Q

where Q is the ideal generated by the quadratic relations given in Theorem 5.3.1.

Example 5.3.3. Consider Gr2C4 of 2-dimensional subspaces of a 4-dimensional vector space embed-
ded in P

∗(
∧2

C
4). The discussion after Theorem 5.3.1 states that Gr2C4 is the subvariety defined by

the quadratic relations

Xi1,i2Xj1,j2 =
∑

Xi′2,i
′

2
Xj′1,j

′

2
(5.7)
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where the sum is as described after equation (5.6). However, if the sets {i1, i2} and {j1, j2} overlap,
i1 = i2, j1 = j2 or the sum is over the exchange of 2 indices then these relations are trivial. Therefore
the only such relation is

X1,2X3,4 −X1,3X2,4 +X2,3X1,4 = 0.

In the case of Gr2C4, the Grassmannian is called the Klein quadric.

We finish by briefly discussing how the contents of Theorem 5.3.1 can be generalised to flag varieties.
Fix a sequence of integers m ≥ d1 > · · · > ds ≥ 0. We define the partial flag variety Fℓd1,...,ds(E) to
be the set of nested subspaces

{E1 ⊆ E2 ⊆ · · · ⊆ Es ⊆ E | codim(Ei) = di, 1 ≤ i ≤ s}

which can be viewed as a subset of the product of Grassmannians Grd1E × · · · × GrdsE. Therefore,
using the Plücker embedding on each factor, the partial flag variety Fℓd1,...,ds(E) can be viewed as
subvariety of

s∏

i=1

P
∗

(
di∧

E

)

= P
∗

(
d1∧

E

)

× · · · × P
∗

(
ds∧

E

)

.

This leads us to an analogous result to Theorem 5.3.1.

Theorem 5.3.4. The flag variety Fℓd1,...,ds(E) ⊆
∏s

i=1 P
∗(
∧di E) is the locus of zeros of the quadratic

equations

Xi1,...,ip ·Xj1,...,jq =
∑

Xi′1,...,i
′

p
·Xj′1,...,j

′

q

the sum over all pairs obtained by interchanging the first k of the j subscripts with k of the i subscripts,
maintaining the order in each, for all p ≥ q in the set {d1, . . . , ds}.

Theorem 5.3.4 identifies the multihomogeneous coordinate ring of Fℓd1,...,ds(E) ⊆
∏s

i=1 P
∗(
∧di E)

with

Sym(m; d1, . . . , ds) =
C[Xi1,...,ip ; p ∈ {d1, . . . , ds}]

Q
.

⋄ Remark 5.3.5. Theorem 5.3.4 tells us that flag varieties can give geometric realisations of all irre-
ducible representations of GL(E). Indeed, let λ be a partition of n with columns that take heights
from {d1, . . . , ds}. Then at the end of Section 5.1 we saw that Sym(m; d1, . . . , ds) identifies with a
direct sum of Schur modules, which in this case includes Eλ. Conversely, Sym(m; d1, . . . , ds) is the
multihomogeneous coordinate ring of the flag variety Fℓd1,...,ds(E).
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