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1 Introduction

The McKay correspondence, named after mathematician J. McKay, is a correspondence linking the
finite subgroups of SL(2,C) and the Dynkin diagrams of type A,, D;, Eg7g. It had been known
that the so called Kleinian (or Du Val) singularities have resolution graphs of this type, but it was
first noticed by McKay that in certain constructions using the irreducible representations of these
groups, the same graphs appear.

In this project, I will be considering the simpler cases of the correspondence, that is, Dynkin
diagrams of type A, D, only. This is in the interest of time. It would have been possible to give
a more complete account of any section of this project, but my interest lay more in giving an
overview of the complete picture. As such, I will construct the cyclic and binary dihedral groups
as subgroups of SL(2,C) first. Then I will construct the ring of invariants corresponding to each
of these families of groups. From these rings, we can create the Kleinian singularities. From here
we employ the method of blowing-up in order to resolve singularities, and hence we obtain our
resolution graphs corresponding to the Dynkin diagrams.

The final sections of this project deal with the reverse correspondence. From the subgroups, we
construct the McKay graphs ,which correspond to extended versions of the Dynkin diagrams, by
considering tensor products of irreducible representations with a 'natural’ representation. We also
give a construction of the irreducible representations themselves. The last chapter is devoted to
constructing the singularities from the graphs, by first converting them into quivers and then
considering the category of representations of the quivers and traces of oriented cycles.
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BO V($3y + y3 + 22) E7H—I—H—0 E7o—0—0—I—0—0—0
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2 Finite Subgroups of SL(2,C)

2.1 Fractional-linear transformations

Definition 2.1. The special linear group of C2, denoted SL(2,C), is the group of 2 x 2 complex
valued matrices with determinant 1. Such matrices act naturally on C? by matrix multiplication
of vectors.

The projective complex line, P! is the set of lines through the origin in the complex plane C2.
Points in P! are represented by homogeneous coordinates, [zo : z1], which have the property that
[20 : 21] = [A20 : Az1], YA € C\{0}.

Aut(P!) is the group of automorphisms of P!, that is, linear transformations from P! to itself.

Proposition 2.2. SL(2,C) has an action on P! defined by:
(2%) - [20 : 21] = [azo + bz : c2z0 + dz1).
Moreover, any linear transformation of P! can be expressed this way, and so any element g €
Aut(P') can be represented by some matrix in SL(2,C).
Proof. We first show that the map defined in the statement is well-defined. For any A € C\{0} we
have:
(25) - X200 Az1] = [a(Az0) 4+ b(Az1) @ c(Az0) + d(Az1)]

= [Mazg + bz1) : AM(czo + dz1)]

= lazp + bz : czo + dz1).
So our choice of representatives for the point [zp : z1] doesn’t matter. We further need to check
that no element of P! is mapped to [0 : 0]. Since (2%) € SL(2,C) we have that ad — bc = 1.
Consider first the case that zg # 0. Then

[azo +bz1 1 czp +dz1] =[0:0) = a=¢c=0 = ad —bc=0.
The only other point is [0 : 1], in which case
b:d=[0:00] = b=d=0 = ad—bc=0
and both of these cases are contradictory. Hence our map is well-defined. Furthermore, for any
[20 : z1] € P* we have that (§9) - [20 : z1] = [20 : 1] and if M, N € SL(2,C) then it is routine to
check that
M- (N-[z0:21]) = (MN) - [20 : z1].

So the map we have defined is indeed an action.
Recall that a linear projective transformation ¢ € Aut(P!), is of the form:

¢([20 : 21]) = T([20 : 21]),

for some T' € GL(2,C). Moreover, for any A € C\{0}, the linear bijections AT" and T define the
same projective transformation. Hence we can scale T' so that its determinant is one, meaning that
there exists T" € SL(2, C) which defines ¢. O

When zp # 0 we identify [zo : 2z1] with a point z = i—é € C known as the affine coordinate
and we identify the point [0 : 1] with co. This gives an isomorphism P! = C U {co}. In terms of
affine coordinates, the action defined in Proposition 2.2 is the transformation z — l‘fj:[g, known as
a fractional-linear transformation. This transformation sends oo to % and —* to oo.
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2.2 Finite subgroups of Aut(P!)

Lemma 2.3. Let G be a finite subgroup of Aut(P!). The action of any nontrivial element g € G
on P! has two distinct fixed points.

Proof. Any g € G can be represented by an element in SL(2,C) by Proposition 2.2. Any 2x2
matrix has two eigenvalues, and there are two possibilities:

e The eigenvalues are equal. Then the eigenspace of the repeated eigenvalue has dimension 2,
meaning that every line through the origin in C? is fixed by our matrix. Hence in this case
g =1 € Aut(P!), the identity transformation.

e The eigenvalues are distinct. The corresponding eigenspace for each eigenvalue must have
dimension 1, i.e. the eigenspace is a line in C? through the origin. Thus each eigenvalue
corresponds to a distinct fixed point of P! under the action of g.

We conclude that the action of any non-trivial element g € G has two distinct fixed points in
PL O

We define the set
Z:={(g,2) € G\{1} x P! : g(z) = x}.

We wish to count the number of elements of Z in two different ways to obtain some restrictions on
G. For this, first write P for the projection of Z to its second component, that is P is the set of
points in P! which are fixed by some non-trivial element of G.

Lemma 2.4. P is invariant under the action of G.

Proof. If x € P and g € G, let h € G\{1} be such that h(z) = x. The element ghg~! is non-trivial
in G and fixes g(z), so g(z) € P. O

We decompose P into orbits under the G-action, write
P=01U..UO

as the decomposition. Write e;(x) to be the order of the stabiliser subgroup of any =z € O;. Since
the stabiliser subgroups of elements in the same orbit are conjugate, we have e;(z) = e;(y) for any
z,y € Oy, so from now on we simply write e; to mean the order of the stabiliser subgroup of any
element of O;.

Proposition 2.5. The integers k, eq, ..., e; satisfy the relationship:
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Proof. The Orbit-Stabiliser theorem tells us that |G| = |O;le; for any i € {1,2,...,k}. Now:

2| P22 (16~ 1) = 3 (ei(z) — 1)

zeP
k
=3 (eilx) - 1)
i=1 z€0;
k
=> |0il(ei — 1)
=1 .
= k|G- > 10i].
i=1

Rearranging this equation and dividing throughout by |G| we end up with the desired expression

(- u

The expression only has finitely many solutions! Using the fact that 2 < e; < |G| and also that
G is finite, we have that either £k =2 or k = 3.

Case 1: k=2
In this case our expression becomes

2 1 1
Gl er e
and the only solution is e; = ez = |G|. The Orbit-Stabiliser Theorem then tells us that |O;] =
|O3] = 1 and so there are two fixed points under the action of G , say 27 and 2. Let h € Aut(P!)
be the transformation which maps z; — 0 and 2o — oco. Then let G = hGh™! so that G fixes 0

and co. Let g € G and write g(z) = gzzig for any z € P'. Then:

g0)===0 = ¢=0
a

and recalling that co = [0 : 1]

d
g(oo)zzzoo = [b:d]=1[0:1 = b=0.
Then we can write g(z) = wz for some w € C. Since the order of g is finite we must have that w is
a primitive n!” root of unity for some n € N. This argument applies for an arbitrary element of G
and so we must have that actually G is a cyclic group. Since G is conjugate to a cyclic group, it
also must be cyclic. O

Case 2: k=3

Now our expression is
2 1 1 1
I+ =—+—+—.
Gl e1 e2  es

which has four solutions;



G
e1 =ey=2e3= % |G| even,

)

22) €1 :2,62 = €3 :3,|G| = 12,
) 61:2,62:3,63:4,|G’:24,
)

e1 =2,ep =3,e3 =5,|G| = 60.

G|

Subcase: e; = ez =2,e3 = 5. Asin the solution for k = 2, by replacing G with an appropriate
conjugate group we may assume that Os consists of the two points 0 and oco. Since {0,000} is an
orbit, there is an element A € G such that h(0) = oo and h(occ) = 0. Let H = Stabg(0). Since
es = |H| = %, we have that the index of H in G is 2, meaning that H is a normal subgroup.
Then:
H(oc) = hHh(00) = {oo},

so actually every element of H fixes the point co too. Thus by our worked solution for the case
k = 2, we conclude that H is the cyclic group of order @, say H = (« a% = 1). Now write

h:zw— ffji;, and we can deduce that:

h(O)zgzoo = [a:c]=[0:1] = a=0

and

d
so we have that h : z — %, A # 0. Clearly h is of order 2, and also h ¢ H. Furthermore hah™! = a1
so:
|G

G={(a,h|la? =h?®=1hah ™t =a™1),
is isomorphic to D)g the dihedral group of order |G|. &

Solution (2.2) corresponds to the tetrahedral group, that is the group of rotational symmetries
of the tetrahedron. This group is isomorphic to Ay, the alternating group of permutations of 4
objects.

Solution (2.3) corresponds to the octahedral group, the group of rotational symmetries of the
octahedron (or cube). This group is isomorphic to Sy, the symmetric group of permutations of 5
objects.

Solution (2.4) corresponds to the icosahedral group, the group of rotational symmetries of the
icosahedron (or dodecahedron). This group is isomorphic to As, the smallest non-abelian simple
group!



2.3 Lifting subgroups of Aut(P') to subgroups of SL(2,C)

Now that we have fully classified all of the finite subgroups of Aut(P!), how can we relate them
to the finite subgroups of SL(2,C)? We consider the surjective action homomorphism, «, for the
action we defined in Proposition 2.1. This homomorphism is not injective:

Lemma 2.6. The kernel of a is {£I}

Proof. Since the identity transformation on P! must fix 0 and oo, any element (‘Z Z) € Ker(a)
satisfies b = ¢ = 0 and so must map z — gz. Since we want this transformation to be the identity,
we must have that d = a, implying that Ker(a) consists only of scalar multiples of the identity
matrix. The only such multiples which have determinant 1 are I and —1I. O

The action homomorphism thus provides a double cover of Aut(P!) and so any finite G <
Aut(P!) can be lifted to a finite G < SL(2,C), with twice the number of elements. This means our
finite subgroups of SL(2,C) are:

e C,, the cyclic groups of order n. The cyclic subgroups of Aut(PP!) are lifted to cyclic subgroups
of even order, but taking appropriate subgroups we may also obtain all of the cyclic subgroups
of odd order. We have the presentation:

e The binary dihedral group, BDyy, of order 4n. This group has presentation:

a,b), a= w10 ,b= _()._i ,w:e%
< > ( 0 w) ( i 0

e The binary polyhedral groups, which are

— the binary tetrahedral group, BT, with presentation:
(a,b,c| a® =b% = = abe),

— the binary octahedral group, BO, with presentation:
(a,b,c|a?® =b>=c* = abe),

— the binary icosahedral group, BI, with presentation:
(a,b,c| a® =b = = abe),

This completes the classification of finite subgroups of SL(2,C).



3 Rings of Invariants

3.1 (C-algebras

We recall Definition A.1, that of a C-algebra. Now that we have classified the finite subgroups of
SL(2,C), we are interested in creating C-algebras for each of them. From there we can construct
algebraic varieties, which will allow us to recover our Dynkin diagrams. The action that we defined
in §1 can actually be extended to an action of our groups on the C-algebra C[z,y]. Throughout,
we let G be a finite subgroup of SL(2,C).

Proposition 3.1. We define an action of G on Clz, y| as follows:
vfeCla,ylg€ G (g-f)lv):= flg~ -v) Vv e C?
This is indeed an action.

Proof. For I the identity matrix, we have:

(- f)w) = f(I-v)=f(v)
so I.f = f for any f € C[z,y]. Let g,h € SL(2,C). Then:

so this map is indeed an action. O

Definition 3.2. We define the ring of invariants of G to be the C-subalgebra of C[z,y] for which
each element is invariant under the action of G:

Clz,y]” =={f €Cla,yl|g-f=f Vg€ G}

3.2 Calculating C-vector space generators

Proposition 3.3. Define a C-linear map called the Reynold’s operator o : Clz,y] — Clz,4]¢ by:

1
QG(f):@Zg‘f-

geG

The Reynold’s operator is a projection, in particular, it is surjective.
Proof. Actually oc|c[g e is the identity map, because for any f € Clz,y]% and g € G we have
g - f = f by definition. This tells us that o¢ is a projection map (oG © ¢ = 0G)- O

The Reynold’s operator allows us to compute explicitly a C-vector space basis for (C[x,y]G by
evaluating at the C-vector space basis of C[x,y], namely, polynomials of the form z"y® where
r,s € N.



Case 1: G = (), the cyclic group of order n

27i

G is generated by the matrix g = (Wal g) where w =¢e¢™ . Then g-x = wzr and g-y = w 'y, so
1 n
r,S8y _ k. . r,s
Qc(ivy)—nzg z"y
k=1
1 n
_ = k(r—s),.r,.s
= w z "y’

If » # s mod n then we are summing over all n'" roots of unity, which gives 0. If r = s mod n,
then our sum is 2"y* and so the C-basis for C[x,y]“ is {"y® | r = s mod n}. We write:

Clz, y]G = spanc{z’y® | r = s mod n}

Case 2: G = BDy,, the binary dihedral group of order 4n

G is generated by the matrices g = ("Jal 8) where w = e and h = (PZ 6’) We see that h-z =iy
and that h -y = iz. Any element of the group can be written as gPh? for 1 < p < 2n,0 < ¢ < 1.
We compute
1 2n
o@y) == > (¢ "y + g*h- 2"y’

4n
k=1

2n
1
— % § wk(r—s) (l‘TyS + ir—l—sxsyr)
k=1

r # s mod 2n

(z"y® + 2°y") r = s mod 2n,r even .

Nl D= O

(z"y® —2®y") r = s mod 2n,r odd
Hence in this case we may write

Clz, y]G = spanc{z"y® + (—=1)"2%y" | r = s mod 2n}.

3.3 Calculating C-algebra generators
Recall from MA40188 the following definition;

Definition 3.4. A finitely-generated C-algebra, R, is a C-algebra for which there exists a surjective
C-algebra homomorphism ¢ : C[zy,...z;] — R for some k € N.

Remark. What this means in practise is that there are finitely many elements of R, say fi,..., fx,
such that any other element can be expressed as a polynomial in fi,..., fr. In this case, we write

R = C[f1, ..., fx].

Proposition 3.5. Let G = C,, the cyclic group of order n. Then C[z,y]% = C[z", y", zy]
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Proof. Tt suffices to show that any basis element 2"y* € C[z", y", zy]. Let r = an+r' and s = bn+s'
where a,b,7’,s’ € N and 0 < 7', s’ < n. From the calculations in §3.2, we have that s’ = /. Thus

we can write
a2yt = plantr )y(bn"'"") = (;p”)“(y")b(azy)T € Clz",y", zy|.

O

Proposition 3.6. Let G = BDy, the binary dihedral group of order 4n. Then Clz,y]¢ =
Cla?y?, 2™ + ", zy (2" — y*")]

Proof. Tt is sufficient to show that any basis element x7y* +(—1)"z%y" € C[z%y?, 22" +y*", vy (2?" —
y*™)]. Write 7 = a(2n) +t, s = b(2n) +t where 0 < t < 2n.
Assume r is even and b < a. Then

xrys + (_1)rxsyr _ (wy)t(xy)(Zn)b(l,(Qn)(a—b) + y(Qn)(a—b))‘ (T)

Claim: z(me 4 ¢yCn)e ¢ Clz2y2, 22" + v, xy(z®" — y*")] Ve e N,
Proof of claim: By induction. We need to check two base cases, ¢ = 1 and ¢ = 2. The base case of
c =1 follows by assumption. The base case of ¢ = 2 follows from the calculation

(@22 gy Br)2y = (227 4 )2 — 2(a%y?)",
Now assume the claim holds for all ¢ < C and consider 2(2"¢ 4 y2MC  We can write
c-1 C
RO | @nC _ (4n) |y ) _ kzl <k)x<2n><c—k>y<2n>k

but we can group the k and C' — k terms in the sum together to get

n)(C— n n)(C— n n n)(C—
<k>x<2 Oy Gk 3 <k> (220C=R) 2k | 2nky (2n)(C=k))
k=1 k=1
c—1

N C nk n)(C— n)(C—
_ Z <k> (l’2y2) ($(2 )(C—2k) +y(2 )(C Qk))
k=1

when C —1 is even and then the claim follows from the inductive hypothesis. The case where C' —1
is odd is similar but with an additional term for & = % which is 2((;) (z2y?)"k.

Then the expression (1) belongs to Clz?y?, 22" + y?", zy(z®® — y?")]. The case where a < b is
identical.

Now assume that r is odd and that b < a. We then have the expression

2"y’ + (1) 2ty = (ay)' T (wy) P (wy) (2P0 gy B0, (1)

Claim: zy(xMe — ey € Cla?y?, 2" 4 y>*, zy(z® —y**)] Ve e N.

Proof of claim: By induction. Again the base case of ¢ = 1 follows immediately so assume the claim
holds for all ¢ < C. By the previous claim, z(M(C=1) 14Cn)(C=1) ¢ C[z2y2 22" 4y, zy(z2" —y>™)].
We compute

xy(an o an)(x@n)(Cfl) + y(2n)(071)) _ xy($(2n)C . y(2n)C’) o (xy)Qn (‘,L,y(xZn(CfZ) - y2n(072)))

11



and rearranging yields

:Cy($(2n)C o y(Zn)C) — .’L‘y(.ﬁC2n - y2n)(x(2n)(071) + y(2n)(071)) + (wy)2n (xy(wZn(C’fQ) - an(6’72))).

The right hand side is an element of C[x?y?, %" + 32", xy(2?" — y*)] by the inductive hypothesis.

Therefore, in the expression (f1), every factor is an element of C[z%y?, 22" + y*", zy(z** — y*")] by
the claim and the fact that ¢ is odd (which follows from the assumption that r is odd). The case
where b < @ is the same. O

Theorem 3.7. For any finite subgroup of SL(2,C), G, the C-algebra C[z, ] is finitely generated
by 3 elements.

3.4 The Ideal of Relations

For any finite G < SL(2,C), we can construct a surjective C-algebra homomorphism ¢¢ : Clu, v, w] —
Clz,y]®, F — F(f1, f2, f3), where C[z,y]% = C[f1, f2, f3] by Theorem 3.7. The kernel of ¢g is an
ideal in Clu, v, w] and so V(Ker(¢g)) C C3 is an affine algebraic set with coordinate ring Clz, y]%.

Definition 3.8. We let the affine algebraic set V(Ker(pg)) C C? be denoted C?/G.

We wish to show that C?/G is an irreducible hypersurface and according to Theorem A.5, we need
only show that it has dimension 2. Since the ring of invariants is a C-subalgebra of the ring of
polynomials in 2 variables, we let ¢ : C[z,y]% < C|z, y] be the inclusion C-algebra homomorphism.
We make use of Theorem A.4 from MA40188 applied to the algebraic sets C?/G and C? (note that
Clx,y] is the coordinate ring for C2) to obtain a polynomial map

7:C? = C?/G.

Now we want to show that this map has finite fibres. It would suffice to show that C?/G is the
set of G-orbits of C? as the notation suggests, since the group G is finite. This is not an obvious
fact from the definition and requires more commutative algebra than we have time to establish. As
some motivation, we prove the following result:

Proposition 3.9. Consider the set of G-orbits, C2/G and assume that this set is an affine algebraic
set. The coordinate ring for this affine algebraic set is the ring of invariants Clz, 3]°.

Proof. Let f € C[C?/G] so f is a polynomial which is constant on any G-orbit. Let p € C?,
f)=flg"'p)=(9-NHp) Ygea
— f e Clz,y]°

]¢ and for any point p € C2,

h(p) = (g -h)(p) = higp) Vg€ G
— h € C[C?/G]

Likewise, for any h € Clz,y

as h is constant on each G-orbit. O

So the polynomial map 7 has finite fibres, which implies that dim(C?/G) = 2 and hence that
C?/G = (f) for some irreducible f € Clu,v,w]. We call this f the defining equation for the
hypersurface C2/G.

12



Proposition 3.10. Let G be the cyclic group of order n. Then C2/G = V(zy — 2").

Proof. We seek an irreducible polynomial f € Clu,v,w] such that f(2",y", xy) = 0 € C[z,y]°.
Consider f = uv —w™ € Ker(¢g). This polynomial is irreducible since if we assumed it wasn’t, any

factors would have to have degree one or zero in u but there is only one term in f which involves
U. [

Proposition 3.11. Let G be the binary dihedral group of order 4n. Then C?/G = V(2" 4 23? +
2

v, w] such that f(z%y?, zy(2®" —y?"), 22" +

Proof. We now seek an irreducible polynomial f € Clu, v,
Zn)] — (C[a:r:2y2, b(xQn 4 y2n)’ ny(x2n . y2n)]

y*") = 0. We note that Cla2y?, 22" + 42" xy(x®" —y
for any non-zero scalars a,b,c € C. We compute

(@)™ + (@) (6 + 52 + (elay) (e — )

= (@ 4 200 — 26 (@)D + (ab? + )2 (e 4y, §
If we pick a,b, c such that ¢ = —1,ab®> = 1,a""! = —4 we get that (*) is equal to zero, which is
precisely what we wanted to show. O

In the interest of completeness, the following is a list of the defining equations for each of the
finite subgroups of SL(2,C):

e G=0C,,C?/G=V(ry—2")

e G =BDy,,C?/G =V (2" + zy? + 22)
o G=BT,C?/G=V(z*+y°+ 2?)

G =BO,C?/G = V(23y + y* + 2?)

G =BI,C?/G = V(2® + 3 + 2?)

13



4 Resolution of Singularities

Proposition 4.1. For any finite subgroup of SL(2,C), except the trivial subgroup (which we write
as the cyclic group with one element C1), the affine hypersurface C?/G is singular. It has only one
singularity, which is at the origin.

Proof. We simply need to find V(f, %, %, %). In each case, this can be computed explicitly. If

G = C,, then we are looking for solutions to the simultaneous equations:

zy—2"=0,y=0,2=0,nz""1=0

If n = 1 then there is no solution to the above system, as the last equation becomes 1 = 0. If
n # 1 then the only solution to the system is (x,y,z) = (0,0,0). A similar argument works for
G =BT, BI.

If G = BDy,,, we want simultaneous solutions to:
a4+ 22=0,(n— 12" % 4+4% =0,22y = 0,22 = 0.

The last equation immediately tells us that z = 0, where the penultimate equation gives us that
either z = 0 or y = 0. In either case, substituting the result into the second equation yields that
the only solution is (z,y, z) = (0,0,0). A similar argument works for BO. O

When we have singularities in affine varieties, we wish to be able to look at the way that the
variety behaves at the singularity. We develop some tools in the next section to deal with this.

4.1 Blow-up

Definition 4.2. Consider the Cartesian product,

Cr x Pl = {((:El, ey Tp)s (Y1 1 yn]) | (1, .c0yn) €C™[y1 t .ot yn] € P”_l}.
The blow-up of C™ at the origin O is
B =V(zy; —xjyi | i,j=1,..,n) CC" x P""1,
In this space we call O x P! the exceptional divisor of B and denote it by E.

The composition of the inclusion B < C" x P! and the projection C* x P*~! — C" defines
a morphism

Y : B — C".

The space B and morphism 1 satisfy the properties that we want in order to “resolve” singularities.
We summarise these properties in the following result.

Lemma 4.3. 1. ¢~ }(O) =2 P" ! and each point in ¢~ (O) corresponds to a unique line through
the origin in C*, so E = ¢~1(0).

2. If O # p € C", then ¥~1(p) is a point.

3. B is an irreducible algebraic set.

14



Proof. 1. The first claim follows from the fact that

1#71(0) = {((O, ey 0) fyn o yn]) | [y1: ...t ynl € Pnfl}.
Let L be a line through the origin in C”, given by the parameterisation:
L={(ait,...ant) |t € C'},

for some fixed a; € C for 1 <i <n not all 0. Let L' = ¢~1(L\{O}) € B\vy~}(0), so then:
L'= {((alt, o ant), [art : . ant]) |t € (CI\{O}}
_ {((alt, ) a1t an)) | tE <c1\{0}}

Then the closure of L' in B, L' = {((alt,...,ant), [y :...: an]) |t € Cl}, meets 1~ 1(O) at

the point O X [a; : ... : ap] € B. So the map which sends L to the point [a; : ... : a,] defines
a one-to-one correspondence between lines through the origin in C" and points in 1 ~1(O).

2. We show that 1) defines an isomorphism between B\ ~!(0) and C"\{O}. Let p = (a1, ..., a,) €

C™ where some a; # 0. If p x [y1 : ... : yu] € ¥~ 1(p), then by definition of B we must have
that y; = Z—Jyl, Vj = 1,...,n. This defines a unique point [y; : ... : yp] = [a1 : ... : a,] € P"7L.
Hence, ¥~ 1(p) = (a1, ...,an) X [a1 : ... : a,] and we have achieved the isomorphism we wanted
to.

3. We can write B = (B\¢~1(0)) U (¥=1(0)). From (2), we have that B\v»~1(0) = C"\{0},
which is irreducible. From (1), we know that any point of 1»~!(O) belongs to the closure
of some subset of B\¢~1(0), meaning that B\¢~1(0) is dense in B, i.e., B = B\©#»~1(0).
However the closure of an irreducible set is irreducible, so B must be irreducible.

O

Definition 4.4. Let X C C™ be an algebraic variety passing through the origin. The blow-up of
X at the origin is X = ¢ 1(X\{O0}).

Remark. This space is contained in B by definition. In order to blow-up a different point, p € X,
we simply apply a linear change of coordinates so that p is sent to O and then apply our blow up.
If the resulting variety is smooth we say that we have achieved a resolution of singularities. If not,
we may apply the process again repeatedly until we do end up with a smooth variety.

Ezample. Consider the affine hypersurface X = V(y?—x2(x+1)) C C2. This hypersurface is singular
only at the origin and we resolve its singularity by blowing up. Let the projective coordinates of
P! be given by [t : v]. The blow-up of X is X = V(zv — yt,y2 — 2%(z + 1)) C C2 x PL. We can
cover C? x P! by two affine sets Uy = {((x,y), [t : v]) € C?> x P! | t # 0} and U, defined similarly.
We first consider X NU; =: X;. In this space we may associate the projective coordinate [t : v]
with an affine coordinate  so that we can talk about points in X, as points in C? with coordinates
(x,y,7). Now X, = V(zy -y, y? — 22(x 4+ 1)) C Uy = C3. Substituting the equation y = x¥ into
y? = 2*(z 4+ 1), we get that z*((4)? —2 —1) =0.

We must have that either 22 = 0 or that (%)2 = x + 1. The first case means that y =z = 0
and can have any solution for 7, which corresponds to £ N U;. The other case corresponds to
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t#0

Figure 1: Blow-up of V(y? — 2?(x + 1)) at the origin, [1]p.29

X, and intersects E when (z,y) = (0,0), leaving the equation % = £1. Hence we have two
points (x,y, ¥) = (0,0,41) which correspond to the lines through the origin in which our variety
‘approaches’ its singularity. O

Armed with this powerful technique, we are ready to resolve the singularities of our varieties
C?/G, for the cyclic and binary dihedral cases. First we need a brief discussion of notation so that
our results are consistent. We will use the coordinates ((z,y,2),[a:b: c]) € C* x P2 Then

B = V(IL‘b —ya,rc— za,yc — Zb)
and we will write X for the blow up at the origin of the variety X C C3. We let
Ua = {((x,y,z),[a : b:c]) e C3 x P? ’ a#o}

and define Uy, U, similarly. Write )?a = X NU, and similarly for )Z'b and )?C. We call these sets the
affine charts of X in the respective coordinates a,b and c.

Definition 4.5. Let X be an affine variety in C3 and X be its resolution. The resolution graph for
X is a graph where each vertex corresponds to an irreducible component of X N E and two vertices
are joined by an edge if the corresponding irreducible components intersect.

4.2 Resolving singularities for the cyclic group

Theorem 4.6. Let G = C,, the cyclic group of order n where n > 2. The resolution graph for
C?/G is the affine Dynkin diagram A,_1, e—e—-—e—e.

This subsection will be a proof of Theorem 4.6 by induction. We split the proof up so that it
is more easily digestible.

Proof of base case n = 2. The defining equation for C?/Gis f = zy—22 so the blowup of X = C?/G
at the origin is the variety X = V(xb — ya, xc — za,yc — zb, xy — z?). We consider first the affine
chart in the coordinate a;

X, = V(xl Y, s — z,yc — zb,wy — 2?).

E_
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Substituting the first two equations into the last one, we end up with the equation:

(5 (57 =0

This has two solutions, 22> = 0 and g = (£)%. The first solution forces z = y = z = 0 and
so corresponds to £ N U,. Using the second solution, and the first two equations in X,, we can
construct an invertible polynomial morphism

(24,2, 2, 8) = (@,2(£)% 28, (£ ) = (2, ) € C*.
Since C? is itself ‘a smooth affine variety, and we have just shown that X, is isomorphic to C?, we

must have that X, is smooth, and that it can be represented as a copy of C? with coordinates x
and ¢ as shown below:

ISHIeY

In this diagram the wavy line corresponds to X, NE.
If we consider the affine chart in the coordinate b, we go through identical calculations with the
roles of x and ¢ replaced by y and § respectively. Importantly we get another isomorphism to C?

o) )Z'b is smooth and can be represented as a copy of C? with coordinates y and £

Y

O

The only affine chart left to check is X.. We have that:

b

X, = V(zb —ya,x — 2%,y — 22,0y — 22).

Substituting the second and third equations into the last gives us the equation:
b 2 _ . 27ab —
(22)(zg) =2 =27(%2 = 1) =0.

As before, this equation has two solutions. The first is 22 = 0, which forces z = y = z = 0 so that
this solution corresponds to E N U.. The second solution is %g = 1. Notice that in this second

solution, we have that a # 0 and b # 0, so that any solution of this type is actually in X, U X,
Hence there is no new information gained from looking in this chart.
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Now that we have found that our variety is smooth in its affine charts, it must be smooth globally
and we are interested in ‘gluing’ our charts together to get a picture of the whole variety.
Claim: X, \{§ = O}N% Xp\{§ = 0}.
Proof of claim: In X \{$ = 0}, we have

c/la _ c/a c

a c\—1
c=@) = (c/a)? ~ bja — b°

Therefore we can define our isomorphism by the morphism
2 -1
(@, 5) = (@(2)%(5) ) = §),
with inverse morphism
(v, 5) = (y(§)% (5)71) = (2, 9).

The point (x,y,z,g,g) = (0,0,0,0,0) € X, corresponds to the point ((z,y,2),[a : b : ) =

((0,0,0),[1:0:0]) € X which is the only point in E N X,\Xp. This is the point at infinity of the
projective line corresponding to the ¢ axis of X; in the following picture:

T Yy

ISHIe)
olL

which represents X , where the wavy line now corresponds to a projective line inside the exceptional
divisor. ]

Proof of base case n = 3. The defining equation for C2/G is f = xy — 2% so the blowup of C?/G
at the origin is the variety X = V(zb — ya, xc — za,yc — zb, xy — 2z3). Much as in the Cy case, the
affine charts )?a and )N(b are isomorphic to C2, with the same coordinates as before. The interesting
chart this time, is X..

First, we divide throughout by c to get that X, = V(zb—ya,z—2%,y— zg, ry—23). Substituting
the second and third equations into the last one we get

(2%)(29) -2 = z2(%% —2z)=0.

This equation has solutions 22 = 0 and %% = 2. The first solution forces x = y = z = 0 and so
corresponds to U. M E. The second solution corresponds to )Z'c. Notice that if either a # 0 or b # 0
then the point ((z,y,2),[a : b: c]) € X, U X,. Hence the only point of X, which lies outside of
the affine charts we have already considered is the point p = ((0,0,0),[0 : 0 : 1]). Notice that in
our affine charts )~(a, )N(b, the axis which corresponds to the intersection with the exceptional divisor

meets this point in the projective plane as the point at infinity. Hence we get the following picture
for X:
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where again the wavy lines correspond to the intersection with the exceptional divisor. Notice that
this time we have two projective lines and that they intersect, so our resolution graph is e—e. []

Proof of Theorem 4.6. Now we have our two base cases, we are ready to make our inductive step.
Assume that the resolution graph of C?/G is the Dynkin diagram A,_1 for G = Cp,,n < N. We
now look at C?/G for G = Cn1. The defining equation for this hypersurface is f = 2y — 2N+ so
the blowup of C?/G at the origin is the variety X = V(zb — ya, xc — za,yc — zb, xy — 2N 1),

In the chart )A(ia, substituting the first two equations into the last one we obtain the equation:

x(xg) _ (:I;%)NJrl — xZ(% _$N71(§)N+1) —0.

The first solution to this equation, 22> = 0, corresponds to U, N E. The second solution is g =

fol(c)NJrl

- . Using this solution, we can construct a polynomial isomorphism from X, to C%

(9,2, 2, &) = (2,2 (N 2, O &) o (2, 8) € C

a ’a

This isomorphism implies that X, = C? is smooth with coordinates z and <. We can use a similar
argument for the affine chart X} to get that X, = C?, with coordinates y and z-

Now for the affine chart )?c. Here we substitute the second and third equations into the last one
to get the equation:

(z%)(zé) — 2V = 22(%% - hH =o.

The first solution to this equation, 22 = 0, corresponds to U.NE. The second solution is %%—ZN -1 =

0. The set of solutions to this equation is V(zy — 2V ~1), which is a singular variety in C3, it is
in fact C2/G for G = Cy_1(!). Since this affine chart is singular, and in fact has a singularity
at the origin, we blow-up again in order to resolve this singularity. However, since we know that
the defining equation of this variety is the same for the defining equation of C?/Cy_1, we know
by induction that the resolution graph of this repeated blow-up will be the resolution graph of
C?/Cn_1. Since in our first blow-up we had two projective lines which met at our singular point,
we end up with a resolution graph of e—e——e—e, the Dynkin diagram of type Ay. O

4.3 Resolving singularities for BDg

In the interest of time, the only other case that we will work through will be the most basic
interesting case of the binary dihedral group.

Proposition 4.7. Let G = BDg. Then the resolution graph for C2/G is the affine Dynkin diagram
Dy F< .
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Proof. In this case the defining equation is f = 2% + zy? 4+ 2% so our blow up is given by:
X = V(zb — ya, xc — za,yc — zb, x> + xy? + 2%).

As before, we check each affine chart in turn. In )?a, substituting the first two equations into the
last one yields the equation:

2+ w(x2)? + (29)? = 22 (a:(l + () 4 (g)?) ~0.

The first solution to this equation, 22 = 0, again corresponds to U, N E. We solve the system of

equations:

fle, 5. 8) ==(1+(2)%) +(2)° =0, (1)
of by2
Y14 (h)2=0 2
8.%‘ + (a) ? ( )
of b
af
a
Equation (4) tells us that 2 = 0, and equation (3) tells us that either z = 0 or g = 0. However,
for this to be consistent with equation (2), we must have z = 0, because (£)2 = —1. We find that
the solutions (z, g, £) = (0,44,0) also satisfy equation (1), and so V(f) has two singularities, one

at each of these points. This means that we will need to blow up this chart again.
Let us now look at X3. In this chart, substituting the first and third equations into the last, we
end up with the equation:

W)+ Wy + 5 =y (y((%)3 +)+ (%>2) = 0.

The irreducible component y? = 0 corresponds to U, N E. We check now for singularities in the
other irreducible part. The system of equations:

9y, 5.9 =y(4)P +yL+(£)* =0 (5)
99 _ a4 a
@:(5)3‘1'5:0 (6)
B
o =3y(49)? 4y =0 (7)

b

dg .
o =2;=0 (8)

has solutions at 3 points, with coordinates y = § = 0, (%)3 + ¢ = 0. Hence § € {0,=£i}, but these
second two solutions belong to X, as well. They are in fact the solutions we already found, so we
have only found three singularities of X, the ones to be found in )N(b.

Lastly, we look at 5(0. In this chart, substituting the second and third equations into the last one,

leaves us with the equation:

—
I
ole
N—
w
+
—
I\
ale
SN—
—
I\
1S3
N~—
S
+
I
[N
I
I\
[N
—
N
—~
ole

e H1) =0,



As before, the first irreducible component of this equation corresponds to U, N E. We check for
singularities in the second irreducible part. The system of equations:

Wz 2) = 2(8)° + 22 +1=0 )
Oh 43 _
5. = (@ =0 (19)
%’; = 32(8)2 1 (2)> =0 (11)
Oh
= 2eb — ¢ (12)

has no solutions. Hence this affine chart is smooth.

So our blow-up is singular and we need to reiterate the process in order to resolve our singularities.
We make that appeal that under thf change of coordinates y — v, (%)3+% > @, § > iz, our defining
equation for the singular part of Xj is 2y — 22, which is in fact the defining equation for our A;
hypersurface. Thus, making a linear change of coordinates in order to position our singularities at
the origin if required, we end up with the exceptional divisor of our new blow-up containing only a
projective line. Note that all of these singularities lie on a projective line, so our resolution graph
will contain a node connected to three others, where the other nodes will come from our second

blow-ups. Hence the resolution graph of this blow-up is .{ . O
A similar process can be used to find that the resolution graph for the binary dihedral group

of order 4n is the Dynkin diagram of type D, s and that the resolution graphs for the binary
tetrahedral, octohedral and icosohedral groups are the Dynkin diagrams of type Fg 7 g respectively.
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5 McKay Graphs

Now that we have established the correspondence in one direction, we wish to establish it in the
reverse direction. That is, can we construct the Dynkin diagrams directly from the groups and
then reconstruct the singularities from the diagrams? We make use throughout this section of the
content of the module MA40054 Representation Theory of Finite Groups.

5.1 Constructing the McKay Graph

Definition 5.1. The direct sum of vector spaces V4, ..., V,, written V1 & ... ® V,, or @?:1 V; is the
vector space of n-tuples (v1, ..., v,) where v; € V; and addition and scalar multiplication are defined
component-wise. If Vi, ..., V,, are G-modules, we make 0" ; V; a G-module via the linear action:

g (V1,.y) = (901, 0s9 ) Vg € G, (v1,...,0p) € @VZ
=1

If p; is the representation for the G-module V;, we also write @;.; p; to mean the representation
for the G-module ;"_, V;.

Theorem 5.2 (Maschke’s Theorem). Let G be a finite group and V' a reducible G-module. Then
there exist irreducible submodules Uy, ..., Uy of V such that

V=u,

n=1
Definition 5.3. Let V, W be G-modules, with vector space bases v1, ..., v, and wi, ..., w,, over C
respectively. The tensor product V @ W of V and W is the G-module with vector space basis
{vi®w;li=1,..,n;j7=1,...,m} and with linear G-action defined by:
g9 (vi ®wj) =(g-vi) ®(g-w;), VgeG.

If py, pw are representations for V, W respectively, we write py ® py for the representation of
VeWw.

Since the groups we are interested in are finite subgroups of SL(2,C), the natural linear action
of each group makes C? into a 2-dimensional G-module, henceforth denoted by V. Then for the
irreducible G-module of GG, given by Vj, ...V we want to calculate:

k
Ve Vi _ @ V}@aij
j=0

which is possible by Maschke’s Theorem. Once we have calculated the a;;, we construct a graph
by introducing a vertex for each irreducible representation, and adding an edge from the vertex
representing V; to the vertex representing V; if a;; = aj;.

Definition 5.4. The graph as constructed above is called the McKay graph of the group G.

For k € {0,...,n — 1} we henceforth write py, : C;, — GL(V) to denote the representation such
that p(a)(v) = eyv, as in the construction in Proposition A.4.
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Proposition 5.5. Let G = C),. Then for k € {0,...,n — 1}, we have that:

VoVe=Vi1® Vg1 modn—1.

In particular, the McKay graph for C), is the extended Dynkin diagram of type Ay, A
Here the white vertex corresponds to the trivial representation and is always present so there are
n nodes in total.

Proof. We can write V as C? with standard basis elements e, es and the action

Q- e] = weyp

Q- ey = wileg

where w = e’ . Then Vi i 1s the 1-dimensional G-module with vector space basis v; and linear action
of G defined by o - v = wFvy,. Thus V @V, is a G-module with vector space basis {e1 @ vk, ea @ vk }
and linear G-action defined by:

a-(er @ wvy) = W (e; @ vp)

a- (e @up) =W e @ vp).
The G-module V41 @ Vj_1 has vector space basis {(vg41,0), (0,v4—1)} and linear G-action given
by

a - (Vgr1,0) = W (041, 0)
a-(0,vp-1) = wkil(O,vk_l).
Hence we see that we have the stated decomposition. ]

5.2 Characters

For our discussion of the binary dihedral group, we will employ the more sophisticated theory of
characters in order to streamline calculations.

Definition 5.6. Let G be a finite group and p : G — GL(V) a representation of G over C. The
character of p is the function:
p:G—=C, g tr(p(g)).

where tr(p(g)) is the trace of the linear map p(g). This is the trace of the matrix representing p(g)
with respect to a basis of V.

Remark. The definition of character demands a choice of basis for V', but since the trace is invariant
under a change of basis, so is the character and it is therefore well defined.

Definition 5.7. Define an inner product of characters by

<X17X2 X1
1G] Z

geG

This is indeed an inner product.
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We recall the following two results from MA40054;
Lemma 5.8. A representation p with character x,, is irreducible iff (x,,x,) = 1.

Proposition 5.9. Let Vi,...,Vi be a complete list of irreducible G-modules, that is, they are
pairwise non-isomorphic and any irreducible G-module is isomorphic to some V;. Let d; = dim(V;).

Then i}
2
|G| = Z d;
i=1
Proposition 5.10. There are precisely 4 one dimensional and (n — 1) two dimensional irreducible
representations of BDy,,.
We have the following candidate irreducible representations:

1. Degree 1:

® po: BDyp — GL(V); po(er) =1d, po(8) = Id
¢ p+— : BDyy = GL(V); p1— () = Id, p1—(B) =-1d

iId n odd

-Id n even
__:BDy, —» GL(V); p__ =-Id,p__ =
°p 4 (V) p—(a) P—B)=93 .14 1 odd

Id n even
® p—t : BDayp = GL(V); p—y () =-Id, p—4 (8) = {
2. Degree 2: For k € {1,...,n — 1},
e pi : BDy, — GL(V); pr() (v) = wbv, pp(a) (B - v) = w™v

i
where w = en .

Proof. For an explicit construction of these representations, see Theorem A.5. With the above
candidate representations in hand, we simply check that the inner product of their characters is 1
and that the sum of squares of their dimensions is 4n. The maps defined are indeed representations
and they have the character table

BDgy, ol 0<j<2n|ddp 0<j<2n
Po 1 1
P+— 1 —1
oy (—1) (—1)/ (m)
o (—1) (—1)/(=m)
ol <k<n-—1 Wk kI 0

where m = 1 if n is even and m = ¢ if n is odd. There are 4 representations of dimension 1 and
n — 1 representations of dimension two so we have the sum 4-1+ (n— 1) -4 = 4n which is the order
of the group. We also have that one-dimensional representations are irreducible, so all we have to

24



check is that the two-dimensional representations have the correct inner products. Let i be the
character for the representation pg, 1 < k < n — 1. We compute

2n

(0 k) = 3= O (o xa(a7) + xe0d B)xe(?+7 )

j—l

Z wk]—i-w ')(wfkj—&-wkj))

Z 2kj +w 2k]+2)
=1

=1

by the property that the sum of all powers of roots of unity is 0. Hence we have shown that we
have a complete list of irreducible G-modules for the binary dihedral group. O

We can determine the characters of direct sums and tensor products of representations using the
following lemma:

Lemma 5.11. Let p1, p2 be representations of GG a finite group. Then for any g € G}

Xp1p2(9) = Xp1 (9) + Xp2(9)

Xp1@p2(9) = Xp1 (9)Xp2(9)-
Thus, when we have the character table for a certain group, it is possible to compute the decom-
position into irreducibles for an arbitrary finite dimensional representation, and also to calculate
the character for a tensor product of representations.
Proposition 5.12. Let G = BDy,. Then the McKay graph of G is the extended Dynkin diagram
of type Dpya, }« 4{ where the white vertex corresponds to the trivial representation.

Proof. We first compute the characters of V', the G-module with linear G-action given by the
natural action of BDy, on C2. This action has matrix representation give by:

us}

p:BDg4, — GL(2,C), p(a) = (gwgl),p(ﬁ) = (%) w=en.

Then we have the character table:

BDy, ol 0<j<2n| B 0<j<2n
p wl +w! 0
Po 1 1
P+— 1 —1
P (1) (~1)!(m)
- (~1)7 (~1)/(~m)
e, 1 <k<n-—1 whki 4 ki 0
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where m = 1 if n is even and m = ¢ if n is odd. This table is sufficient as any g € BDy, can be
uniquely written in the form g = o/ 8* for some j € {0,...,n—1} and k € {0,1}. Lemma 5.11 gives:

Xpep(0) = (DI 4 =17y (k=17 4 = (k=101
Xp®pk (Oé]ﬁ) =0
Hence, when k € {2,...,n — 2} we have that X 0, = Xp,, 1@, If £ =1, we then have that:
Xpopr (@) = (W +w ™) +2 = xp, (&) + Xpo (&) + Xp, (@)
Xpwpi (07 B) = 0= X, (& B) 4 Xpo (@ B) + Xp,_ (! B)

so we must have that x,e, = Xp» + Xpo + Xp,_- A similar calculation yields Xp0p,_; = Xpn_» +

Xp—t T Xp——-
Now, clearly X,op0 = Xpopi— = Xp = Xp1» 50 the only products we have left to check are p_
and p__. We appeal to the symmetry of their characters so that we need only check one, as their

product will be the same. Now:
Xpep—i (@) = (1) (&) +w™)
Xp®p—+ (o’ B) = 0.
Since w = e%, then —1 = W™ = w™" so we may write

—(n-1)

Xpp—s (@) = w0l + W™ = W 4w 7= Xpu—s (@)

and we end up with the McKay graph being the Dynkin diagram of type f)n+2 as in Figure 2. [

Po pP—+

P1 Pn—1

Pn—2
4R
-/

O =

p+— p——

Figure 2: bn+2; The Mckay graph for BD,, with vertices labelled by the corresponding represen-
tations.

Theorem 5.13. The McKay graph for a finite subgroup of SL(2,C) is the extended resolution
graph for the Kleinian singularity corresponding to the same group.
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6 Quivers

We have been able to recover the Dynkin diagrams from the subgroups very directly but we wish
to also be able to recover the Kleinian singularities from the McKay graphs. For this, we need a
discussion on quivers which are covered in more detail in many of the projects of my contemporaries.

6.1 Quivers and quiver representations

Definition 6.1. A quiver, @, is a tuple (Qo, Q1, h,t) where Qg is a set of vertices, @1 is a set of
arrows and h : Q1 — Qo,t: Q1 — Qo are known as the head and tail functions respectively.

A representation of a quiver is an association of a vector space V, to each vertex ¢ € @y and a
linear map ¢ to each arrow a € Q1 where ¢ : Vi) = Viy(q)-

For a vector § = (01, 2,...) € NEQM

vector space associated with vertex ¢ is C%. Hence

Rep(Q, d) = @ HOm(Cat(a),C(sh(a))'

ac@Qq

, the space Rep(Q, d) consists of those representations where the

Definition 6.2. Let G be a finite subgroup of SL(2,C) and let p be its natural representation,
po, ---pr. be a complete list of the irreducible representations. Define integers a;; for every i,j €

{0,...,k} by
k
p@pi =P o
=0

The McKay quiver for G' has a vertex for each p; and a;; arrows from vertex ¢ to vertex j.

Remark. Note that the construction of the integers a;; is the same as in the construction of the
McKay graph above Definition 5.4.

Definition 6.3. A (non-trivial) oriented cycle in a quiver is a concatenation of arrows vy =
agak_1...a1 where aq,...,ar € Q1 such that h(a;) = t(a;+1)Vi =1,...,k — 1 and h(ax) = t(a1).

For a given representation S € Rep(@, d) we can define the trace of an oriented cycle « based at ¢;
in @ by the following commutative diagram;

v
Rep(Q,0) ——> End(C%n)

Tr
Tr(v)

C

The representation S associates linear maps to each of the arrows which constitute v and so v(5)
is the endomorphism obtained by composing the linear maps associated to the arrows in the order
~ follows them.

Remark. An important property of the trace is that it is cyclic. That is, Tr(ab) = Tr(ba) and so
on with any cyclic permutation yielding the same trace. The trace of a cycle doesn’t depend on
which base point we choose. The trace of similar matrices is the same and so the trace is change
of basis invariant.
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6.2 Le Bruyn-Procesi process for the cyclic group

ao Po Gp—1

a2

Figure 3: McKay quiver for cyclic group of order n with vertices labelled by their corresponding
irreducible representations.

We turn our attention to the cyclic groups, or quivers of type A,_;. Let § be the dimension
vector, §; = dim(p;). So in this case 6 = (1,1,...,1) € N". We introduce the relations between
arrows as labelled in Figure 3:

aja; = a;_1a;_, 1€ Z/nZ *)

Proposition 6.4. The cycles

Yz = Qn—-10n—2...G0
ok x *
Ty = Aoly---Op—1

*
Yz = Qpao

satisfy the relationship v,7v, — 72 = 0 modulo the relations (*).

Proof.
YaYy = (@n-1...a100)(agay...ay; 1)
= (an-1...a1)(aoag)(aj...as_1)
= (ap—1...a2)(ar1a])(a1a7)(asz...ay_;)
= (an,l...ag)(ala’{)2(a2...a;1)
= (an—1051)" = (agao)" =7
Rearranging yields the desired equality. O
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Proposition 6.5. C[Tr(v,), Tr(vyy), Tr(v.)] = Cltraces of cycles in @ mod relations (*)]

Proof. We prove this by induction.
Suppose v is a cycle in @ of length 2 which starts at vertex p;. By the relations (*) we may assume
that v = a;a;. Then

Te(y) = Te(ajay)
= Tr(a;—1a;_,) by relations (*)
= Tr(a;_jai—1) by the cyclic property of trace

= Tr(apao).

Now suppose that the claim holds for all cycles of length less than 2k and let v be a cycle of length
2k. Since § = (1,1, ..., 1) we have the property that Tr(v17y2) = Tr(v1)Tr(72) for any oriented cycles
v1,7¥2. This is because for any choice of representation, the linear maps will be scalar multiples
of the identity and the trace of a concatenation of arrows applied to such a representation simply
gives the product of the scalars. Then we can either write v = y1a},amy2 or v = y1amar,ye for
some oriented cycles 71,72 with lengths strictly less than 2k and some m € {0,...,n — 1}. In either
case we have
Tr(3) = Tr(y1) Tr(amaly) Tr(72)

so the claim follows from the inductive hypothesis. O

Remark. For some intuition, one can think of this result in terms of the fundamental group of S*
which is isomorphic to Z. As in the proof above, we can use the cycle 7, and the relations (*) to
‘contract’ any cycles which don’t make a full loop around the quiver. Either of v, or 7, could be
used to generate 71(S1) but since we can’t take the inverse of a cycle in a quiver we need both.

From this we obtain a surjection
Clz,y]¢ — C[Tr(yz), Tr(yy,), Tr(y2)] = Cltraces of cycles in @ mod relations (*)] =: R

and thus an injection
Spec(R) — C%/G.

where Spec(R) is the affine algebraic set in C3 which has R as coordinate ring. If we show that
the dimension of Spec(R) is two then this injection is an isomorphism by Proposition A.3 and
the fact that we know C2/G is already an hypersurface. For any A, u € C* we have an element
of Rep(Q,0) which satisfies the relations (*). Namely, associating to each a; the linear map Ad
and to each a the linear map pld. It can be shown that the map sending (A, 1) to the element of
Spec(R) associated to this representation determines an embedding of the algebraic torus (C*)? into
Spec(R), so Spec(R) must have dimension two. Hence we obtain an isomorphism Spec(R) = C2/G.

A similar process may be carried out in the cases of the other finite subgroups, in which we
introduce certain relations of the McKay quiver and then find three special oriented cycles whose
traces generate the C-algebra, Cltraces of cycles in @@ mod relations (*)] = R. One can then show
that dim(Spec(R)) = 2 and obtain isomorphisms

R = C[z,y]%, Spec(R) = C%/G.

Hence we have constructed the Kleinian singularity C?/G directly from the McKay quiver of G as
we had set out to do.
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Appendix

Definition A.1. A C-algebra is a ring, R, with a ring homomorphism p : C — R, so that for
f € R,c € C we can define a scalar multiplication ¢ - f = p(c) - f. For example, Clz1, x2, ..., x| is
a C-algebra for any k € N.

A C-algebra homomorphism is a ring homomorphism between two C-algebras which preserves
the scalar multiplication structure.

Remark. Since C-algebras have a well-defined scalar multiplication, they also have the structure of
C-vector spaces.

Theorem A.2. Let X C A™Y C A™ be algebraic sets. For every C-algebra homomorphism
® : C[Y] — C[X], there exists a unique polynomial map ¢ : X — Y such that ® is the pullback of

©.
Proposition A.3. A variety Y C C" has dimension n — 1 if and only if it is the zero locus of a
single nonconstant irreducible polynomial in C|x1, ..., x,].

Proposition A.4. There are precisely n irreducible representations of C), all of dimension 1.
Proof. Write Cp, = (a | @™ = 1). Let V be an irreducible C,, module, given by the representation:
p:C, — GL(V).

Then p(a)) : V' — V has an eigenvector v with eigenvalue . Since p 1s a group homomorphism, we

have that p(a)” = p(a™) = Idy, meaning that A = 1. Thus, A = %" for some k € {0,...,n—1}.
The Cp-action on V defined by p is linear, and so span{v} is closed under the action of a, which
generates C,, and so span{v} is closed under the action of C),. This means precisely that span{v}
is a submodule of V', which is irreducible, so V' = span{v}, i.e. V is 1-dimensional. Each value of
k € {0,...,n — 1} yields a pairwise non-equivalent irreducible representation of C,,. 0

Theorem A.5. The binary dihedral group of order 4n has precisely four irreducible representations
of dimension 1 and n — 1 representations of dimension 2.

Proof. Write BDy,, = (o, | a®® = 1,82 = o™, 'aB = a~!). Let V be an irreducible BDy,
module, given by the representation:

p: BDy, — GL(V).

Then p(a) : V' — V has eigenvector v with eigenvalue A. Since p is a group homomorphism, we
have that p(a)?® = Idy so that A" = 1. Thus, \ = ¢ for some k € {0,...,2n — 1}. We calculate:

o™ v = pla™)(w) = pla) ! (v) = A"
which means that:
a (B-v)=(ap) v=(Ba") v=0-(a""v)=F-(\"T0) = A"} (Bv),
so B - v is also an eigenvector of p(a), this time with eigenvalue A~1. Also:
B-(B-v)=p"v=0a"v=2A",

so span{v, 3 - v} is closed under the action of o and 3, which generate BDy, so this span is closed
under the action of the whole group. This means that span{v, 8 - v} is a proper submodule of V,
so irreducibility forces V' = span{v, 8- v}. In particular, V' is at most 2-dimensional.
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Case 1: k=0. Here, \=\"! =150 -v € span{v}, write 8 -v = zv for some x € C and V is
1-dimensional. Then:
v=1-v=a"-v=p8%v=2,

so 22 = 1, i.e. x € {£1}. Since 1-dimensional representations are equivalent iff they are equal

everywhere, we get two non-equivalent irreducible representations of BDy, of degree 1.
Case 2: k=n,2|n . In this case note that A" = 1, and also A = A~! = —1. Similarly to Case
1, if we write 8- v = zv, then:

v=1l-v=a"v=p3%v=2%

so x € {£1}. Hence when n is even we have 4 irreducible representations of BDy,, of degree 1.

Case 3: k=n,2{n. Now A" =—1and A =\"! = —1. Write 8- v = xv. Then:

Po=08%v=a"=—v

Then x € {+i} and we have 2 additional irreducible representations of degree 1. So then when n

is odd there are 4 irreducible degree 1 representations of BDy,,.

Case 4: k ¢ {0,n}. In this case, A # A~!. This implies that v and - v are linearly independent,
since they are eigenvectors of p(«) with different eigenvalues and thus V' is 2-dimensional. Let:

pP1 - G — GL(‘fl)
p2 - G — GL(VQ)

be two distinct representations of this form, where p;(«) has eigenvectors v; and - v; with eigen-
values A1 and )\1_1 respectively and pa(«) has eigenvectors vy and (- vo with eigenvalues Ay and
Ay ! respectively. If p1 and po are equivalent, then there exists a G-linear map:

0:V1 — Va,0p1(g9) = p2(9)0 Vg € G.
In particular, consider:

0(pr(e)(v1)) = Aib(v1) = pa(a)(6(v1)) (13)
B(p1(a)(B-v1)) = AT 08 - v1) = pa(a)(B(8 - v1)). (14)

Then equation (13) implies that 6(v1) is an eigenvector of pa(a) with eigenvalue \; and equation
(14) implies that 6(3-vy) is an eigenvector of pa(a) with eigenvalue A;!. There are two possibilities:

1. O(v1) = v2,0(B-v1) = B -va = A1 = Ag. In this case we have that V; = V5 as G-modules,
which we assumed was not true.

2. 9(’01):,3"1)2,9([3"01):’02 — )\1:)\2_1.

Hence for any k ¢ {0,n}, there is an equivalent representation given by 2n — k. This means that
there are precisely n — 1 non-equivalent irreducible representations of BDy, of degree 2. ]
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