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Introduction

Twenty years ago McKay [McK80] observed that the graph of ADE type
associated to a Kleinian singularity C? /G can be constructed using only the
representation theory of the finite subgroup G C SL(2, C). This establishes a
one-to-one correspondence between the nontrivial irreducible representations
of G and the exceptional prime divisors of the minimal resolution Y of C? /G.
Gonzalez-Sprinberg and Verdier [GSV83| provided a geometric explanation
by associating a locally free sheaf F; on Y to each irreducible representation
p; of G. Case by case analysis of the finite subgroups G C SL(2, C) revealed
that the classes ¢;(F;) corresponding to the nontrivial representations p; form
a basis of H%(Y,Z) dual to the exceptional divisor classes. The bijection

{irreducible representations of G} < basis of H*(Y,Z) (1)

follows immediately. This is the McKay correspondence. This thesis studies
several approaches to the problem of generalising the McKay correspondence
to higher dimensions.

In Chapter 2 we provide an elementary introduction to the theory of
motivic integration developed by Kontsevich [Kon95]. Our primary goal is
to calculate the motivic integral in several nontrivial examples. We conclude
with a discussion of how Batyrev [Bat99b, Bat00] used the theory of motivic
integration to prove the following strong version of the generalised McKay
correspondence conjecture of Reid [Rei92].

Theorem 0.1 (strong McKay correspondence) Let G C SL(n,C) be a

finite subgroup and suppose that the quotient X = C"/G admits a crepant
resolution .Y — X. The nonzero Betti numbers of Y are

dimc H*(Y,C) = #{age k conjugacy classes of G},
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fork =0,...,n—1. In particular, the topological Euler number e(Y") is equal
to the number of conjugacy classes of G.

The first step is to construct the motivic integral of a pair (Y, D), for
a complex manifold Y and an effective divisor D on Y with simple normal
crossings. We define the space of formal arcs J,(Y) of Y and associate a
function Fp defined on J(Y) to the divisor D. The motivic integral of
the pair (Y, D) is the integral of Fp over J,(Y) with respect to a certain
measure i on Joo(Y). This measure is not real-valued; the subtlety in the
construction is in defining the ring in which p takes values. We adopt the
structure of the proof of Theorem 6.28 from Batyrev [Bat98] to establish the
following user-friendly formula:

Theorem 0.2 (formula for the motivic integral) Let Y be a complex
manifold of dimension n and D =Y., a;D; an effective divisor on'Y with
simple normal crossings. The motivic integral of the pair (Y, D) is

o L—-1 —n
/m(y)FDdM: > D3] (Hm) -LL (2)

TC{Lyer} jeJ
where we sum over all subsets J C {1,...,r} including J = 0.

The motivic integral of a complex algebraic variety X with Gorenstein
canonical singularities is defined to be the motivic integral of a pair (Y, D),
where Y — X is a resolution of singularities for which the discrepancy divisor
D has simple normal crossings. Crucially, this is well defined independent of
the choice of resolution. The motivic integral induces a stringy E-function

Ba(X):= Y E(D;)-(H(wj;i;—jf_l) (3)

JC{1,...,m} jeJ

which is also independent of the choice of resolution. The E-polynomials
E(Dj) encode the Hodge-Deligne numbers of open strata D C Y, and
the stringy E-function records these numbers with certain ‘correction terms’
written in parentheses in formula (3).

When Y — X is a crepant resolution the correction terms disappear
leaving simply the terms E(D%) whose sum is E(Y). In this way the function
E4 (X) encodes the Hodge numbers of a crepant resolution Y — X. However,

xi



Introduction

crepant resolutions do not exist in general. To get a better feeling for the
stringy F-function of varieties admiting no crepant resolution we calculate
E4(X) for several 4- and 6-dimensional Gorenstein terminal cyclic quotient
singularities.

We conclude Chapter 2 with a discussion of Batyrev’s calculation of the
motivic integral of the quotient singularity X = C" /G, for a finite subgroup
G C SL(n,C), leading to a proof of Theorem 0.1.

Chapter 3 deals with another approach to the McKay correspondence,
namely Nakamura’s G-Hilbert scheme. In 1995, Ito and Nakamura [IN99]
showed that for a finite subgroup G C SL(2, C), the scheme G -Hilb C? which
parameterises G-clusters is the minimal resolution of the quotient C?/G;
here, a G-cluster is a G-invariant, zero-dimensional subscheme Z C C? with
H(Z,0y) isomorphic to the regular representation of G. In 1996, Nakamura
[Nak00] introduced the scheme G -Hilb C? for a finite subgroup G C SL(3, C),
and conjectured that it is a crepant resolution of the quotient C*/G. He
proved this for an Abelian subgroup A C SL(3, C) by introducing an explicit
algorithm that calculates A-Hilb C*. Chapter 3 is a partially rewritten
version of a joint preprint with Miles Reid [CR99] which calculates A -Hilb C?
by a much more efficient and user-friendly procedure.

Let A C SL(3,C) be a finite Abelian subgroup. The quotient singularity
C*/A is the toric variety X, associated to the cone o = (ey, s, e3) inside
the vector space L®R = R?, where ey, 3, e is the standard basis of a lattice
73 and L D Z3 is the overlattice generated by the elements of A written in
the form %(041,042,0(3) with n = |A| and 0 < a; < n. The junior simplex
A C L®R is the triangle with vertices eq, es, 3, containing the lattice points
%(al, (g, a3) for which oy + s + a3 = n.

Theorem 0.3 The junior simplex A is partitioned by reqular triangles.

Here, a reqular triangle of side r € N, or simply a reqular triangle, is a
lattice triangle in A with r + 1 lattice points spaced evenly along each edge.
Join these lattice points by drawing r — 1 lines parallel to the sides of the
regular triangle to produce its regular tesselation into r? basic triangles (see
Figure 3.1(b)).

The partition of Theorem 0.3 is determined by a combinatorial proce-
dure involving continued fractions. The locus (xz = 0) inside C* cuts out
a surface singularity (C%xzﬂ) /A whose minimal resolution is determined by a
Jung-Hirzebruch continued fraction. Similarly, the loci (y = 0) and (z = 0)

xii



give rise to continued fractions and by concatenating all three we produce a
‘cyclic continued fraction’, i.e., a list of integers without a preferred starting
point. A contraction of the continued fraction determines a regular trian-
gle, and a chain of contractions determines the partition of A into regular
triangles.

Theorem 0.4 Let X denote the toric fan determined by the reqular tessela-
tion of all reqular triangles in the junior simplex A. The toric variety X »
is Nakamura’s A-Hilbert scheme A-Hilb C3.

Corollary 0.5 ([Nak00]) A-Hilb C* — C*/A is a crepant resolution.

The standard construction of toric geometry says that Xy 5 is the union
of the affine pieces X, . = Spec C[r¥ NM] taken over all 3-dimensional cones
7 € 3, where M = Hom(L, Z) is the dual lattice. Having constructed X, it is
straightforward to calculate explicit coordinates on this open cover of Xy 5.
To prove Theorem 0.4 we calculate explicit coordinates on an open cover of
A-Hilb C?* and observe that the calculations agree.

In Chapter 4 we use the calculation of Y = A-Hilb C? introduced in
Chapter 3 to establish a geometric construction of the McKay correspondence
for finite Abelian subgroups A C SL(3,C). In fact, for a finite Abelian
subgroup A C SL(3,C) we prove part (ii) of the following conjecture of
Reid [Rei97):

Conjecture 0.6 (Reid’s second McKay conjecture) Let G C SL(n,C)
be a finite subgroup and suppose that Y = G -Hilb C" is a crepant resolution
of the quotient X = C"/G. Then

(i) the Gonzalez-Sprinberg and Verdier sheaves F; on Y are locally free
and form a Z-basis of the K-theory of Y.

(i) a certain cookery with the Chern classes of the sheaves F; leads to a
Z-basis of the cohomology H*(Y,Z) for which the bijection (1) holds.
This is the McKay correspondence for Y = G -Hilb C".

I[to and Nakajima [INOO] proved part (i) for a finite Abelian subgroup A C
SL(3,C). By applying the Chern character they therefore established a basis
of H*(Y, Q) in one-to-one correspondence with the irreducible representations
of A, a rational version of the McKay correspondence (1). The main result of
Chapter 4 establishes part (ii) of Conjecture 0.6 for a finite Abelian subgroup
A C SL(3,C). We begin by constructing a basis of H*(Y,Z):

xiii



Introduction

Theorem 0.7 There are virtual bundles V,, on' Y = A-Hilb C* indezed by
certain characters x,, of the group A such that the classes c3(V,,) form a
basis of H*(Y,Z) dual to the basis [S] € Hy(Y,Z) determined by the compact
exceptional surfaces S of the resolution p: Y — X.

The proof of Theorem 4.2 uncovers certain relations between tautological
bundles of the form!, say, F,, = F. ® F, for characters x,, = x» ® i
In fact, one such relation arises for each compact exceptional surface S of
the map ¢ and, following a recipe introduced by Reid [Rei97], we use each
relation to cook up a virtual bundle V,, on Y with trivial rank and trivial
first Chern class. We illustrate this construction by drawing the toric picture
of ¥ and marking each line with a character y; corresponding to the line
bundle F; and each vertex with a character x,, (or a pair of characters x;,
Xm) corresponding to V,, (respectively to F;, V,,,). Case by case analysis of
the compact exceptional surfaces S C Y establishes Theorem 0.7.

The first Chern classes ¢ (F;) of the tautological bundles span H*(Y,Z),
but they do not form a Z-basis in general. However, we determine a subset
which does base H*(Y, Z):

Theorem 0.8 Given the first Chern classes of all nontrivial tautological
bundles, discard those classes c¢i(Fy,) determined by characters X, which
form the indexing set of the basis co(V,,) of HY(Y,Z). The remaining classes
form a Z-basis of H*(Y,Z).

Corollary 0.9 The McKay correspondence bijection (1) holds (replace G by
A) for all finite Abelian subgroups A C SL(3,C).

There are two key points here: first, it is not clear a priori that charac-
ters corresponding to different elements c3(V,,,) basing H*(Y,Z) are distinct;
also, we must ensure that the relations between the tautological bundles are
independent in Pic(Y'). The proof of Theorem 0.8 uses the toric picture of ¥
which is marked with characters of A. We plot each character y marking ei-
ther a line or a vertex in our picture on the McKay quiver and conclude that
these characters correspond one-to-one with the characters of the group A.
Using this observation, together with equality e(Y) = |A| from Theorem 0.1,
it is straightforward to deduce Theorem 0.8, and hence Corollary 0.9.

!Note however that the map x; — F; is not multiplicative in general.
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The final chapter introduces a procedure to calculate toric minimal mod-
els of C* /G as moduli spaces M, of representations of the McKay quiver asso-
ciated to a finite Abelian? subgroup G C SL(3,C). Tto and Nakajima [INOO]
observed that the minimal model G -Hilb C* of C? /G is of the form M, for
some parameter #. Our goal in Chapter 5 is to provide examples where every
toric minimal model of C* /G, or equivalently every toric flop of G -Hilb C?,
is of this form.

The moduli My are GIT quotients of an affine variety X (parametrising
certain representations of the McKay quiver) by the action of a reductive
algebraic group PGL(r) with respect to a PGL(r)-linearisation of the trivial
line bundle. Sardo Infirri constructs My explicitly by calculating all #-stable
points of X using a computer program. However, the computations are hard
to carry out in practise.

Let X' be a basic triangulation of the junior simplex A of C*/G so that
the toric variety Y = Xp sy is a minimal model of C?/@. If the procedure
introduced below successfully calculates Y as a moduli space My for some
parameter 6 then the flop linking ¥ and G -Hilb C* can be regarded as a
variation of GIT quotient:

X
N
Y = My <——mm ~ M, = G-Hilb C*

~N S

/G

The procedure generalises Nakamura’s calculation of G -Hilb C* = X Ly
and has several steps. The first step is to find a (C*)3-invariant point of the
toric variety Y = X xv. To do this, we take a G-cluster H%(Z, Oy) and, while
maintaining the isomorphism to the regular representation R, we alter the
Clz,y, z]-module structure. The resulting G-equivariant Clz,y, z]-module
M’ is called a G-constellation. We do not yet have a clear understanding of
this alteration process and for this reason we label this the mysterious first
step. Nevertheless, if this step can be performed then the module M’ defines
(by construction) a (C*)3-invariant point of X, sv. The generators m/ of M’
are indexed by some subset I, of the set I:= {0,1,..., N} indexing the
irreducible representations pyg, ..., py of G.

2In the final chapter, G' (rather than A) denotes the finite Abelian subgroup of SL(3, C).
You'll see why shortly.
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Introduction

Now, a G-constellation may also be regarded as a representation of the
McKay quiver (satisfying certain relations) and hence defines a point z € X.
The GIT notion of stability for points x € X translates directly into the
language of G-constellations and 6(M') denotes the parameters § € QVT!
with respect to which M’ is f-stable. A theorem of Ishii states that M’ may
be deformed with the moduli space My to produce deformation parameters
v1, Vg, v3 € Def(M') cutting out a 3-dimensional cone o' := o(M') C LR
such that X, ,» 2 C*. Calculating the cone o’ is the second step.

The third step simulates a ‘G-igsaw transformation’ in the v-direction
for some v € Def(M') with v ¢ C[z,y, 2] by running an algorithm (this is
Algorithm 5.22 in the main text). This algorithm is set up to ensure that
the module generators of the resulting G-constellation N are indexed by a
subset of Iye,. Then N may also be deformed to produce a cone o(N) and
we repeat. Thus we have:

Procedure 0.10 Let X' be a basic triangulation of the junior simplex A of
C?/G for a finite Abelian subgroup G C SL(3,C).

STEP 1 Perform the mysterious first step to get a G-constellation M’ and
a set Iye, indexing the generators of M'. Relabel M := M'.

STEP 2 Deform M according to Theorem 5.19 to produce deformation pa-
rameters vy, vy, v3 € Def(M) cutting out a cone o(M).

STEP 3 Run Algorithm 5.22 on M in the vg-direction (for some k =1,2,3)
to produce a G-constellation N whose generators are indexed by a subset

of Igen-
STEP 4 Set M := N and return to STEP 2.

It is not yet clear whether the first step of this procedure can be carried
out for every toric minimal model of C*/G. Moreover, even if the procedure
does begin it is not clear a priori that it stabilises after finitely many steps.
Nevertheless, in §5.7 and §5.8 we apply the procedure to every basic triangu-
lation ¥’ of the junior simplices of the cyclic quotient singularities é(l, 2,3)
and 1—11(1, 2,8). In each case, the procedure produces precisely |G| modules
M; such that the corresponding cones o; = o(M;) define the fan 3.

Thus far then, beginning with the fan ¥’ we have found an unusual
method to calculate the fan ¥'(!) We now come to the key point:

3You now see why G (rather than A) denotes the Abelian subgroup of SL(3, C).
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Conjecture 0.11 For X' as in Procedure 0.10, suppose that the procedure
has been successfully implemented to produce |G| modules M; such that the
fan X' is determined by the 3-dimensional cones o; = o(M;). Then there
exists an open subset of parameters 6 in the orthant

Orth(M'):= {0 € QV*' | 0; < 0 if i € Iyen; 0; > 0 otherwise}
such that every M; is 0-stable.

Theorem 0.12 When Conjecture 5.27 holds, X1 s» = My for each of the
parameters @ € Orth(M') given by the conjecture.

When the conjecture holds, every application of STEP 3 in Procedure 5.24
is called a 6-stable G-igsaw transformation.

We verify that the conjecture holds for every basic triangulation ¥’ of the
junior simplices of the cyclic quotient singularities é(l, 2,3) and 1—11(1, 2,8).
Thus, every minimal model Y = X7 5 of the quotient singularities of type
£(1,2,3) and 5(1,2,8) can be constructed as moduli My for some 6. As
a result, the minimal models of these singularities can be regarded as a

variation of GIT quotient as shown in the diagram on page xv.

We now describe the structure of this thesis. In Chapter 1 we gather
some well known results that are used in subsequent chapters, focusing on
the toric geometry construction of Abelian quotient singularities, the his-
tory of the McKay correspondence and the construction of the moduli spaces
M, of representations of the McKay quiver. Chapter 2 is an elementary
introduction to motivic integration, containing a detailed calculation of the
motivic integral of several Gorenstein terminal cyclic quotient singularities.
In Chapter 3 we provide a simple calculation of A-Hilb C? for finite Abelian
subgroups A C SL(3,C) by proving Theorems 0.3 and 0.4. In Chapter 4 we
establish Theorems 0.7 and 0.8, leading to an explicit basis for the integral
cohomology of A-Hilb C? satisfying Corollary 0.9. Chapter 5 reviews Naka-
mura’s calculation of G -Hilb C3?, introduces Procedure 0.10 and provides
several worked examples. Appendix A consists of a short discussion about
the motivic nature of motivic integration.
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Chapter 1

Preliminaries

This chapter presents some well known results. Section 1.1 focuses on Goren-
stein canonical singularities and the toric geometry construction of Abelian
quotient singularities (see Reid [Rei80, Rei83, Rei87]). Section 1.2 reviews
the history of the McKay correspondence: from McKay’s result [McK80] and
the work of Gonzalez-Sprinberg and Verdier [GSV83] to the conjectures of
Reid [Rei92] and Batyrev-Dais [BD96] generalising the McKay correspon-
dence to higher dimensions. Section 1.3 recalls the construction of moduli of
representations of the McKay quiver for a finite subgroup G C GL(n, C).

1.1 Background material

1.1.1 Kleinian singularities

Finite subgroups of SL(2, C) are classified up to conjugacy as either the cyclic
group of order n > 2 generated by the transformations

(z,y) = (ew,e"

y) for " =1;
the binary dihedral group of order 4n (n > 2) generated by the pair
(l‘,y) - (_y7$) and (ilf,y) — (5.1',52“71?}) for 5271, = 1,

or one of three exceptional cases: the binary tetrahedral, binary octahedral
or binary icosahedral groups of order 24, 48 and 120 respectively. Each
exceptional case is the lift under the double cover SU(2) — SO(3) of the
symmetry group of the corresponding Platonic solid.

1
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Definition 1.1 For G C SL(2,C) a finite subgroup, the quotient variety
X = C?/G := Spec Clz,y] is called a Kleinian singularity (also known as
a Du Val singularity, a simple surface singularity or a rational double point).

The quotient can be embedded as a hypersurface X C C* with an iso-
lated singularity at the origin. The defining equation for the singularity is
determined by the conjugacy class of the group G as shown in Table 1.1. For
the cyclic and binary dihedral cases we have n > 2.

Conjugacy class of G Defining equation of X Dynkin graph

cyclic Z/nZ 22412+ 2" =0 A,

binary dihedral Dy, 22+ y2z 4+ 2" =0 Diyis
binary tetrahedral Ty 22+ +20=0 E
binary octahedral Qg 224+ +y =0 E,
binary icosahedral T4 22+t +2°=0 Eq

Table 1.1: Classification of Kleinian singularities.

We now describe the ADE classification. Write ¢: Y — X for the min-
imal resolution; that is, make an arbitrary resolution of singularities and
successively contract (—1)-curves to produce Y. The exceptional locus of ¢
consists of (—2)-curves D; intersecting transversally. The resolution graph
of X is constructed as follows: each curve D; is a vertex, and two vertices
are joined by an edge if and only if the corresponding curves intersect in Y.
For Kleinian singularities, the resolution graph is one of the Dynkin graphs
of ADE type shown in Figure 1.1. Note that the graphs of type A, and D,
each have n vertices.

1.1.2 Canonical and Gorenstein quotient singularities

The notion of canonical singularities, introduced by Reid [Rei80], generalises
the adjunction-theoretic properties of a surface with Kleinian singularities to
higher dimensions.

Definition 1.2 A normal variety X is said to have canonical (respectively
terminal) singularities if it satisfies the following two conditions:

2
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An Dn

Figure 1.1: Dynkin graphs of type A,, D,, Es, E; and Ey

(i) the Weil divisor rKx is Cartier for some r € N.

(ii) for any resolution of singularities p: Y — X with exceptional prime
divisors {D;}, the numbers a; € Q determined by the formula

Ky = ¢"Kx + Z a; D;
satisfy a; > 0 (respectively a; > 0).

The Q-divisor D = > a;D; is the discrepancy divisor of the resolution, and
the rational number a;, which is independent of the choice of Y, is the discrep-
ancy of the divisor D;. The resolution is said to be crepant if the discrepancy
divisor is zero, in which case Ky = ¢*Kx.

Kleinian singularities are canonical. Conversely, every canonical surface
singularity is analytically isomorphic to a Kleinian singularity X C C? (see
[Rei87, §4.9] for a proof).

While searching for a 3-dimensional analogue of the minimal resolution
of a Kleinian singularity Reid discovered the correct definition of minimal
model for a 3-fold with canonical singularities:

Theorem 1.3 ([Rei83]) Let X denote a 3-fold with canonical singularities.
There exists a proper birational morphism @'Y — X which is crepant, where

Y has only Q-factorial terminal singularities. The variety Y is a minimal
model of X.

Minimal models are nonunique in general. Different minimal models of
a given 3-fold are isomorphic in codimension 1 and are related by a finite
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sequence of flops (see [KM96, §6]). That is, if Y7, ..., Y} are minimal models
of X then there are birational maps ¢;: Y; -+ Y.

Canonical singularities are rational [Rei80, §3.8]. That is, for a normal
variety X with canonical singularities, there is a resolution ¢: Y — X such
that R'p,0Oy = 0 for all 0 < i < dim X. As a consequence [Har77, II1,§8],
when X is affine the groups H*(Y,Oy) vanish for all 0 < i < dimY’, so
the exponential exact sequence induces an isomorphism Pic(Y) = H?*(Y,Z)
determined by sending a line bundle £ to its first Chern class ¢;(L).

Let G C GL(n, C) be a finite subgroup acting on C". The quotient variety
is C" /G := Spec Clzy,...,x,]%.

Definition 1.4 An element g € GL(n,C) of finite order is called a quasi-
reflection if the matrix ¢ — I has rank 1, where I denotes the n x n identity
matrix. A finite subgroup G C GL(n,C) is called small if it contains no
quasireflections.

A theorem of Shephard and Todd [ST54] and Chevalley [Che55] states
that if G C GL(n,C) is a finite group and H C G is the maximal subgroup
generated by quasireflections then C*/H 2 C". This reduces the study of
quotients C" /G to the case where G C GL(n,C) is small.

Definition 1.5 A variety is Gorenstein if it is Cohen—Macaulay and the
canonical sheaf wy is invertible.

Proposition 1.6 ([Wat74]) Let G C GL(n,C) be a small subgroup. Then

C" /G is Gorenstein <= G C SL(n,C).

In particular, Kleinian singularities are Gorenstein. We observed in the
previous section that Kleinian singularities are canonical. More generally we
have the following result:

Proposition 1.7 ([Rei80]) Gorenstein quotient singularities are canonical.

Proor. Let G C SL(n,C) be small. The action is free in codimension 1
so the quotient map 7: C* — C"/G is étale in codimension 1 on C*. The

canonical sheaf of C"/G is locally free by assumption and it follows from
[Rei80, §1.7] that C" /G is canonical. 0
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1.1.3 Toric geometry

Let L =2 Z" be a lattice and write M := Hom(L,Z) for the dual lattice. A
cone o in Lg := L ® R =2 R" with vertex at the origin is said to be strongly
convex rational polyhedral if o can be generated over R>q by finitely many
points of the lattice L. The dual cone 0¥ C My := M ® R determines a
finitely generated C-algebra Clo¥ N M] and hence an affine toric variety

X1, :=Spec Clo¥ N M].

The intersection of o with a supporting hyperplane is called a face of 0. The
variety Xz , is a principal open subset in X , when 7 is a face of o.

Definition 1.8 A fan is a finite collection of strongly convex rational poly-
hedral cones ¥ = {0;};c; in Lg such that (i) the faces of each cone in ¥ are
also cones in ¥ and (ii) any two cones in ¥ meet in a common face. The
toric variety Xp, 5 associated to the fan ¥ in Ly is constructed by taking the
disjoint union of the varieties Xy, ,,, one for each ¢ € I, and gluing Xy, ,, and
X1.,0; along the principal open subset X7, 5o, -

Geometric properties of toric varieties can be deduced by studying the
corresponding fan. For instance, Xy is a normal variety of dimension
dimz L = n. Also, the affine toric variety X, is smooth if and only if
o is generated by part of a basis of the lattice L = Z", in which case
Xy, = Clime 5 (Cr)4me,

The algebraic torus T" ~ (C*)" is a dense open subset of X » and the
natural action of the torus on itself extends to an action on Xy, inducing a
stratification of X x into orbits of the torus action Oy, , = ((C*)”fdimT, one
for each cone 7 € X. The cones containing 7 as a face define a fan Star(7) in
L(7)®R where L(7) := L/(rNL). The toric variety Xp,)star(-) is the closure
of the orbit Or ;. These closed subvarieties are the toric strata of Xy, 5. The
correspondence between toric strata Xp ;) star(-) C Xz,» and cones 7 € ¥ is
inclusion-reversing.

Definition 1.9 Let L and L' be lattices, and consider fans ¥ and ¥ in Lg
and Ly respectively. If there is a homomorphism of lattices p: L' — L such
that, for each cone ¢’ € X', there is a cone o € X for which ¢(¢’) C o, then
the toric morphism ¢: X sy — X 5 is induced in the obvious way.

5
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The toric morphism ¢ is proper and birational when the homomorphism
¢ is an isomorphism and ¥’ is a subdivision of . If every cone in ¥’ is
generated by part of a basis of the lattice L' then the corresponding morphism
¢: Xp sy — Xpx is a resolution of singularities. The exceptional locus
consists of the toric strata X/ () star(r) determined by the cones 7 in X' which
do not lie in ¥. In particular, the exceptional divisors are the toric strata
corresponding to the 1-dimensional cones which lie in X'\ X.

Examples 1.10 In Figure 1.2 we draw two fans in Lg = R? for which the
underlying lattice L has the standard basis ej,e;. It is well known that

] 2o

Figure 1.2: Fans defining the toric varieties P? and dPg

Xis, & P2 Indeed, for z; = z/2 and z2 = 25/2, the 2-dimensional
cones in ¥; define the standard affine cover of P? with coordinates zy, 21, 22;
for instance, if o is the cone generated by e; and —e; — ey then X, =
Spec C [LEQ_I, xlxz_l] = Spec C[zy/22, 21/ 2] = C2.

The fan Y, is obtained from 3; by subdividing the cones with rays
generated by —e;, —es and e; + e3. The corresponding toric morphism
Xis, = X, is the blow-up of P? at the points [1:0: 0], [0:1:0] and
[0:0:1]. The resulting toric variety X, 5, = dPg is the del Pezzo surface of
degree 6 familiar from the plane Cremona transformation [Har77, V §4].

1.1.4 Abelian quotients are toric varieties

Our treatment of cyclic quotient singularities follows Reid [Rei87, §4]. Write
M = Z" for the lattice of Laurent monomials in x,...,x,, and L for the
dual lattice with basis e, ...,e,. For r € N and integers ay,...,q, in the
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range 0 < a; < r, consider the overlattice

L=L+7Z o,...,ap), (1.1)

and let M C M denote the dual sublattice. A Laurent monomialin z1,...,x,
lies in the sublattice M C M if and only if it is invariant under the action of
the small group G = Z/r C GL(n,C) generated by the diagonal matrix

g =diag(e™,...,e") with 0<a; <r,
where r is the order of g and ¢ is a primitive rth root of unity. The assumption

that G is small implies that ged(r, o, ..., @;,...,ap) =1forallj=1,...,n,
where the notation c?j means that «; is omitted.

Definition 1.11 For 0 = (ey,...,e,) in Lg with L as in (1.1) above, set
X1, = Spec Clo¥ N M] = Spec Clzy,...,1,]" =C"/G.

This is the cyclic quotient singularity of type (ay, ..., ay).

r

More generally, let G C GL(n, C) be a small Abelian subgroup. Choose
coordinates x4, ..., x, on C" to diagonalise the action and write M and L as
above. To each group element

g = diag (6“(-")1, e ,sa(g)”) with 0 < a(g); <r(g),

where r(g) is the order of g and ¢ is a primitive r(g)th root of unity, we
associate the vector

1
Vg = @(a(g)l, o a(g)n)-

Definition 1.12 Consider the cone o = (ey,...,e,) in Lg with

L:=L+) Z-v,

gelG

The associated toric variety X, , is the Abelian quotient singularity C*/G.

7
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For L = Z™ generated by e, ..., e,, consider L ® R = R". Write
0= {(rl,...,rn) eR” ‘ 0<r< 1}

for the unit box. Each element ¢ € G = L/L has a unique representative
vy € O so when drawing the toric picture of o in Lg we need only draw LNDO
(see Examples 1.14). The notation v, denotes both the vector in R* and the
lattice point in L. The criteria for determining whether an Abelian quotient
singularity is canonical or Gorenstein are due to Reid:

Theorem 1.13 ([Rei80]) Write Xy, , for the Abelian quotient C*/G. Then

(i) XL, is canonical (resp. terminal) if and only if

n

> alg); = r(g) (1.2)

j=1
(resp. >) for each vy, = @(a(g)l, ...,alg).) €LNDO.
(ii) the vectors v, for which (1.2) is equality correspond to the crepant ex-
ceptional divisors of a resolution of C*/G.

(iii) X, is Gorenstein if and only if

n

Za(g)j =0 mod r(g)

j=1

for every v, = @(a(g)l, .. a(g),) € LNDO.
PROOF. For each primitive vector v, € L N O, the barycentric subdivision
of o at v, determines a toric blow-up ¢: B — A of the Abelian quotient
A = X ,. The exceptional divisor is I' = X ;) star(r), Where 7 is the ray
with primitive generator v,. Adjunction for the toric blow-up ¢ is

1 n
Kp = K+ (@ S alg), - 1) I (1.3)

j=1
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see [Rei87, §4.8] for a proof. Statements (i) and (ii) of the theorem follow
directly from the discrepancy calculation (1.3). For part (iii), recall that the
element g € G of order r(g) acts on C" as

g = diag (9. @) with 0 < a(g); < r(g),

for €79 = 1. Thus G C SL(n,C) if and only if r(g) divides Z?Zla(g)j for
every g € G. Part (iii) now follows from Proposition 1.6. O

The process of resolving toric singularities is straightforward and, more-
over, the exceptional locus is easy to determine. To illustrate this process
we now describe the well known procedure to determine the minimal Jung-
Hirzebruch resolution of cyclic surface quotients C?/G.

For a cyclic group G C GL(2,C) it is enough (by killing quasireflections)
to consider only cyclic quotients of type %(1, a) with a coprime to r. The
lattice is L = Z?+Z-+(1,a) and the cone o is the positive quadrant (ey, e3).
Let vg = (0,1),v; = %(l,a), ..., Ugr1 = (1,0) denote the points which form
the convex hull of lattice points in the positive quadrant (not including the
origin). One can determine these points by a simple algorithm: expand the
rational number r/a as a ‘Hirzebruch continued fraction’

to produce ¢i,...,¢x € Zsy, then set vy := (0,1), vy := £(1,a) and define
Vi1 *=C; -V — Vi1 for ¢ = 1,/{)

Each v; liesin L and consecutive pairs generate L over Z. To perform the reso-
lution, subdivide the positive quadrant with rays generated by vy, vy, ..., Vg1
and write X for the resulting fan. The variety X, 5, is smooth by construction
and the toric morphism ¢: X 5, = X , corresponding to the subdivision is
the Jung-Hirzebruch resolution.

Examples 1.14 The singularity {(1,3) is determined by Figure 1.3(a). We
draw the unit square O in the lattice L = Z? 4+ Z - 1(1,3). Figure 1.3(b)
illustrates L N O for the singularity of type 77 (1, 2).

The fan X of the minimal resolution of %(1,3) is shown in Figure 1.4(a).
The exceptional locus consists of three toric strata Xy (;)star(r) = P! which

9
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(a) (b)

Figure 1.3: (a) The singularity i(l, 3); (b) The singularity 1—11(1, 2)

(a) (b)

Figure 1.4: (a) Resolution of }(1,3); (b) Resolution of -(1,2)

correspond to the 1-dimensional cones 7 € X\ 0. The resolution is crepant
by Theorem 1.13(ii).

The minimal resolution of :-(1,2) illustrated in Figure 1.4(b) requires
only two new rays through 1—11(1, 2) and ﬁ(G, 1) corresponding to toric strata
X1(r)star(r) = P!. These divisors have discrepancy —1—71 and —1—51 respectively.

1.1.5 Hodge—Deligne numbers of toric varieties

For a smooth projective variety X over C, the cohomology H*(X, Q) carries
a pure Hodge structure of weight k; that is, a decreasing Hodge filtration on

10
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the complex cohomology
H*X,C)=F'>F'>.---DFfDF =0
such that
H*(X,C) = F* @ Fkr+1, (1.4)

Here FP is the subspace of cohomology classes which can be represented by
forms with p or more terms of type dz*. The integers h??(X) := dim¢ FPNEF4
are the classical Hodge numbers of X.

More generally, Deligne has shown [Del71, Del74] that the cohomology
groups H¥(X,Q) of a complex algebraic variety X carry a natural mized
Hodge structure. This consists of an increasing weight filtration

0=W_, CW,C--- C Wy =H(X,Q)
on the rational cohomology of X and a decreasing Hodge filtration
H*X,C)=F'>F'>.---DFfDF =0

on the complex cohomology of X such that the filtration induced by F'* on
the graded quotient Gr;” H*(X) := W;/W,_, is a pure Hodge structure of
weight [. Thus

CGr H¥(X) ® C = F? Gr}” H¥(X) @ Fl-p+1 Gr," H*(X) (1.5)

where F? Gr)Y H*(X) denotes the complexified image of F? N W} in the quo-
tient W;/W,_; ® C. The integers

h1(H*(X,C)) = dime (Fp Gry'ey H*(X) N 9 Gy H (X))

are called the Hodge—Deligne numbers of X. For a smooth projective variety
X over C, Gr}” H*(X,Q) = 0 unless [ = k in which case (1.5) coincides with
(1.4) and the Hodge—Deligne numbers are the classical Hodge numbers.
Danilov and Khovanskii observe [DK87] that cohomology with compact
support H¥(X, Q) also admits a mixed Hodge structure and they encode the
corresponding Hodge—Deligne numbers in a single polynomial:

Definition 1.15 The E-polynomial E(X) € Z[u,v] of a complex algebraic
variety X of dimension n is defined to be

Z Z )*RP (HE(X, C)) uf vl

0<p,qg<n 0<k<2n

11
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Evaluating E(X) at u = v = 1 produces the standard topological Euler
number e.(X) = e(X).

Theorem 1.16 ([DK87]) Let X,Y be complex algebraic varieties. Then

(1) if X = || X; is stratified by a disjoint union of locally closed subvarieties
then the E-polynomial is additive, i.e., E(X) =) E(X;).

(ii) the E-polynomial is multiplicative, i.e., E(X xY) = E(X) - E(Y).

(iii) if f: Y — X is a locally trivial fibration w.r.t. the Zariski topology and
F is the fibre over a closed point then E(Y) = E(F) - E(X).

PROOF. The key to (i) is the existence of the following long exact sequence:
for Z C X a closed subvariety, the exact sequence

= HE(X\Z,Q) — Hi(X,Q) = HI(Z,Q) — ...
consists of morphisms preserving the mixed Hodge structure. Part (ii) follows
as the Kiinneth isomorphism preserves the mixed Hodge structure. Part (iii)

is an application of (i) and (ii) to a locally trivial covering of the fibration f.
See [DK87] for more details. 0

Proposition 1.17 The E-polynomial of a toric variety of dimension n s
& n—k
k=0

where dy, is the number of cones of dimension k in 3.

PRrOOF. The Hodge numbers of P! are well known and, by Theorem 1.16,
we compute F(C*) = E(P') — F(0) — E(c0) = uv — 1, so

E((C)**) = E((C*)n_k = (uv — 1)n_k.
Recall from §1.1.3 that a toric variety Xy 5, of dimension n is stratified by

orbits of the torus action Oy, = (C*)" ™7 one for each cone 7 € ¥. The
result follows from Theorem 1.16(i). O

12
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1.2 History of the McKay correspondence

1.2.1 The classical McKay correspondence

McKay [McK80] observed that the Dynkin graph of ADE type associated to
a Kleinian singularity C?/G (as described in §1.1.1) can be recovered using
only the representation theory of the finite subgroup G C SL(2,C). We now
explain McKay’s construction.

Let G C SL(2,C) be a finite subgroup and let Q = C? be the representa-
tion induced by the inclusion G C SL(2,C). Let py, ..., py be the irreducible
representations of G, with py trivial, and set 7:= {0,..., N}. For any j € I,
the representation () ® p; decomposes as a sum of irreducibles

Q R pj = @ai]’pi for Qi = dlm@ HOHIG(Pi; Q ® p])

el

Definition 1.18 The McKay quiver of G C SL(2,C) is the directed graph
with vertex set I, and a;; arrows from vertex i to vertex j.

The orientation of the McKay quiver is reversed when we replace () by
its dual. For G C SL(2,C) the representation @ is self-dual, so every arrow
i — j has an opposite arrow j — i; this pair of opposite arrows is usually
referred to as an edge and the quiver is called the McKay graph, denoted I'g.
Write ['g for the subgraph consisting of the vertices p; corresponding to the
nontrivial representations, and the edges between them.

Theorem 1.19 ([McK80]) For G C SL(2,C) a finite subgroup, the McKay
graph fg is an extended Dynkin graph of ADE type. Moreover, the subgraph
['c consisting of nontrivial representations is the graph A,, D,, Fs, E7 or
Eg which arises as the resolution graph of the singularity C?/G.

DiscussioN OF PROOF. Case by case analysis of the subgroups listed in
Table 1.1. For example, the nontrivial representations of the cyclic group
action generated by Q(z,y) = (ez,e" 'y) for " = 1 are the 1-dimensional
representations p;(r) = &'z, for i = 1,...,n — 1. Clearly Q = p; ® p, 1 so
that Q@ ® p; = pj+1 © pj—1. The vertex p; of the McKay graph is therefore
joined by an edge to the vertices p;;; and p; ;. This defines the extended
Dynkin graph an- The subgraph T'g is the Dynkin graph A, ; which is

13
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the resolution graph of the Kleinian singularity C?/G for the cyclic group
G =1Z/n. O

This result uncovers a one-to-one correspondence between the irreducible
components D; of the exceptional locus of the crepant resolution Y — C? /G
and the nontrivial irreducible representations p; of G C SL(2, C).

It is well known that the exceptional divisor classes [D;] define a basis for
the homology Hs (Y, Z) and, by adding the homology class of a point, we have
a basis of H,(Y,Z). By adding the trivial representation to the nontrivial
representations p; we uncover a bijection

{irreducible representations of G} <— basis of H.(Y,Z). (1.7)

This is the classical McKay correspondence for G C SL(2, C).

1.2.2 Geometric interpretation via K-theory

A geometric construction of the McKay correspondence (1.7) was provided
by Gonzalez-Sprinberg and Verdier [GSV83]. The key lies in the construction
of ‘tautological vector bundles’ on Y, one for each irreducible representation
p of the group G.

Definition 1.20 For an irreducible representation p;: G — GL(V;), let M;
denote the Ox-module defined by

M; := Homgig) (Vi, Clz, y]).

Define F; := ¢*M;/Torse, , where Torsp, denotes the Oy-torsion of p*M;.
The sheaf F; is locally free of rank equal to the dimension of p; [GSV83,
§2.10] and is the tautological bundle on Y associated to p;.

Write {D,} for the exceptional prime divisors of ¢. Gonzalez-Sprinberg
and Verdier [GSV83, §6.2.1] showed, by analysing the subgroups in Table 1.1
case by case, that the nontrivial tautological bundles {F;} satisfy

c1(Fi) - [Dy] = deg (Filp;) = 645, (1.8)

where d;; is the Kronecker delta symbol. The classes ¢1(F;) € H*(Y,Z) are
therefore dual to the basis [D;] € Hy(Y,Z), leading to (1.7).

14
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Example 1.21 Let X := C?/G be the Du Val singularity of type A,_;. The
minimal resolution ¢: Y — X is covered by affine sets Uy, ..., U, 1, where
U; = C* has coordinates

G and v; =

U; = 7 3

see Figure 1.4(a) for the toric picture of the case n = 4. Let D, denote the
exceptional curve defined by the equation u;_; = 0 in U;_; and by v; = 0
in U;, so D; = P! is parametrised by the ratio 7 :y"7. Let p; denote the
1-dimensional representation with character x; = £’. The monomials z° and
y" " lie in the y;-eigenspace of the G-action and generate the module M;.
The restriction of F; to the affine set U; has generator

Filo = ('Y when j > i,
Tl (Y when j <

Thus the transition function of F; on U;_; N Uj is trivial for ¢ # j, whereas
for i = j we have y"* = v; - ', The relation (1.8) follows immediately.

1.2.3 The physicists’ Euler number conjecture

For a finite group G acting on a compact manifold M, the quotient M /G is an
orbifold. Motivated by the physics of string theory, Dixon et al. [DHVW85]
introduced the orbifold Fuler number

e(M,G) = ﬁ Z e (M M").

gh=hg

The sum runs over commuting pairs of elements g,h € G, |G| is the order
of G, MY is the fixed point set of g and e denotes the topological Euler
number. The physicists were interested in the case where G is a finite group
of automorphisms of a simply connected Kahler manifold M acting in such
a way that the stabiliser subgroup of a point m € M forms a subgroup of
SL(T,,,M). The Kéhler form is then G-invariant so M /G has trivial canonical
sheaf wy/a = Onyq; that is, M/G is Calabi-Yau.

Under these circumstances it was conjectured by Dixon et al. [DHVWS86]
that the following result holds:
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Conjecture 1.22 (physicists’ Euler number conjecture) Suppose that
the quotient M /G admits a crepant resolution Y — M/G. Then the orbifold
FEuler number e(M,G) equals the topological Euler number e(Y').

The relation between this conjecture and the McKay correspondence was
observed by Hirzebruch and Héfer [HH90] (this observation was made inde-
pendently in a different context by Atiyah and Segal [AS89]). They rewrote
the orbifold Euler number as the sum

e(M,G) = Z e(M?/C(g)) (1.9)

[g]€Conj(G)

over the conjugacy classes of G, where C'(g) denotes the centralizer of g € G.
They observe that for a finite subgroup G C U(n) acting on C", every fixed
point set is contractible. Thus

e(C",G) = #{conjugacy classes of G} (1.10)

= #{irreducible representations of G}. (1.11)

In particular, for G C SU(2,C) write ¢: Y — C? /G for the minimal crepant
resolution of the corresponding Kleinian singularity (see §1.1.1). It follows
from the classical McKay correspondence that the number by(Y") of excep-
tional divisors of ¢ coincides with the number of nontrivial irreducible rep-
resentations. Hence the equality

e(C?,G) =by(Y) +1=e(Y) (1.12)

can be viewed as a version of the McKay correspondence. As a result, the
Physicists’ Euler number conjecture may be regarded as a generalisation
of the McKay correspondence to dimension three, albeit on a fairly weak
cohomological level.

Inspired by the observation of Hirzebruch and Héfer, Reid [Rei92] pro-
posed that a local version of the physicists’ Euler number conjecture should
hold in arbitrary dimension:

Conjecture 1.23 (generalised McKay conjecture) For G C SL(n,C)
a finite subgroup, suppose that the quotient variety X := C"/G admits a
crepant resolution ¢: Y — X. Then H*(Y,Q) has a basis consisting of
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algebraic cycles which correspond one-to-one with conjugacy classes of G. In
particular the relation

e(Y) = #{conjugacy classes of G} =e(C",G)

follows from the observation (1.10) of Hirzebruch and Hdfer.

The assumption that X admits a crepant resolution is nontrivial a priori
even in dimension 3 (however, see Theorem 1.24(i) below). Indeed, it follows
from Propositions 1.6-1.7 and Theorem 1.3 that there is a crepant partial
resolution Y — X, where Y has at worst Q-factorial terminal singularities.
It is not clear a priori that Y is smooth.

Moreover, if a crepant resolution exists it is not necessarily unique. As we
remarked following Theorem 1.3, different minimal models of a given 3-fold
are related by a finite sequence of flops.

1.2.4 Generalised McKay for 3-folds

Case by case analysis of the finite subgroups of SL(3,C) by several authors
IMOP87, Roa89, Mar92, Roa94, 1to94, Roa96] led to a verification of the
generalised McKay conjecture for 3-folds:

Theorem 1.24 Let G C SL(3,C) be a finite subgroup. Then

(i) there is a crepant resolution Y — C3/G; that is, Gorenstein 3-fold
quotients admit smooth minimal models'.

(ii) Conjecture 1.23 holds, so e(Y') = #{conjugacy classes of G'}.

We choose not to discuss the original proof of Theorem 1.24 because
an elegant proof of Theorem 1.24(ii) was subsequently provided by Ito and
Reid [IR96]. The first step in their construction is the introduction of an age
grading on the group? G-

!In dimension 4 and higher this is false — see the examples in §2.4.

2Definition 1.25 relies on the choice of root of unity e?™*/1G!, However there is a canon-
ical age grading on the conjugacy classes of I' := Hom(u g, G), for pq the group of
complex |G|th roots of unity. A choice of root of unity induces an isomorphism I' & G;
see [IR96, p. 2-3] for more details.

17
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Definition 1.25 For G C SL(n,C) a finite subgroup, each g € G is conju-
gate to a diagonal matrix

g = diag (eQWia(g)l/’(g), e 62”0‘(9)"/’"(9)) with 0 < a(g); <r(g),

where 7(g) is the order of g and i = y/—1. To each conjugacy class [g] of the
group G we associate an integer in the range 0 < age[g] < n — 1 defined by

agelg] 1= —— > alg);.

Conjugacy classes of age 1 are called junior classes.

Definition 1.26 Let X, = C"/G be an Abelian quotient singularity. In
the notation of §1.1.4, the age grading on G’ corresponds to the slicing of the
unit box O C Lrg = R” into polytopes

Ay ::{(rl,...,rn)e O ‘ Zri:k}

for k =0,...,n —1; see [IR96, p. 4] for a picture. The simplex A := Ay is
called the junior simplex of the Abelian quotient X, , = C*/G. It contains
the lattice points v, corresponding to junior elements g € G.

Theorem 1.13(ii) can be rephrased in terms of age as follows: the points
vy € L for which g € G is junior correspond to the crepant exceptional
divisors of a resolution of C*/G. The main result of [IR96] is a generalisation
of this theorem to finite (not necessarily Abelian) subgroups G C SL(n, C):

Theorem 1.27 ([IR96]) Let G C SL(n,C) be a finite subgroup. There is a
canonical one-to-one correspondence between junior conjugacy classes of G
and crepant discrete valuations of X = C"/G.

Di1scussiON OF PROOF. Let E C V — X be a prime divisor on a partial
resolution. Ramification theory of discrete valuations in the Galois field
extension k(X) C k(C") reduces the calculation of the discrepancy of E to
the case of a cyclic subgroup in the Galois group G = Gal (k(C")/k(X)).
The result follows from the Abelian case, Theorem 1.13(ii). See [IR96] for
more details. O
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1.2 History of the McKay correspondence

Corollary 1.28 Suppose Y — C"/G is a crepant resolution. Then there is
a canonical one-to-one correspondence

{jum'or conjugacy classes of G} <« basis of H*(Y, Q). (1.13)

PROOF. The quotient C"/G is an affine rational singularity (see §1.1.2) so
Pic(Y) = H?*(Y,Z). Thus, H*(Y,Z) is generated by classes ¢, (Oy(D;))
corresponding to divisors D; C Y. Some multiple of every D; is linearly
equivalent to an exceptional divisor and it remains to note that exceptional
divisors correspond one-to-one with crepant discrete valuations. O

Using this result, Ito and Reid refined Theorem 1.24(ii) without resorting
to case by case analysis of the finite subgroups of SL(3, C):

Theorem 1.29 ([IR96]) Let G C SL(3,C) be a finite subgroup and letY —
C? /G be a crepant resolution. Then

dimg H?**(Y,Q) = #{age k conjugacy classes of G}
fork=0,1,2, so e(Y) = #{conjugacy classes of G'}.

PROOF. A crepant resolution Y — C? /G exists by Theorem 1.24(i). Poincaré
duality for noncompact manifolds induces a bijection between a basis of
H*(Y,Q) and a basis of H2(Y,Q). Corollary 1.28 establishes that classes
in H2(Y,Q) correspond one-to-one with junior classes which fix only the
origin in C3. Now, for g € G the fixed locus is the linear subspace of C* cor-
responding to the coordinates x; for which a(g); = 0, so a basis of H2(Y, Q)
corresponds one-to-one with junior classes [g] for which every a(g); > 0.
Now, a(g); > 0 for j = 1,2,3 if and only if age[g '] = 2, leading to a
bijection

{age 2 classes of G} < basis of H*(Y, Q). (1.14)

The result follows from bijections (1.13) and (1.14), plus the observation that
the trivial cohomology class corresponds to the trivial conjugacy class of age
Zero. |
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1.2.5 The strong McKay correspondence

Using the notion of age, Batyrev and Dais [BD96] proposed that the following
generalisation of Theorem 1.29 should hold in all dimensions:

Conjecture 1.30 (strong McKay conjecture) Let G C SL(n,C) be a
finite subgroup and suppose that the quotient X = C"/G admits a crepant
resolution ¢: Y — X. The nonzero Betti numbers of Y are

dime H*(Y,C) = #{age k conjugacy classes of G}
fork=0,...,n—1, soe(Y) = #{conjugacy classes of G'}.

The case n = 2 is the classical McKay correspondence, while n = 3 is, of
course, Theorem 1.29 with Q replaced by C (see [BD96] for an alternative
proof). Batyrev and Dais provided further evidence for their conjecture by
proving the toric case:

Theorem 1.31 ([BD96]) Let G C SL(n,C) be a finite Abelian subgroup.
Suppose that C" /G admits a crepant toric resolution p:Y — C"/G. Then
Congecture 1.30 holds.

PROOF. Write 7: C* — C" /G for the quotient map and let F := ¢ !(7(0))
denote the exceptional fibre over 7(0). There is a deformation retraction of Y’
onto F' C Y inducing an isomorphism H*(Y,C) = H*(F,C). Moreover, F is
compact so H*(F,C) = H?*(F,C). Thus, to compute the Betti numbers (in
fact Hodge-Deligne numbers) of Y we need only compute the E-polynomial
of F.

In the notation of §1.1.4, the quotient C" /G is the toric variety Xy, , and
the crepant toric resolution ¢ corresponds to a basic subdivision ¥ of the
junior simplex A (see Definition 1.26). Moreover, the locus F' = ¢~ !(7(0)) is
a toric variety determined by the cones in ¥ which do not lie in the boundary
of A, so the E-polynomial E(F) can be computed using Proposition 1.17.
The key observation is that this polynomial can be written in the form

E(F) = Pa(uv)(1 — uv)" = ¢o(A) + 1 (A)uv + - -+ + b1 (A) (uv)™ 1,

where Pa(uv) = Zk>0#{lattice points in kA}(uv)k is the Ehrhart power

series. Now, for every k£ = 0,...,n — 1 the simplex kA contains the lattice
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points v, such that age(g) = k, as well as appropriate combinations of the
vectors e;. It is easy to see that

Pe(A) = #{age k conjugacy classes of G}.

This proves the theorem. O

1.3 Moduli spaces of representations of the
McKay quiver

1.3.1 Geometric invariant theory

Let X be a complex affine algebraic variety equipped with an action of a
reductive algebraic group G. For each character x € Hom(G, C"), let C[X]X
be the space of functions f € C[X] satisfying f(g-x) = x(g) - f(z) for all
z € X, g € G. These spaces define a graded ring @@, , C[X]"X and a variety

X //, G:= Proj ( D (C[X]”X)
n>0
which is projective over X/G = Spec C[X]°.

The variety X // G admits an alternative construction as a Geometric
Invariant Theory (GIT) quotient of X by G with respect to a G-linearisation
L, of the trivial line bundle; our treatment follows King [Kin94| (see also
Newstead [New78] or Mumford et al. [MFK92]). Let L, denote the lin-
earisation of the trivial line bundle L = X x C with nontrivial action
g(z, A) = (g-2,x(g)-A) for g € G. A point z € X is said to be x-semistable
if there exists n > 1 and f € C[X|™ such that f(z) # 0. Write X*(L,) for
the set of x-semistable points of X. Then

X/, G=X>(Ly)/ ~,

where = ~ y if and only if the G-orbit closures of z and y intersect in X*(L, ).
In fact, the set X / G parameterises the closed G-orbits in X**(L,) because
every orbit closure contains a unique closed orbit.

A x-semistable point x € X is said to be y-stable if the G-orbit of x is
closed in X*(L,) and the stabiliser G, is finite. The set X°(L,) of x-stable
points is open in X*(L,), and the orbit space

M, = X5(L,)/G (1.15)
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of x-stable points forms an open subset of the GIT quotient X // N G. There
is a projective morphism

o X G =X [,G=X/G (1.16)

which induces an isomorphism go;l(/\/lo) = M. When X contains a 0-stable
point, the open subset My C X /, G is dense so ¢, is birational when X is
irreducible.

Thaddeus [Tha96] (see also Dolgachev—Hu [DH98] for the projective case)
investigated how X // G depends upon the choice of linearisation L,. They
showed that the space of linearisations (see Thaddeus [Tha96, §3] for the
construction) is a locally polyhedral cone in a rational vector space containing
finitely many codimension 1 walls which divide the cone into finitely many
chambers. By definition L, lies inside a chamber if and only if X5(L,) =
X®(L,), in which case

MX:X//XG. (1.17)

As L, varies within a fixed chamber the variety M, remains fixed, whereas
when L, crosses a wall the variety M, may change; when X is irreducible,
wall crossings determine birational transformations of M, .

1.3.2 Moduli of representations of the McKay quiver

Let G C GL(n,C) be a finite subgroup and let = C" be the given rep-
resentation induced by the inclusion G C GL(n,C). Let py,...,py be the
irreducible representations of G, with py trivial, and set I:= {0,..., N}. For
any j € I, the representation ) ® p; decomposes as a sum of irreducibles

Q®p; = @ aijp; for a;; = dime Home(ps, Q @ pj).
iel
Definition 1.32 The McKay quiver of G C GL(n,C) is the directed graph
Q with vertex set I, and a,; arrows from vertex ¢ to vertex j. A (complex)
representation of Q is an I-graded C-vector space V = @ V; together with C-

linear maps V; — V; indexed by the arrows of Q. Every such representation
has a dimension vector dim(V) € ZN*! whose ith component is dimc V;.

Let R denote the regular representation of G. Here we consider only
representations of Q with fixed dimension vector r = (rg,...,ry) € ZNT!,
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for r; := dim p; = dim¢ Homg(p;, R). The set of all such representations
forms an affine space

Rep(Q,r)= @) Home(C*,CY),
{i—j}€Q

where we sum over the arrows of Q. The isomorphism classes of Rep(Q,r)
correspond to orbits under the action of the group GL(r):= [],.; GL(r;, C)
of G-equivariant automorphisms of V. The diagonal scalar subgroup C* C
GL(r) acts trivially, leaving a faithful action of PGL(r):= GL(r)/C*.

Our interest lies not with the space Rep(Q,r), but with an affine subset
X C Rep(Q,r) consisting of representations V' whose linear maps V; — V;
are subject to certain commutativity relations, i.e., certain ‘paths’ of arrows
in the quiver Q are required to be equal. In order to define X, note first
that representations of Q of dimension vector r correspond one-to-one with
G-equivariant maps R — ) ® R. Indeed, since the number of arrows in Q
from vertex i to vertex j is dim¢ Homeg(p;, @ ® p;), we have

Rep(Q,r) % @ Homeg (pi, Q@ ® pj) @ Home(C, C7)
ijel
= Homg (Proc . Peepec)
iel jel

>~ Homg(R,Q ® R).

Let X C Rep(Q,r) denote the affine subset consisting of representations for
which the corresponding G-equivariant map B € Homg(R, Q@ ® R) satisfies
the equation BA B = 0 € Homg(R, R ® A\*Q). Thus

X = {B e Homg(R,Q®R) | BAB =0}. (1.18)

The reductive algebraic group PGL(r) acts on X and moduli are constructed
using GIT: the quotient X' / PGL(r) parameterises the closed PGL(r)-orbits
of x-semistable points in X, and M, denotes the open subset corresponding
to x-stable points.

There is a direct interpretation of stability for representations of a quiver
due to King [Kin94]. Every character of PGL(r) is of the form

X0 = Hz‘e[ det(gi)ai
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for some 0 = (0y,01,...,0y5) € ZNTL. Given 6 € ZV*! and a representation
V of the McKay quiver Q of dimension vector dim(V') = (v, ...,vn), let

O(V):=0-dim(V) =Y v:6;.

Definition 1.33 A representation V' of Q is said to be 0-stable if (V) = 0
and every proper subrepresentation 0 & W & V has (1¥) > 0. The notion
of 0-semistable is the same with > replacing >.

Theorem 1.34 ([Kin94]) A representation of Q of dimension vector r is
6-stable if and only if the corresponding point of the affine variety Rep(Q, )
s xg-stable. The same holds for semistability.

Definition 1.35 Let M, denote the orbit space of f-stable points of the
affine variety X C Rep(Q,r). Theorem 1.34 gives My = M, for x = xs.

There is an isomorphism My = M, for k € Z~q, so My can be defined
even for § € QVt! (see Sardo Infirri [SI96b, Remark 2.4]). This observation
enables us to describe the space of linearisations of the GIT quotient in terms
of the parameter space QV*! as follows. For a representation V' of dimension
vector r = (r9,...,ry) to be @-stable we require 0 = (V) = > r;0;. The
chamber decomposition on the space of linearisations described in §1.3.1
defines a chamber decomposition on the hyperplane

II:={0eQ " |, ribi =0} (1.19)

in the rational vector space QV*!. For a parameter # € II lying inside a
chamber, My = X/, PGL(r) holds by (1.17) for the character x = xy of
PGL(r). Moreover, the variety My remains fixed as we vary 6 within a fixed
chamber, while an irreducible component of My may undergo a birational
transformation as # crosses a wall.

The observation that these moduli spaces form resolutions of a quotient
singularity goes back to Kronheimer and subsequent work of Sardo Infirri:

Theorem 1.36 ([Kro86]) Let G C SL(2,C) be a finite subgroup. Then
Vg : M9 — (C2 /G

s the minimal resolution for generic @ € I1. Moreover, the chambers in 11
are Weyl chambers in the weight space of an affine root system of the same

ADE-type as C* /G (see Table 1.1).
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The original proof (see Kronheimer [Kro89]) uses hyper-K&hler reduction.
For a proof in the spirit of the GIT construction described here, see Cassens
and Slodowy [CS98|.

Theorem 1.37 ([SI94]) Let G C GL(n,C) be a finite subgroup.

1. There is an inclusion C" /G — X J|, PGL(r) which is an isomorphism
if and only if G acts freely on C* outside the origin.

2. If G acts freely on C" outside the origin then pg: My — C*/G is a
(partial) resolution.

Remark 1.38 Even if G C GL(n,C) fails to act freely outside the origin,
one expects there to be a birational morphism from M, to the component
C"/G of X JJ,PGL(r) (see Sardo Infirri [SI96al). Ishii [Ish00] observed that
the method of Bridgeland, King and Reid [BKR99| proves this for finite
subgroups G C SL(3, C).
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Chapter 2

Motivic integration

This chapter provides an elementary introduction to Kontsevich’s theory of
motivic integration and discusses how Batyrev [Bat99b, Bat00] used motivic
integration to prove the strong McKay conjecture (Conjecture 1.30). Also, in
Section 2.4 we provide a detailed calculation of the motivic integral of several
Gorenstein terminal cyclic quotient singularities. The original references on
this topic are Batyrev [Bat98, §6] and Denef and Loeser [DL99b]. This
chapter is an expanded version of the preprint Craw [Cra99]. A recent article
by Looijenga [Loo00] provides a more detailed survey of the subject.

2.1 The Hodge number conjecture

In the course of proving the Abelian case of the strong McKay conjecture
(see Theorem 1.31), Batyrev and Dais established that the E-polynomial
of a crepant resolution of C"/G is determined by the Ehrhart power series
and hence by the lattice L of the toric variety C*/G = X ,. In particular,
the Hodge—Deligne numbers of a crepant resolution of C"/G do not depend
upon the simplicial subdivision of A so they are independent of the choice
of crepant resolution. This observation led Batyrev and Dais [BD96] to
formulate the following conjecture:

Conjecture 2.1 (Hodge number conjecture) For a complex projective
variety with only mild Gorenstein singularities, the Hodge numbers of a
crepant resolution do not depend upon the choice of crepant resolution.

In a subsequent paper Batyrev [Bat99a] used methods of p-adic integra-
tion to prove that the Betti numbers of a crepant resolution do not depend
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upon the choice of crepant resolution. Kontsevich later proved the conjecture
by associating a ‘motivic integral’ to every complex projective variety X with
Gorenstein canonical singularities as we now describe.

2.2 Construction of the motivic integral

Let X be a complex algebraic variety with Gorenstein canonical singularities
and ¢: Y — X a resolution of singularities for which the discrepancy divisor
D has simple normal crossings. Following Batyrev [Bat98, §6] and Denef and
Loeser [DL99b] we associate an integral to X in five steps:

1. Construct the space of formal arcs Jo(Y') of the complex manifold Y.
2. Associate to the divisor D a function Fp, defined on J(Y).

3. Introduce a measure p on J(Y) with respect to which Fp is measur-
able. This measure is not real-valued; the subtlety in the construction
of the motivic integral is in defining the ring in which p takes values.

4. Define the motivic integral of the pair (Y, D) to be the integral of Fp
over Jo(Y) with respect to p.

5. Set the motivic integral of X to be the motivic integral of the pair
(Y, D). We prove that this is independent of the choice of resolution.

2.2.1 The space of formal arcs of a complex manifold

Definition 2.2 Let Y be a complex manifold of dimension n, and y € Y a
point. A k-jet over y is a morphism

v,: Spec C[2]/(z**") — Y with ~,(Spec C) =y.

Once local co-ordinates are chosen the space of k-jets over y can be viewed
as the space of n-tuples of polynomials of degree k£ whose constant terms are
zero. Let J;(Y) denote the bundle over Y whose fibre over y € Y is the space
of k-jets over y. A formal arc over y is a morphism

vy : Spec C[z] — Y with 7,(Spec C) =y.

Once local co-ordinates are chosen the space of formal arcs over y can be
viewed as the space of n-tuples of power series whose constant terms are zero.
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Let mp: Jo(Y) — Y denote the bundle whose fibre over y € Y is the space
of formal arcs over y. For each k € Zs, the inclusion C[z]/(zF*!) — C[z]
induces a surjective map

Tt Joo(Y) — Ji(Y).

Definition 2.3 A subset C' C J(Y) of the space of formal arcs is called
a cylinder set if C = m,'(By,) for k € Z>o and By C Ji(Y) a constructible
subset. Recall that a subset of a variety is constructible if it is a finite, disjoint
union of (Zariski) locally closed subvarieties.

It’s clear that the collection of cylinder sets forms an algebra of sets (see
[Rud87, p. 10]); that is, Joo(Y) = 7, ' (Y) is a cylinder set, as are finite unions
and complements (and hence finite intersections) of cylinder sets.

2.2.2 The function Fp associated to an effective divisor

Definition 2.4 Let D be an effective divisor on Y, y € Y a point, and ¢
a local defining equation for D on a neighbourhood U of y. For an arc -,
over a point u € U, define the intersection number -, - D to be the order of
vanishing of the formal power series g(7,(z)) at z = 0. The function

Fp: JOO(Y) —>Z20UOO

associated to the divisor D on Y is given by Fp(7vy) = V- D. If we write D =
>, a;D; as a linear combination of prime divisors then g decomposes as a
product g = [[;_,¢;" of defining equations for D;, hence Fpp = >_._ a;Fp,.
Furthermore

Fp,(7) =0 < u¢ D; and Fp (y.) =00 <= 7 CD;.  (2.1)

Our ultimate goal is to integrate the function F)p over Jo(Y'), so we must
understand the nature of the level set F},"(s) C Ju(Y) for each s € ZsoUoc.
With this goal in mind, we introduce a partition of F5'(s).

Definition 2.5 For D =3  a;D; and J C {1,...,r} any subset, define

._ mjeJDj if‘]%@ o . __ .
DJ._{ v gLy and Di=Dr\ UJ b
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These subvarieties stratify Y and define a partition of the space of arcs into
cylinder sets:

Y= || Dy and J(V)= || m'(D3).

JC{1,...,r} JC{1,...,r}

For any s € Zsp and J C {1,...,r}, define
M, = {(ml,...,m,«) € Z%, ‘ Zaimi =swithm; >0& j € J}.
It now follows from (2.1) that

T €15 (DG) N Fpl(s) <= (Fp,(W)s-- - Fp, (W) € My,

As a result we produce a finite partition of the level set

o= U U (Nefolm). @2

JC{1,...,r} (m1,....mp)EMy ¢

Proposition 2.6 If D is an effective divisor with simple normal crossings
then Fp,'(s) is a cylinder set (see Definition 2.3) for each s € Zy.

Recall (see [KMMS87, p. 25]) that a divisor D = >"._, a;D; on Y has only
simple normal crossings if, at each point y € Y, there is a neighbourhood U
of y with coordinates zi, ..., 2, for which a local defining equation for D is
Qjy

— 01
g_zl e .

;.0 for some j, < n. (2.3)

PROOF OF PROPOSITION 2.6. A finite union of cylinder sets is cylinder
and we have a partition (2.2) of F,'(s), so it is enough to prove, for some
JCA{l,...,r} and (my,...,m;) € My, that (,_,  Fp'(m;) is a cylinder
set'. Cover Y = |JU by finitely many charts on which D has a local equation
of the form (2.3), and lift to cover J(Y) = |Jm, *(U). Clearly we need only
prove that the set

Um17“'7m7‘ = ﬂl:l,?‘FD_ll(ml) m 7T()_1(U)

!Finite intersections of cylinder sets are cylinder, so we could reduce to proving the
result for Ff)l_l (m;). However we require (2.4) in §2.2.4.
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is cylinder. In the notation of (2.3), if J & {1,...,4,} then D5NU = 0
which forces Uy, .m, C 7 (DS NU) to be empty, and hence a cylinder set.
We suppose therefore that J C {1,...,j,}, thus |.J| <n holds by (2.3).

The key observation is that when we regard each arc 7, as an n-tuple
(p1(2),...,pn(2)) of formal power series with zero constant term, each con-
dition Fp,(y,) = m; is equivalent to a condition on the truncation of the
power series p;(z) to degree m;. Indeed, since D; is cut out by z; = 0 on U,
it follows that Fp,(y,) = {order of p;(z) at z = 0}. Thus v, € Fp'(m;) if
and only if the truncation of p;(2) to degree m; is of the form ¢, 2™, with
¢m; # 0. Truncating all n of the power series to degree t := max{m;|j € J}
produces n — |J| polynomials of degree ¢ with zero constant term, and, for
each j € J, a polynomial of the form

m(pj(2)) =0+ -+ + 0+ ¢, 2™ + C(mj+1)zmj+1 + et

for ¢,,; € C and ¢, € C Vk > mj. The space of all such n-tuples is
isomorphic to CH=17D x (C)I71 x CMI=2jes™i | hence

T

Uny i, =7 ((UN D) x € 2ses™i x (C)M]) (2.4)

The set (U N D3) x C"=25er™i x (C*)VI is constructible, so Uy, ., is a

T

cylinder set. This completes the proof of the proposition. a

It is worth noting that F;'(0o) is not a cylinder set. Indeed, suppose
otherwise, so there exists a constructible subset B, C J,(Y) for which
Fpl(oo) = m,'(By). Each arc v, € Fp'(co) is an n-tuple of power se-
ries, at least one of which is identically zero, whereas each v, € m, ' (By) is
an n-tuple of power series whose terms of degree higher than £ may take any
complex value; clearly this is absurd.

Proposition 2.7 F;'(c0) is a countable intersection of cylinder sets.

PROOF. Observe that

Fpl(oo) = () m 'm(Fp'(c0)) (2.5)

keZZO

because a power series is identically zero if and only if its truncation to
degree k is the zero polynomial, for all k& € Z>,. It is easy to see that the
sets T (F5'(00)) C Ji(Y) are constructible. 0
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2.2.3 A measure p on the space of formal arcs

In this section we define a measure p on Jo(Y) with respect to which the
function F'p is measurable. The measure is not real-valued, so we begin this
section by constructing the ring in which p takes values.

Definition 2.8 Let V¢ denote the category of complex algebraic varieties.
The Grothendieck group of Vg is the free Abelian group on the isomorphism
classes [V] of complex algebraic varieties modulo the subgroup generated by
elements of the form [V] — [V'] — [V \ V'] for a closed subset V' C V. The
product of varieties induces a ring structure [V] - [V'] = [V x V'], and the
resulting ring, denoted by Ky(V¢), is called the Grothendieck ring of complex
algebraic varieties. Let

[ ]: ObVe — Ko(Ve)

denote the natural map sending V' to its class [V] in the Grothendieck ring.
This map is universal with respect to maps which are additive on disjoint
unions of constructible subsets, and which respect products.

Write? 1 := [point] and L := [C]. Then
[C]=[C-{0}]=[C] -[{0}] =L -1

Also, if f: Y — X is a locally trivial fibration w.r.t. the Zariski topology
and F' is the fibre over a closed point then [Y] = [F x X].

Definition 2.9 Let Ko(V¢)[L™'] := S7'K(Vc) denote the ring of fractions
of Ky(Vc) with respect to the multiplicative set S := {1,L,L?,...}.

Definition 2.10 Recall that cylinder sets in J,(Y) are subsets m, '(By) C
Jo(Y) for k € Z>y and for By, C J,(Y) a constructible subset. The function

% {Cylinder sets in JOO(Y)} — Ko(Veo)[L ']

which assigns a ‘measure’ to each cylinder set is defined by

1 (By) — [By] - LD,

2See the Appendix A: the class of C in Ky(V¢) corresponds to the Tate motive L.
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Motivic integration

Using the fact that the map [ | introduced in Definition 2.8 is additive on
disjoint unions of constructible sets, it is straightforward to show that

I I
1 <|_| C’Z) = Z 1(C;)  for cylinder sets C1,. .., C.
i=1 i=1

For this reason we call i a finitely additive measure.

Proposition 2.6 states that for s € Zs,, the level set F,'(s) is a cylinder
set, and is therefore p-measurable. However, Fp is not p-measurable because
F5'(00) is not cylinder. To proceed, we extend fi to a measure x with respect
to which Fj,'(oc) is measurable.

The following discussion is intended to motivate the definition of u (see
Definition 2.12 to follow). The set Joo(Y) \ F,'(00) is a countable disjoint
union of cylinder sets

Too(W)\mg 'm0 (Fy (co))U || (it (B (00) it mus (F (00)) )3 (2:6)

kGZZQ

to see this, take complements in equation (2.5) of Proposition 2.7. Our
goal is to extend ;i to a measure p defined on the collection of countable
disjoint unions of cylinder sets so that the set J,(Y) \ F5'(c0), and hence
its complement F'5'(00), is py-measurable. One would like to define

m (|_| C’i> = u(C;) = [i(C;) for cylinder sets C1,...,Cp.  (2.7)

€N 1€N 1€N

However, countable sums are not defined in Ko(V¢)[L™']. Furthermore,
given a countable disjoint union C' = | |, Cj, it is not clear a priori that
p(C) defined by formula (2.7) is independent of the choice of the C;.

Kontsevich [Kon95] solved both of these problems at once by completing
the ring Ky(Vc)[IL™!], thereby allowing appropriate countable sums, in such
a way that the measure of the set C' = | |, C; is independent of the choice
of the Cj, assuming that u(C;) — 0 as i — oo.

Definition 2.11 Let R denote the completion of the ring Ko(Vc)[L '] with
respect to the filtration

D PR (WILT 2 PR (V)L 2 FUEG (V)L™ 2 -
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2.2 Construction of the motivic integral

where for each m € Z, F"™Ky(Vc)[L '] is the subgroup of Ky(Vc)[L '] gen-
erated by elements of the form [V]- L™ for i — dim V' > m. The natural
completion map is denoted ¢: Ko(Ve)[L™'] — R.

By composing ;i with the natural completion map ¢, we produce a finitely
additive measure with values in the ring R, namely

fii=ofi:m (By) = ¢ ([Bi] -L D)

which we also denote . Given a sequence of cylinder sets {C;} one may now
ask whether or not u(C;) — 0 as i — oco. We are finally in a position to
define the measure ;1 on the space of formal arcs.

Definition 2.12 Let C denote the collection of countable disjoint unions of
cylinder sets | |,.C; for which (C;) — 0 as @ — oo, together with the
complements of such sets. Extend p to a measure y defined on C which takes

values in R given by
| |ci — ) Hc).
ieN ieN
It is nontrivial to show (see [DL99b, §3.2] or [Bat98, §6.18]) that this defini-
tion is independent of the choice of the Cj.
Proposition 2.13 Fp is u-measurable, and p(Fp'(00)) = 0.

PROOF. We prove that Fy'(c0) (in fact its complement) lies in C. Tt’s clear
from (2.6) that we need only prove that u(m, 'y (Fp'(00))) — 0 as k — oo.
Lemma 2.14 below reveals that p(r; 'm,(Fj,'(00))) € ¢(FF Ky(Ve)[L 1))
which, by the nature of the topology on R, tends to zero as k tends to
infinity. This proves the first statement. Using (2.6) we calculate

H(Joe(Y)\ F'(50)) = i (JoY) \ 7 m0(F ()
3 B (g (P (00) \ Mt et (Fp(00)) . (2.8)

kEZZQ

This equals (1(Joo(Y)) — limg_ye0 p (75 ' (Fp ' (00))). By the above remark,
this is simply u(Js(Y)), so u(F5'(00)) = 0 as required. 0

Lemma 2.14 ﬁ(wglﬂk(Fgl(OO))) € FFUEKy (Vo)L
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Motivic integration

PROOF. It is enough to prove the result for a prime divisor D, since F,"(c0)
is the union of sets ngl(oo). Choose coordinates on a chart U in which D
is (z1 = 0). Bach v, € F'(0c0) Ny '(U) is an n-tuple (p1(2),...,pn(2)) of
power series over y € U N D such that p;(z) is identically zero. Truncating
these power series to degree k leaves n — 1 polynomials of degree k with
zero constant term, and the zero polynomial 74 (pi(z)). The space of all
such polynomials is isomorphic to C*~V% 'so that 7, (F},' (c0) N7y ' (U)) ~
(UN D) x C=Y% Thus [m,(Fp'(00)] = [D] - [C~V*] and

p(my ' me(Fp'(00)) = [me(Fp'(00)] - LT+
= [D] =Dk, —n(k+1)
[D] - L~(+k)
This lies in F¥*1Ky(V¢)[L™!] since D has dimension n — 1. O

2.2.4 The motivic integral of a pair (Y, D)

Definition 2.15 Let Y be a complex manifold of dimension n, and choose
an effective divisor D = Y. a;D; on Y with only simple normal crossings.
The motivic integral of the pair (Y, D) is

/J(Y)FDdM:: Z 1 (Fp'(s)) -L°.

SE€EL>»oJoo

Since the set Fp'(00) C Joo(Y) has measure zero (see Proposition 2.13), we
need only integrate over Jo.(Y)\ Fj,'(c0), so we need only sum over s € Zs.

We now show that the motivic integral converges in the ring R introduced
in Definition 2.11. In doing so, we establish a user-friendly formula.

Theorem 2.16 Let Y be a compler manifold of dimension n and D =
iy aiD; an effective divisor on'Y with only simple normal crossings. The
motivic integral of the pair (Y, D) is

L—-1
FDd/J/: [D; . ( a7> _]L*Tl

where we sum over all subsets J C {1,...,r} including J = 0.
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2.2 Construction of the motivic integral

PROOF. In the proof of Proposition 2.6 we cover Y by sets {U} and prove
that mi:l,...rFBil (mi) Ny 1(U) is a cylinder set of the form

S ((UNDG) x CZjer™ x (€)1

Since the map [ ] introduced in Definition 2.8 is additive on a disjoint union
of constructible subsets, take the union over the cover {U} of Y to see that
Niz1.. SFpl(mg) = m N (By) where

[Bt] — [D; wx O jes™i % ((C*)IJ\] _ [DS] L ermi (]L _ 1)|]‘.
Since p (m, '(By)) = [By] - L= we have
i (N, Pt (ma)) = (D3] L7 B (L= 1)L,

Now use the partition (2.2) of F5'(s) to compute the motivic integral:

> w(Fy'(s) L

SEZZO

- Z Z Z M(ﬂizl,...rFBil(mz‘)>'Hfzfe"‘”mf
> Z Z D3] (L= )L L o

$€L>0 JC{1,..,r} (m1,....mr)EM o jeJ
= 3 D) T (@ =1) 5,0l rm ) L
JCcA{1,...,r} JjeJ
o 1 n
= X w0 (e 1))
JCA{1,...,r} jeJ
o L-1 —-n
- 3w (ghty) =
Jc{1,....,r} jeJ
This completes the proof of the theorem. O

Warning 2.17 There is a small error in the proof of the corresponding result
in Batyrev [Bat98, §6.28] which leads to the omission of the L™ term.
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Motivic integration

Corollary 2.18 The motivic integral of the pair (Y, D) is an element of the

subring
o (Ko(Vo)[L ) H 7] 1— 1 }iEN:|

of the ring R introduced in Definition 2.11.

2.2.5 The transformation rule for the integral

The discrepancy divisor W := Ky — a* Ky of a proper birational morphism
a: Y’ — Y between smooth varieties is the divisor of the Jacobian deter-
minant of «. The next result may therefore be viewed as the ‘change of
variables formula’ for the motivic integral.

Theorem 2.19 Let o: Y' — Y be a proper birational morphism of between
smooth varieties and let W := Ky — a* Ky be the discrepancy divisor. Then

/ FDd,u:/ Foprw dpe.
oo (Y) Too (Y7)

PRrROOF. Composition defines maps o : Ji(Y') — J,(Y') for each t € ZoUoo.
An arc in Y which is not contained in the locus of indeterminacy of o ! has
a birational transform as an arc in Y. In light of (2.1) and Proposition 2.13,
Qs 18 bijective off a subset of measure zero.

The sets Fy,' (k), for k € Zsy, partition J(Y") \ F};' (o0). Thus, for any
s € Zxy we have, modulo the set Fy' (00) of measure zero, a partition

Fpl(s) = |_| oo (Crs)  where Cy = Fy' (k) N EZ(s). (2.9)

kEZZQ

The set C s is cylinder and, since the image of a constructible set is con-
structible ([Mum88, p. 72]), the set as(Ck s) is cylinder. Lemma 2.20 below
states that ,u(Ck,s) = ,u(aoo(Ck,s)) -IL¥. We use this identity and the partition
(2.9) to calculate

[, Fotn= 3 ulan(Cud) L= Y (0 L0
Joo (Y

k,SGZzo kaSEZZO
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2.2 Construction of the motivic integral

Set s' := s+ k. Clearly | |y« Cr,o—k = FO;IDJFW(S’). Substituting this into
the above leaves -

/J - FDd/l,: Z ,u(Fa_*lDJrW(SI)) -L_s’ Z/ Fa*D+Wd/1'a

SIGZZO ‘]OO(Y’)

as required. O

Lemma 2.20 (Cs) = p(@oo(Chys)) - L.

DISCUSSION OF PROOF. Both Cj s and a(Cks) are cylinder sets so there
exists ¢ € Zx( and constructible sets B, and By in J(Y") and J(Y') respec-
tively such that the following diagram commutes:

Cris CJoo(Y) 22 ay(Chs) C Ju(Y)

oy |

Bl Cc J(Y) 2% B, C Ji(Y).

We claim that the restriction of ay to By is a CF-bundle over B;. It follows
that [B;] = [C¥] - [B] and we have

M(Ok,s) — [Bé] _Lf(n‘}'nt) — [Bt] _Lk . Lf(nJrnt) — M(aoo(ck,s)) _Lk

as required. The proof of the claim is a local calculation which is carried out
in [DL99b, Lemma 3.4(b)]. The key observation is that the order of vanishing
of the Jacobian determinant of « at v, € Cj 5 is Fy(v,) = k. O

Definition 2.21 Let X denote a complex algebraic variety with at worst
Gorenstein canonical singularities. The motivic integral of X is defined to
be the motivic integral of the pair (Y, D), where ¢: Y — X is any resolution
of singularities for which the discrepancy divisor D = Ky — ¢*Kx has only
simple normal crossings.

Note first that the discrepancy divisor D is effective because X has at
worst Gorenstein canonical singularities. The crucial point however is that
the motivic integral of (Y, D) is independent of the choice of resolution:

Proposition 2.22 Let ¢1: Y], — X and py: Yo —> X be resolutions of X
with discrepancy divisors Dy and Dy respectively. Then the motivic integrals

of the pairs (Y1, Dy) and (Ya, Dy) are equal.
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Motivic integration

PROOF. Form a ‘Hironaka hut’

Yo 2 Y,
7/)1l\: J%
y, 2% X

and let Dy denote the discrepancy divisor of ¢y: Yy — X. The discrepancy
divisor of v; is Dy — 97 D;. Indeed

Ky, = ¢y(Kx)+ Dy =170 pi(Kx)+ Dy =] (Ky, — D;) + Dy
= ;i (Ky;) + (Do — 9] D).

The maps ¢;: Yy — Y, are proper birational morphisms between smooth
projective varieties so Theorem 2.19 applies:

/ Fp,dp = / Fw;‘DH-(Do—w;‘Di) dp = / Fp,dpu.
Joo (Vi) Joo (Y0) Joo (Y0)

This proves the result. O

2.3 The stringy E-function

We now show that the motivic integral of X gives rise to a ‘stringy Euler
function” which encodes the Hodge—Deligne numbers of a resolution ¥ —
X. Kontsevich’s proof of Conjecture 2.1 is then straightforward, given that
the motivic integral of X, and hence the stringy Euler function of X, is
independent of the choice of resolution.

Recall from Theorem 1.16 that the map E: Ve — Z[u, v] which asso-
ciates to each complex variety X its E-polynomial is additive on a disjoint
union of locally closed subvarieties, and satisfies E(X xY) = E(X)-E(Y). It
follows from the universality of the map [ | introduced in Definition 2.8 that
E factors through the Grothendieck ring of algebraic varieties, inducing a
function E: Ko(Vc) — Z[u,v]. By defining E(L™") := (uv)~" we can extend
this to a function®.

E: Ko(Vo)[L™Y = Z[u,v, (uwv)™"].

30ne can use this function to define a finitely additive Z[u, v, (uv)~!-valued measure
fir := E o fi on cylinder sets given by 7' (By) — E(By) - (wv)~™*+1 . Then construct
the stringy E-function directly; this is the approach adopted by Batyrev [Bat98, §6].
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2.3 The stringy F-function

Proposition 2.23 The map E can be extended uniquely to the subring

{oi)
-1 1€Z>1

of the ring R introduced in Definition 2.11.

¢ (Ko(Ve)[L™'])

PROOF. The kernel of the completion map ¢: Ko(V¢)[L '] — R is

() FKo(Vo)[L™'). (2.10)

meZ

For [V]-L™* € F™Ky(Vc)[L™'], the degree of the E-polynomial E ([V]-L™")
is 2dimV —2¢ < —2m. The E-polynomial of an element Z in the intersection
(2.10) must therefore be —oo; that is, £(Z) = 0. Thus E annihilates ker ¢
and hence factors through ¢ (Ky(Vc)[L™']). The result follows when we define
E(/(LF —1)) :=1/((uv)* — 1) for i € N. O

By Corollary 2.18 the motivic integral of the pair (Y, D) lies in the subring
of Proposition 2.23. We now consider the image of the integral under E.

Warning 2.24 As we remarked in Warning 2.17, the derivation of the mo-
tivic integral in [Bat98] contains a small error which leads to the omission
of an ™" term. However, in practise it is extremely convenient to omit this
term (!). As a result, in our definition of the stringy E-function to follow we
consider the image under E of the motivic integral times L”. In short, our
stringy E-function agrees with that in [Bat98], even though our calculation
of the motivic integral differs.

Definition 2.25 Let X be a complex algebraic variety of dimension n with
at worst Gorenstein canonical singularities. Let ¢: Y — X be a resolution
of singularities for which the discrepancy divisor D = Y | a;D; has only
simple normal crossings. The stringy E-function of X is

Eq(X) = E (/Jm(y) Fp dﬂ-L”)
= ). EBE(D): (H (mj;”]—:ll_l) , (2.11)

JC{1,...,r} jeJ

where we sum over all subsets J C {1,...,r} including J = ().
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Motivic integration

Theorem 2.26 ([Kon95|) Let X be a complex projective variety with at
worst Gorenstein canonical singularities. If X admits a crepant resolution
¢: Y — X then the Hodge numbers of Y are independent of the choice of
crepant resolution, as predicted by Conjecture 2.1.

PROOF. The discrepancy divisor D = ' a;D; of the crepant resolution
¢:Y — X is by definition zero, so the motivic integral of X is the motivic
integral of the pair (Y;0). Since each a; = 0 it’s clear that

Eq(X)=>cqn,. nED)) =EY).

The stringy E-function is independent of the choice of the resolution . In
particular, E(Y) = Eq(X) = E(Y2) for ¢9 : Y5 — X another crepant resolu-
tion. It remains to note that E(Y) determines the Hodge-Deligne numbers
of Y, and hence the Hodge numbers since Y is smooth and projective. O

2.4 Calculating the motivic integral

To get a better feeling for the motivic integral we now consider several exam-
ples. To perform nontrivial calculations of the stringy E-function we must
choose varieties which admit no crepant resolution.

A nice family of examples is provided by Gorenstein terminal cyclic quo-
tient singularities: for G C SL(n,C) the quotient X = C"/G is Gorenstein
by Proposition 1.6, and terminal when the criteria of Theorem 1.13(i) are
satisfied. We know that 2- and 3-dimensional Gorenstein quotients admit
crepant resolutions (see §1.1.1 and Theorem 1.24(i)) so instead we begin by
considering 4-dimensional singularities of the form (1,7 —1,a,r — a) with
ged(r,a) = 1. Morrison and Stevens [MS84, Theorem 2.4(ii)] prove that
these are the only terminal Gorenstein 4-fold cyclic quotient singularities.

Remark 2.27 In each example below we calculate both E(Y') and Eg(X)
after resolving the singularity ¢: Y — X. Note that E(Y") is not equal to
the E-polynomial of the exceptional fibre D = ¢~ !(7(0)) because

E(Y)=E(Y \ D) + E(D) = (w)" — 1+ E(D),

for n = dim X. The point is that the E-polynomial encodes the Hodge—
Deligne numbers of compactly supported cohomology, yet

H:(D,C) = H(D,C) = H'(Y,C) # H:(Y,0),
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2.4 Calculating the motivic integral

as explained in the proof of Theorem 1.31 in §1.2.5.

Example 2.28 Write X = X, for the cyclic quotient singularity of type
$(1,1,1,1). Add the ray 7 generated by the vector v = £(1,1,1,1) to the
cone o, then take the simplicial subdivision of ¢. This determines a toric
resolution ¢: Y — X with a single exceptional divisor D = Xy ;) star(r) = P3.
The discrepancy of D is 1 by Theorem 1.13(i). Using Proposition 1.17 we
calculate

E(Y) = BE(Y\D)+ E(F)
= ((wv)* = 1) + ((uw)® + (uwv)?® + uv + 1)
= (w)* 4 () () .

Compare this with the stringy E-function:

uv — 1

Ey(X) = E(Y \ D) + E(P%) - )P =1

= (uv)* + (uv)?.

Example 2.29 Write X = X, for the cyclic quotient singularity of type
%(1,2, 1,2). Add rays 7, and 75 generated by the vectors v; = %(1,2, 1,2)
and vy = %(2,1,2,1) respectively to the cone o, then take the simplicial
subdivision of . The resulting fan ¥ is determined by its cross-section A,
(see Definition 1.26) illustrated in Figure 2.1.

There are eight 3-dimensional simplices in Ay (four contain a face of
the tetrahedron and four contain the edge joining v; to v,). Each of these
simplices determines a 4-dimensional cone in ¥ which is generated by a basis
of the lattice L, so Y = X 5, — X, is a resolution. The union of all eight
3-dimensional simplices in Ay contain eighteen faces, fifteen edges and six
vertices. Write dj for the number of cones of dimension £ in ¥, so

dy=8; dy=18; dy=15; dy =6; dy=1 (the originin Lg).
Apply Proposition 1.17 to compute
E(Y) = (uv)* 4 2(uv)® + 3(uv)? + 2uv.

To compute Eg(X) observe first that for j = 1 or 2 the exceptional divisor
Dj == Xp(r;)star(r;) has discrepancy 1 by Theorem 1.13(i). Write dj(7;) for
the number of cones of dimension & in Star(r;), so

ds(1j) =6; dao(1;) =9; di(r5) =5; do(rj) =1 (the origin in L(7;)).
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Motivic integration

263

264

262
Figure 2.1: The simplex A, for %(1, 2,1,2)

Proposition 1.17 gives
E(D;) = (u)® + 2(uv)? + 2(uv) + 1 for j =1,2.

Similarly, the fan Star((r, 72)) contains four faces, four edges and one vertex
so Proposition 1.17 gives E(D; N Dy) = (uv)? + 2(uv) + 1. As a result

o E(Dj)=E(Y \ (D UD,)) = (uv)* — 1.
e E(D},)) = E(D3yy) = E(D;) — E(Dy 1 D) = (uv)? + (uv)2.
o E(D}, ) =E(DiNDy) = (uv)? + 2(uv) + 1.

Now compute the stringy E-function using formula (2.11):

uv — 1

Ey(X) = (w)' =1+ E(Dy,)- ((’LL’U)T1> +E(Diy)- ((ZZZ%)

+ E(Dy ) - ((“LIY

uwv)? —1

= (uv)" + 2(uv)®.
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2.4 Calculating the motivic integral

Example 2.30 Write X = X , for the cyclic quotient singularity of type
1(1,3,1, 3) Add rays 71, 72 and 73 generated by the vectors v; = (1,3, 1,3)
and vy, = (2,2,2,2) and v3 = i(?), 1,3, 1) respectively to the cone o, then
take the snnphmal subdivision of o. The cross-section A, of the resulting fan
> has three colinear points in the interior of the tetrahedron but is otherwise
similar to that shown in Figure 2.1. There are twelve 3-dimensional simplices
in A, containing 26 faces, 20 edges and 7 vertices. Proposition 1.17 calculates

E(Y) = (uwv)* 4 3(uv)® + 5(uv)? + 3uv.

For j =1, 2,3, the divisors D; := Xy,(r,) star(r;) have discrepancy 1 by Theo-
rem 1.13(i). Following the method of Example 2.29 we calculate

E(Dy) = E(D3) = (uv)® + 2(uv)? + 2(uv) + 1

and E(D; N Dy) = E(Dy N D3) = (uv)? + 2(uv) + 1. To compute the E-
polynomial of D, observe that

d3(13) =8; da(m) =12; di(m) =6; do(m2) =1 (the origin in L(m)),

where di(7;) denotes the number of cones of dimension %k in Star(rp). It
follows from Proposition 1.17 that

E(Dy) = (uv)?® + 3(uv)? + 3(uv) + 1.

Finally, since D; N D3 = () we have E(D; N D3) = E(D; N DyN D3) =0. As
a result

Dg) = E(Y'\ (D UDyUDs)) = (uv)* — 1.
D}yy) = E(Diyy) = (w)’ + (uv)?.

(uv)? — (uv) — 1.
Diy ) = (uv)® + 2(wv) + 1.
tay) = E(D}) 54,) = 0.

Apply formula (2.11) to compute

(
(

o E(Djy) = (uw
(DY) = E
(Dy

)*+
(
o E (
)
By (X) = (uv)* + 3(uv)?.
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Remark 2.31 The above examples feature only exceptional divisors with
discrepancy 1. To obtain examples of Gorenstein terminal cyclic quotient
singularities which admit resolutions containing divisors having discrepancy
larger than one we must work in dimension higher than four.

Example 2.32 Write X = X, for the cyclic quotient singularity of type
%(1, 1,1,...,1) where n := dim X = kr for some k € Z (by assuming that
r divides n we ensure that X is Gorenstein). Add a single ray 7 generated
by the vector v; = %(1, 1,1,...,1) to the cone o, then take the simplicial
subdivision of o. This determines a toric resolution ¢: Y — X with a single
exceptional divisor D = Xy star(r) = P*~'. The discrepancy of D is k — 1
by Theorem 1.13(i). Using Proposition 1.17 we calculate
E(Y) = E(Y\D)+EP"1

= ((wo)” = 1) + ((wo)" "+ (w0)" >+ -+ +uv +1)

= (uw0)" + (wv)™ ' 4 -+ uw.
Compare this with the stringy E-function:

uy — 1

(uv)k —1
= ()" + ()" F 4+ + (u)® + (uv)F,

Ew(X) = E(Y\D)+EP")-

Example 2.33 Let X = X, denote the cyclic quotient singularity of type
%(1, 2,1,2,1,2) (compare Example 2.29). Add rays 7, and 7, generated by
the vectors v; = %(1, 2,1,2,1,2) and vy = %(2, 1,2,1,2,1) respectively to the
cone o, then take the simplicial subdivision of . Both v; and v, lie in the
simplex Ajz of the resulting fan ¥ so the corresponding exceptional divisors
D; and D, each have discrepancy 2 by Theorem 1.13(i). The cross-section
Aj is difficult to draw (it is 5-dimensional!) but, using Figure 2.1 as a guide,
one can show that

where d;, denotes the number of cones of dimension & in ¥. Hence
E(Y) = (uv)® 4+ 2(uv)® + 3(uv)* + 4(uv)® + 3(uv)? + 2(uv).

As with Example 2.29, for j = 1,2 write dj(7;) for the number of cones of
dimension k in Star(7;), so

ds(75) = 12; dy(7;) = 30; ds(75) = 34; da(7;) = 21; di(75) = T7; do(15) = 1.
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2.5 The orbifold E-function

Proposition 1.17 gives
E(D;) = (uv)® + 2(uv)* + 3(uv)® + 3(uv)® + 2(uv) + 1 for j =1, 2.
Similarly, counting simplices in the fan Star({r, 75)) gives
E(Dy N Dy) = (uv)* + 2(uv)® + 3(uv)? + 2(uv) + 1.
Now compute the stringy E-function using formula (2.11):

uy — 1

Ba(X) = (w)’ ~1+E(Dpy)- <m> T EWDR)- ( (ﬁ)%)

+ E(D}y ) ((%%y
= (u0)® + 2(uv)®.

2.5 The orbifold E-function

Following the introduction of the orbifold Euler number for the action of a
finite group G on a manifold M (see §1.2.3), Vafa [Vaf89] and Zaslow [Zas93|
considered the orbifold Hodge numbers

WM, G) = Y Zdlmcm agelglha—ageldl (A1 () /C(g)),  (2.12)

[g]€Conj(G) i=1

where M9 = M;(g) U -+ U M) (g) are the smooth connected components
of the fixed point set (compare formula (1.9) for the orbifold Euler number).

Definition 2.34 The orbifold E-function of the pair (M, G) is

Eop(M,G) = Y (=1)"" hP4(M,G) u? v*

p,q
- Z Z E(M;(9)/C(g)) - (uv)?els],
[g]€Conj(G) i=1

where E is the standard E-polynomial (see §1.15) and C'(g) is the centraliser
of ¢ € G. The second formula follows from a straightforward substitution.
When Eqp, (M, G) is evaluated at u = v = 1 we produce the orbifold Euler
number e(M, G) introduced in §1.2.3.

45



Motivic integration

Theorem 2.35 ([Bat99b]) For G C SL(n,C) a finite subgroup we have
Eon(C", G) = E4(C"/G). (2.13)

Remark 2.36 In fact, Theorem 2.35 is a special case of the following more
general result established by Batyrev: for any finite group G acting regularly
on a manifold M we have

Bo(M,G) = Fy(X, Ay), (2.14)

where X = M/G, Ay C X is the ramification divisor of the quotient map
m: M — M/G and Eg (X, Ay) is the stringy E-function of the pair (X, Ax).
We choose not to formally introduce Eg (X, Ax) because in the special case
M = C" and G C SL(n,C) we have Ax =0 and Ey(X,0) = E4(X). Thus
Theorem 2.35 follows from (2.14) above. See Batyrev [Bat99b, §3.7,87.5] for
the definition of F (X, Ax) and a proof of (2.14).

We digress momentarily to discuss recent work of Chen and Ruan [CR00]
on a new cohomology theory for orbifolds. Rather than go into the details
for general orbifolds, we focus on the special case X = C"/G.

Definition 2.37 Set X, = (C")? /C(g) and define compactly supported
orbifold cohomology to be

H,.X,Q:= & H *™V(x,,Q),

[9]€Conj(@)

together with the corresponding Dolbeault cohomology groups
HY (X,C):= @ Hpeeelbowld(x ) C).

orb,c
[g]€Conj(G)

The dimensions of these spaces coincide with the orbifold Hodge numbers
of Vafa and Zaslow (2.12) by construction, so the orbifold E-function encodes
the orbifold Hodge numbers in the same way that the standard E-polynomial
encodes the classical Hodge numbers.

This is not in itself remarkable. After all, Vafa and Zaslow could have
formulated the above definitions when discussing orbifold Hodge numbers.
The remarkable aspect of the Chen and Ruan construction is an ‘orbifold

Gromov—Witten invariant’ which determines a cup product
Uorbt Hip o(X, Q) x HIy (X, Q) — HJ (X, Q) for 0<i,j<2n,

orb,c

making Hy,, (X, Q) = Dy<;con H!,.(X,Q) into a ring with a unit.

46



2.6 Strong McKay via motivic integration

2.6 Strong McKay via motivic integration

We conclude this chapter with a look at how Batyrev [Bat99b, Bat00] used
motivic integration to prove the strong McKay conjecture 1.30 (an alternative
proof has subsequently been provided by Denef and Loeser [DL99al).

Proposition 2.38 ([Bat99b]) Let G C SL(n,C) be a finite subgroup. Then
Ey(C'/G)= > (uv)" W], (2.15)
[9]€Conj(Q@)

where we sum over the conjugacy classes of G.

PROOF. From (2.13) above it is enough to compute the orbifold Euler number
of the pair (C*,G). Write M := C* so that M9 = Cdimker9=D) Tt follows
that E(M?/C(g)) = (uv)dimker9=1) and, since

age[g] + age[g™'] = rank(g — I) = n — dimker(g — I),

we have E(M9/C(g)) - (uv)®e9) = (uv)"—2e9™"]. The result follows by sum-
ming over all conjugacy classes [¢7'] of G. a

Theorem 2.39 (strong McKay correspondence) Let G C SL(n,C) be
a finite subgroup and suppose that the quotient X = C" /G admits a crepant
resolution ¢: Y — X. The nonzero Betti numbers of Y are

dime H?*(Y,C) = #{age k conjugacy classes of G}.
fork=0,...,n—1, so e(Y) = #{conjugacy classes of G'}.

PROOF. The Hodge structure in H'(Y,Q) is pure for each i and Poincaré
duality H*»~(Y,C) @ H(Y,C) — H>*(Y,C) respects the Hodge structure,
so it is enough to show that the only nonzero Hodge—Deligne numbers of the
compactly supported cohomology of Y are

pnknk (HCZ"’%(Y, (C)) = #{age k conjugacy classes of G}.
Now hr=hn=k([2n=2k(Y, C)) is the coefficient of (vv)"~* in the E-polynomial

of Y. Moreover, the resolution ¢: Y — X is crepant so E(Y) = F4(X) and
the result follows from (2.15). 0
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Motivic integration

Remark 2.40 Reid [Rei97, Rei99] has long held the philosophy that the
McKay correspondence can be written as a tautology. We close this chapter
with a short explanation of this point of view by generalising Theorem 2.39
using the orbifold cohomology of Chen and Ruan.

Observe that Proposition 2.38 holds even when C"/G does not admit a
crepant resolution. Indeed, for the Gorenstein terminal quotient singularity
of Example 2.28, where the nontrivial element of the group G = Z/2Z acting
on C* has age two, formula (2.15) gives

Ey(CH/G) = (uv)* + (uv)?,

as shown in §2.4 (check that the same holds for the other examples of §2.4).
But if we remove the assumption that X = C" /G admits a crepant resolution
¢:Y — X what is the appropriate generalisation of Theorem 2.397

One answer? can be phrased in terms of the new orbifold cohomology of
Chen and Ruan discussed in §2.5. Recall the trivial calculation

jo ((Cn : G) _ Z (uv)nfage[gl
[g]€Conj(G@)

from the proof of Proposition 2.38. This calculation can be rephrased in the
following terms:

Tautology 2.41 Let G C SL(n,C) be a finite subgroup. Then

orb,c

dime H>"2%(C" /G, C) = #{age k conjugacy classes of G}
fork=0,...,n—1, soe(C", G) = #{conjugacy classes of G}.

This is nothing more than a refinement of the observation (1.10) made by
Hirzebruch and Hofer, and should be regarded as a tautology. Nevertheless, it
is a remarkable consequence of motivic integration, and specifically of formula
(2.13), that Tautology 2.41 specialises to the highly nontrivial Theorem 2.39
when C" /G admits a crepant resolution Y. Indeed, if ¢: YV — X = C"/G is
a crepant resolution then

Eorb((cn? G) = Est ((Cn/G) = E(Y)

“The tautological McKay correspondence of Reid [Rei99, §4,7] is written in terms of
the stringy motive. See §A for more on the stringy motive.
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2.6 Strong McKay via motivic integration

so dime H2¥(X, C) = dim¢ H?* ?*(Y,C). This equals dimg H?*(Y,C) by

orb,c
Poincaré duality.

Remark 2.42 In fact Chen and Ruan’s orbifold cohomology is well defined
for non-Gorenstein varieties so one can further generalise Tautology 2.41 by
considering quotients C" /G for finite subgroups G C GL(n,C). We choose
to say no more on this topic here.
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Chapter 3

How to calculate A-Hilb C3

Nakamura [Nak00] introduced the G-Hilbert scheme G -Hilb C* for a finite
subgroup G C SL(3, C), and conjectured that it is a crepant resolution of the
quotient C* /G. He proved this for an Abelian subgroup A C SL(3,C) by in-
troducing an explicit algorithm that calculates A-Hilb C3. In this chapter we
calculate A-Hilb C* much more simply, in terms of fun with continued frac-
tions plus regular tesselations by equilateral triangles. We state our two main
results in Section 3.1 and prove the first of these in Section 3.2. Section 3.3
contains a simple procedure to calculate A-Hilb C3, together with a pair of
worked examples. Section 3.4 investigates a dichotomy in the construction
which plays a key role in Chapter 4. The rest of this chapter consists of a
proof of our second main result.

3.1 Statement of the results

Let A C SL(3,C) be a finite diagonal subgroup acting on C* with coordinates
z,y, 2. The quotient singularity C*/A is the toric variety X, , introduced in
§1.1.4. The junior simplex A (see Definition 1.26) has 3 vertices

er = (1,0,0), e;=1(0,1,0) and e3=(0,0,1).

Write R for the affine plane spanned by A and Z% = L NR% for the
corresponding affine lattice. Taking each e; in turn as origin, construct the
Newton polygons obtained as the convex hull of the lattice points in A\ ¢;
(see Figure 3.1(a)):

fi,Oafi,lafi,?a"'afi,mﬂrla (31)
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3.1 Statement of the results

where f;o and f; ;41 extend along the sides e;e;—; and e;e;; respectively
(the indices 7,7+ 1 are cyclic). Since e; is the origin, the notation f; ; denotes
both the lattice point and the vector from e; to f; ;. The vectors f; ; out of
e; are subject to the Jung—Hirzebruch continued fraction rule (see §1.1.4)

Jij—1+ fijyr = aij- fiy forj=1,...,m;, (3.2)

where a; ; > 2 is the strength of f; ;. By writing

1
ZA=1- fio+ L fimir+L- fiy=L*+T- ;(ai, 1),

)

with o; < r; and coprime to r;, the integers a;; can be computed via the
continued fraction - = (@i, ..., Qim;]. For each i =1,2,3, draw lines L, ;
from e; to the lattice points f; ;. The resulting fan at e; corresponds to the
Jung-Hirzebruch resolution of the surface singularity C?ﬁ:O) /A. The picture
so far is the simplex A with a number of lines L; ; growing out of each of the

3 vertices (see Figure 3.1(a)).

€1

f3,m3+1

€3

(a) (b)

Figure 3.1: (a) Lines L; ; from e;; (b) Regular tesselation of a regular triangle

Definition 3.1 A regular triple is a set of three vectors vy, v9, v3 from among
the f; ;, any two of which form a basis of the group of translations of the affine
lattice Z%, such that +v; + vy £ v3 = 0. A triangle T C R% with vertices in
Z34 is a regular triangle if each of its sides is (part of) a line L;; extending

51



How to calculate A-Hilb C?

some f; ; and the 3 primitive vectors vy, v, v3 pointing along its sides form
a regular triple. It is said to have side r if there are r + 1 lattice points
along each side. The regular tesselation of a regular triangle of side r is
the subdivision into 72 basic triangles with sides parallel to v, vy, v3 (see
Figure 3.1(b) for the case r = 5; remove the grey tesselating lines to leave a
regular triangle of side 5).

A regular triangle is what you get as the junior simplex for the group
1 1
A=Z/r®Z]r = <—(1, —1,0),-(0,1, —1)> C SL(3,C).
r r

The tesselation consists of basic triangles with vertices in A, so corre-
sponds to a crepant resolution of the quotient singularity C*/A. Tt is known
(see [Rei97, §2.2]) that in this case A-Hilb C? is the toric variety associated
with its regular tesselation.

We are now in a position to state the main results of this chapter:
Theorem 3.2 The reqular triangles partition the junior simplex A.

In §3.2 we introduce a combinatorial procedure involving continued frac-
tions to determine the partition of A. Worked examples appear in §3.3.

Theorem 3.3 Let ¥ C L®R denote the toric fan determined by the reqular
tesselation of the reqular triangles of Theorem 3.2. The toric variety Xp s is
Nakamura’s A-Hilbert scheme A-Hilb C3.

Corollary 3.4 ([Nak00]) A-Hilb C* — C*/A is a crepant resolution.

The construction of ¥ reveals that every internal vertex has valency 3,4, 5
or 6, so the compact exceptional surfaces in A-Hilb C* are characterised as
follows:

Corollary 3.5 Ewvery compact exceptional surface in A-Hilb C? is either P?,
a scroll F,, or a scroll blown up in one or two points (including dPg, the del
Pezzo surface of degree 6).
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3.2 Concatenating three continued fractions

3.2 Concatenating three continued fractions

In this section we prove Theorem 3.2. The key observation is that easy
games with continued fractions provide all of the regular triples vy, vo, v3
(see Definition 3.1) from among the vectors f;;. First, translate the three
Newton polygons at ey, es, e3 to a common vertex to get the propellor shape
of Figure 3.2, in which three hexants (the blades of the propellor) have convex
basic subdivisions. The primitive vectors are read in cyclic order

froo fits oo fime fumier = —f20, fo,1,  ete.

Inverting any blade (that is, multiplying by —1) makes the three hexants
into a basic subdivision of halfspace.

f2,0 f3,m3+1
f21
e fa f3.0

fia
fio Jimp+1

f2,m2+1

Figure 3.2: ‘Propellor’ with three ‘blades’

To concatenate the three continued fractions [a;1,. .., @;nm,] arising from
the propellor of Figure 3.2 as a cyclic continued fraction we study the change
of basis from the last basis fi ., fi,m,+1 of the e; hexant to the first basis
f2,0, f2,1 of the e; hexant. Clearly foo = —fim,+1, and we claim that

f2,1 — fl,m1 =azp0 - f2,0 for some 2,0 2 1. (33)

Indeed, — f1m,, f2,0 and foy, f21 are two oriented bases (the usual argument).
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How to calculate A-Hilb C?

Definition 3.6 The integer as arising from relation (3.3) is the strength of
the side f5; we define the strength of fi and f3 similarly. The side e;e; of
the simplex A is a long side if the primitive vector f; o along e;e; has strength
strictly larger than 1.

We illustrate a long side in Figure 3.1(a). The lattice point fio lies
between e; and e3. Since fi 1 — f3m, = 2+ fi,0 We see that eje; is a long side.

Lemma 3.7 A has at most one long side.

PROOF. If ejes and eje3 (say) both have coefficient larger than 1 then the
basic subdivision of halfspace obtained by inverting the bottom blade of the
propellor in Figure 3.2 would be convex at each ray, a contradiction. O

Lemma 3.7 gives rise to a dichotomy in the construction (we investigate
this further in §3.4): the basic subdivision of halfspace has either two or three
convex sectors which lie between vectors with strength 1 arising from (3.3).
For convenience we rotate halfspace so that one such vector is horizontal; we
let vy denote this vector and write ¢y = 1 for its strength. Relabel the other
vectors f; ; as vy,...v, with strength c,..., ¢, respectively, where v, = —v,
and ¢, = ¢ = 1:

Un X0 Un 0]

(a) (b)

Figure 3.3: Subdivision of halfspace: (a) no long side; (b) one long side

Adjacent cones (v;_1,v;) and (v;, v;41) in the subdivision of halfspace are
related by the transformation

()= (5 o) ()
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3.2 Concatenating three continued fractions

Successive change of bases from (vg, v1) to (—vy, —v;) anti-clockwise around
halfspace gives

-1 0 0 1 0 1 0 1
(0 ) =G a) (G e
As with the Jung-Hirzebruch continued fraction in the 2-dimensional case,

the numbers ¢; can be encoded in a continued fraction

1

Cn—1 — T

(3.5)

1, ch1,...,c1]:=1—

which evaluates to [1,1,1] =1— % = —o0. The continued fraction is cyclic: a
different choice of side with strength 1 for v, gives rise to a continued fraction

which is a cyclic permutation of the above.

Remark 3.8 When ¢; = 1 the relation v; = £v;_14v; 41 holds so v;_1, v;, v; 41
is a regular triple. In this case the cone (v;_1,v;11) is basic and removing the
vector v; leaves a new basic subdivision vy, ..., v; 1,941, ..., v, of halfspace.
The new continued fraction is obtained by contracting the string

[...,ciH,l,ci_l,...] to [...,CH_l—]_,Ci_l—]_,...];

this contraction corresponds to the matrix identity

0 1 0 1\/0 1Y) [0 1 0 1
-1 Ci+1 -1 1 —1 Ci—1 N —1 Ci-l—l_]- -1 Ci—l_]- '

The new continued fraction must have either two or three 1’s for the reason
outlined in Lemma 3.7. Thus we may repeat this process to establish a chain
of contractions which converges to [1,1,1], plus a final contraction which
produces the empty continued fraction.

Definition 3.9 A chain of contractions of the cyclic continued fraction is
called an MMP!.

Lemma 3.10 Every regular triple appears in every MMP.

!The combinatorics are the same as for contracting —1-curves in a chain of rational
curves on a surface with self-intersection the negatives of 1,¢,—1,...,¢1-
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Proor. We prove the lemma by counting the number of regular triples and
the number of contractions in an MMP. It’s clear from the MMP algorithm
that each vector v; appears in precisely ¢; regular triples. It follows that
the disjoint union of all regular triangles has Z"_Ol c¢; edges, so there are
1 ZZ o Ci distinct regular triples. On the other hand, in a given MMP each
contractlon reduces the total strength (i. e the sum of the numbers in the
continued fraction) by three so there are Z 0 ¢; contractions. The result
follows from the observation that a regular triple cannot correspond to more

than one contraction in a given MMP. O

PROOF OF THEOREM 3.2. It follows from Lemma 3.10 that the simplex A
has a unique subdivision into regular triangles, and any MMP computes it.
This completes the proof of Theorem 3.2. O

3.3 It’s a knock-out!

The MMP in cyclic continued fractions has an entertaining interpretation as
a contest between the lines L; ; which emanate from the 3 vertices e;. As a
result, the fan 3 of A-Hilb C* can be calculated using the following 3-step
procedure (see Example 3.11):

1. Draw lines L;g,..., Ljm,+1 emanating from the corners e; of A as
described in §3.1. The integer a;; > 2 determined by the Jung—
Hirzebruch continued fraction rule (3.2) is the strength of L; ;.

2. Extend the lines L;;,..., L;,,, until they are ‘defeated’ by lines Ly,
from ey (i # k) according to the following rule: when two or more lines
meet at a point, the line with greater strength extends but its strength
decreases by 1 for every rival it defeats. Lines which meet with equal
strength all die. As a consequence, strength 2 lines always die.

3. Step 2 produces the partition of A into regular triangles of Theorem 3.2.
The regular tesselation of the regular triangles gives X.

L(1,2,8).

Example 3.11 Consider the cyclic quotient singularity of type 7

The three continued fractions are
ate;: L =[3,4  (because {7(2,8) ~
at ex: Y =12,3,2,2] (because +(8,1) ~
11
2

7 [6 2] 11

|~

(1,4)),
(1,7))

Y )

J— J—
,_.|>—‘,_.

at e;3:
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3.3 It’s a knock-out!

In Figure 3.4(a) we illustrate the result of Step 1 of the procedure where,
for example, the integers 6 and 2 marking the lines from e3 come from the

continued fraction &t =6 — 1 of the surface singularity (C%zzo) JA =£(1,2).

€1

N \'e

(a) (b)

Figure 3.4: (a) Step 1; (b) Step 2 (solid lines) and Step 3 (dotted lines)

The solid lines in Figure 3.4(b) show the result of Step 2. For example,
the line from e; with strength 3 intersects the line from e3 with strength 2;
the procedure says that the line from e; extends with strength 2 while the line
from e3 terminates. The resulting partition of A contains only one regular
triangle of side r > 1. To perform Step 3 we tesselate this triangle (i.e. add
the dotted lines to Figure 3.4(b)) which gives the fan 3 of A-Hilb C?.

Example 3.12 Consider the cyclic quotient singularity of type %(25, 2,3).

Note that hef(30,25) = 5 and, because of the common factor, the three
continued fractions are

at e;:  [5] (because 35(2,3) ~ +(1,1)),
at ex:  [2]  (because 55(25,3) ~ 3(1,1)),
at eg: [2,2] (because 35(25,2) ~ £(2,1)).

The solid lines in Figure 3.5, each marked with the appropriate strength,
show the partition of the junior simplex of %(25, 2,3) into regular triangles
of side two and three. The dotted lines tesselate the regular triangles.
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I

I

|
’/
& €9

€3

Figure 3.5: The partition of the junior simplex into regular triangles

The side ese3 is a long side. Indeed, the primitive vector along eses
is f30 = —f22 = (0,6,—6) (we omit denominators 55 throughout). Since
faq1 = (5,-8,3) and f3; = (5,4, —9) we see that f31 — fo1 =2 f50, SO ezeq
has strength a3y = 2.

3.4 A long side or a meeting of champions

Before proceeding to A-Hilb C? and the proof of Theorem 3.3 we investigate
the dichotomy in the construction of the fan ¥ arising from the number of
sectors in the subdivision of halfspace. Recall from Figure 3.3 that a long
side exists if and only if the subdivision of halfspace has two convex sectors.
Convexity ensures that any two vectors from a regular triple which lie in the
same (closed) convex sector are adjacent. Thus a regular triple is in one of
two possible orientations:

Type 1: two consecutive vectors in the same closed blade of the propellor,
for example, fi2 = fi1 + f3,1 of Figure 3.2; or
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3.4 A long side or a meeting of champions

Type 2: an interior vector in each blade, for example fi 2 + foo + f31 = 0.

If a triple of Type 2 exists then the lines L; ; which form the edges of the
corresponding regular triangle are the champions of the knock-out competi-
tion that meet after eliminating all their less successful rivals. For instance,
in Figure 3.4(b) the lines which meet at the interior vertex with valency 3
are the champions of Example 3.11.

Definition 3.13 A regular triangle corresponding to a triple of Type 2 is
called the meeting of champions. This triangle may have side zero in which
case three lines L, ;, one from each vertex e;, meet at a point.

Proposition 3.14 There is either a unique long side or a unique meeting
of champions.

ProoF. If there is a long side eses, it is subdivided by a line from e;, and
Type 2 cannot occur. We claim that if there is no long side, there is a unique
regular triple of Type 2. Uniqueness is almost obvious from the topology:
if it exists, a meeting of champions divides A into 4 regions (one possibly
empty), and any other line is confined to one region (it is knocked out by
any champion it meets).

For the existence, the idea is that it is natural to deconstruct A by eating
in from one side. The cyclic continued fraction (3.5) has three 1’s, so that
each side of A takes part in one regular triangle. Choose one side (say eje3)
and, preserving the other two, eat as many regular triangles as we can along
eje3 (that is, with sides through e; or es, as in Figure 3.6(a)). Every regular
triple of Type 1 is associated with a well defined side of A, and is eaten in
this way starting from that side. The union of regular triangles along each
side forms its catchment area.

We now view an MMP as successively deleting dividing lines of the sub-
division of Figure 3.2. Eating triangles in the catchment area of side e es
only deletes lines in the two hexants in the top right of Figure 3.2, between
f2,0 and f3 9. Deleting a line joins two old cones to make a new cone, which is
always basic; we conclude that the two vectors v, v’ bounding the catchment
area of ejes form a basis. After this, by assumption, no remaining line in
these two hexants is marked with 1, so that the cone (foy, f3,0) now has its
standard Newton polygon subdivision. If we now complete an MMP anyhow
from this position, the same vectors v, v’ must occur in some regular triple.
By what we have said, the remaining vector must be in the interior of the
third hexant. Thus a regular triple of Type 2 exists. 4
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3.5 Regular triangles and invariant ratios

The regular triples vy, vy, v3 of Definition 3.1 live in L. Passing to the dual
lattice M of invariant monomials is a clever exercise in elementary coordinate
geometry in an affine lattice that plays a key role in the proof of Theorem 3.3.

Figure 3.6: (a) corner triangle; (b) meeting of champions

Proposition 3.15 Fvery reqular triangle of side r gives rise to the invariant
ratios of Figure 3.6 (we permute x,y, z if necessary). Moreover,

d—a=e—b—c=f=r in Case a, (3.6)
d—a=e—b=f—c=r in Caseb. (3.7)

Note: b,d (etc.) are not necessarily coprime; but z?/y° is primitive in M,
that is, not a power of an invariant monomial.

Proposition 3.16 Let | be any lattice line of Z4, and m € M an invariant
monomial that bases its orthogonal I+ N M (as explained at the start of the
proof of Proposition 3.15). Then the lattice lines of Z% parallel to | are
orthogonal to m(zyz)" for i € Z. It follows that the reqular tesselations of
the regular triangles of Figure 3.6 are cut out by the ratios

d—i . yb+ZZZ, yefj <ol
dei o gbbigi o yend o petigd Ik gatkyk in Case b, (3.9)

a+j f—k . .k, ctk
, 27

x "y in Case a, (3.8)

X

fori,j,k=0,...,r—1.

60



3.5 Regular triangles and invariant ratios

ProoF. The overlattice L is based by e;,v,vs for any ¢ = 1,2 or 3 and
any regular triple vy, vg, v3. In contrast, recall from §1.1.4 that ey, ey, e3 base
L =173 C L, and z,y, 2 base the dual lattice M = Z? of monomials on C>.
The invariant monomials form the sublattice M C M on which L is integral,
so that M = Hom(L,Z).

Write T' for one of the regular triangles of Figure 3.6. Each side of T’
defines a sublattice (say) {es,vi}* N M 2 Z. The ratio z?:y® in Figure 3.6,
or the monomial £ = 2¢/1°, is the basis of {e3, v, }* MM on which the triangle
is positive, say v5(§) > 0. So much for Figure 3.6.

For the equalities (3.6) in Case a, note that Figure 3.6(a) gives vy, vg, v3
up to proportionality:

vy ~ (b,d,—(b+d)),
Vg~ (eaaa _(a+€))a (310)
vz ~ (C+fa_fa_c)'

We claim that the constants of proportionality are all equal, and equal to

1 1 1

de—ab  actaf+ef  bf +ed+df

(The denominators are the 2 x 2 minors in the array of (3.10).) For this,

write

z¢ y°© B 2f

f:—b, n=— C——c-
) r )

These 3 monomials are not a basis of M (unless r = 1, when our regular
triangle is basic). But any two of them are part of a basis. Indeed, let e
be any vertex of R and +v;, +v; primitive vectors along its two sides; then
{e, £v;, £v,} is a basis of L, and the two monomials along the sides are part
of the dual basis of M. Now there are lots of dual bases around, and the
claim follows at once from

vi(n) =va(§) =v3(€) =1, () =v2(C) = v3(n) = —1.

Equating components of vy +v3 = vy givese=b+c+ f and a =d — f,
the first two equalities of (3.6). For the final equality, if we start from ez and
take f steps along the vector vy, we arrive at

bf,df,de —ab— bf — df)

1
€3+fvlzde—ab<
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The final entry de —ab—bf — df evaluates to cd. Thus this point has last two
entries df, cd proportional to f, ¢, so lies on the third side of R. Therefore
r = f. The proof of (3.7) in Case b is similar.

For Proposition 3.16, write m,u € My for the linear forms on L corre-
sponding to the monomials m, zyz € M. The junior plane R is defined by
u = 1; therefore {(m + iu)t};cr is a pencil of parallel lines in RY. For any
lattice point P € Z% we have m(P) € Z and u(P) = 1, so (m + iu)* can
only contain a lattice point for ¢ € Z. O

Example 3.17 Consider once again ;(1,2,8). The line (with strength 6 in
Figure 3.4) from e3 to the lattice point ﬁ(l, 2,8) represents a 2-dimensional
cone 7 in R® (with origin behind the paper) with normal vector +(2, —1,0).
The corresponding toric stratum X ;) star(r) C X5 18 P! obtained by gluing
Spec Clz?y~'] to Spec Clz2y], so it is parametrised by the A-invariant ratio
2?2 :y. Repeating this calculation for all lines in ¥ leads to Figure 3.7. Of
course, the edges of ¥ are not cut out by ratios; rather, the edges determine
a single copy of C C Xy with coordinate an invariant monomial. That is,
the image of the x, y or z-axis of C* under the quotient map m: C* — C*/A.

€3 x : €9

Figure 3.7: Ratios on the exceptional curves in A-Hilb C* for -£(1,2,8)
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Remark 3.18 The coordinates of points of the tesselation can be calculated
in many ways: for example, in Case a, we get

e3 + vy + jug = (bj +ei,dj + ai,de —ab— (a+e)i — (b+ d)j),

de — ab
which could be used to prove Proposition 3.16; or from the 2 x 2 minors of

(e 7))

It is curious that these explicit calculations in the general case shed almost
no light on Propositions 3.15-3.16, even when you know the answers.

3.6 Basic triangles and dual monomial bases

The regular tesselation of a regular triangle R of side r is a simple and familiar
object. A moment’s thought shows that every basic triangle T" is one of the
following two types (see Figure 3.8 for the subgroup Z/r*> C SL(3,Z)):

‘up’ Fori,7,k > 0 with ¢ + 5+ k = r — 1, push the three sides of R inwards
by i, j and k lattice steps respectively. (There are (’;1) choices.) We
visualise three shutters closing in until they leave a single basic triangle
T. Note that T is a scaled down copy of R, parallel to R and in the

same orientation; in other words, up to a translation, it is %R.

‘down’ Fori,j, k > 0 with i4+j+k = r+1, push the three sides of R inwards
by i, j and k lattice steps (giving (}) choices). Now the shutters close
over completely, until they have a triple overlap consisting of a single

basic triangle 7', in the opposite orientation to R; up to translation, it
o 1
is —R.

r

Proposition 3.19 Let R be one of the reqular triangle of Figure 3.6. Its
basic ‘up’ triangles have dual bases

E= bt fyhtit =y [0 = TR Ryt in Case a
€= gl Jybtigl g = eI e tgd = R etk Case b
fori, 7,k >0 withi4+j+k =r—1. Its basic ‘down’ triangles have dual bases
A=yt et = ey = ahy T in Case a
A= yPtiat et = g fyed oy = gvthyk IR g Case b

fori, 5,k >0 withi+j+k=r+1.
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PROOF. A basic triangle T" has a basic dual cone in the lattice M, based by
3 monomials perpendicular to the 3 sides of 7. These monomials are given
by Proposition 3.16, or more explicitly as listed above. O

Example 3.20 Up triangle for A = Z/r & Z/r. The lattice is
\ 1 1
Z3+7-—(1,-1,0)+Z - (0,1, —1),
r r

and A is spanned as usual by e; = (1,0,0), eo = (0,1,0), e3 = (0,0,1). We
omit denominators, writing lattice points of A as (a,b,¢) with a +b+c=r.

Figure 3.8: (a) Up triangle; (b) down triangle (same 4, nonspecific j, k)
An up triangle T has vertexes (i + 1, j, k), (4,5 + 1,k) and (4,7, k + 1) for

some i,7,k > 0 with i + j + k = r — 1 as in Figure 3.8(a). Since T is basic,
so is its dual cone in the lattice of monomials, so the dual cone has the basis

€= a:rfi/yizi’ n= yrfj/itjzj, (= erk/l,kyk.

Thus the affine piece Y, = (Cg,n,c C Yy parametrises equations of the form

:Erfi — gyzzz, yiﬂziﬂ — nczrfifl,
Y=l NI —ecy T ayr=gn¢. (31)
Zr—k — kayk7 Ik—l—lyk-i-l — gnzr—k—l,
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A down triangle T' has vertices (i — 1,75, k), (i,7 — 1,k) and (i,7,k — 1)
for some 7,5,k > 0 with ¢ + j + k = r + 1 as in Figure 3.8(b). The sides of
T again correspond to the invariant ratios 2" ~* : 3’z* etc., and its dual has
basis

\ = yizi/xr—i, o= Ijzj/yr—j7 v = Ikyk/zr—k.

The affine piece Y = C3  C Yy parametrises the equations

A,V
yzzz — )\xrfz, xer»l — //“/yzflzzfl,
P =y, oy =TTy = A, (3.12)
:L’kyk _ VZr—k, Zr—k—l—l — )\,uxk_lyk_l,

Remark 3.21 The standard construction of toric geometry is that the toric
variety Xy is the union of the affine pieces X, = Spec C[r¥ N M] taken
over all 3-dimensional cones 7 € 3, or equivalently over every triangle T'
in the triangulation ¥. Proposition 3.19 says that C[r¥ N M] = C[¢,n, (]
(respectively C[A, p, v]); that is, X; , = C* C X, » with affine coordinates
€, 1, (respectively A, u, v).

On the other hand Proposition 3.19 also causes X, to parametrise sys-
tems of equations such as

l,d—z — gyb-i-zzz7 ye—y — nzjxa—l—j7 Zf—k — C:lfkyc+k, etc.

To prove Theorem 3.3 we show that these equations determine the equations
of a certain A-cluster of C?, and conversely, every A-cluster occurs in this
way; thus X ; is naturally a parameter space for A-clusters. The details are
given in §3.8 below.

3.7 Nakamura’s theorem

The literature uses two a priori different notions of G -Hilb C*. The original
construction goes as follows: set n := |G|, take the Hilbert scheme Hilb"(C?)
of all clusters (i.e., zero-dimensional subschemes) Z C C* of length n, then
take the fixed locus (Hilb™(C?))¢ and, finally, define G -Hilb C* to be the
irreducible component containing the general G-orbit. This is a ‘dynamic’
definition: a cluster Z C C® corresponds to a point in G -Hilb C? if it is a
flat deformation of a genuine G-orbit of n distinct points. Thus the dynamic
G -Hilb C? is irreducible by definition, but we don’t know which functor it
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represents. Also, the definition involves the Hilbert scheme Hilb"(C?) of n
points in C* which is almost always very badly singular.
Here we use the following algebraic definition:

Definition 3.22 For a finite subgroup G C SL(3,C), a G-cluster Z is a
G-invariant subscheme Z C C* for which H(Z, Oy) is the regular repre-
sentation of G. The G-Hilbert scheme G -Hilb C* is the moduli space of
G-clusters.

Ito and Nakajima [IN99, §2.1] proved that the algebraic and the dynamic
definitions of G -Hilb C? coincide for a finite Abelian subgroup G C SL(3, C).
More recently, Bridgeland, King and Reid [BKR99] proved that the defini-
tions coincide for a finite (not necessarily Abelian) subgroup G C SL(3, C).

Theorem 3.23 ([Nak00]) (1) For every subgroup A C SL(3,C) which is
finite and diagonal, and every A-cluster Z, generators of the ideal I,
can be chosen as the system of 7 equations

I'l+1 — gybzf, yb+12f+1 _ )\.fl,
Yyt =2 2t — ™, TYz = T. (3.13)
Zn+1 _ C:ane $a+1ye+1 _ l/Zn

- ) - )

Here a,b,c,d, e, f,[,m,n > 0 are integers, and £,1n,, A\, u,v,m € C are
constants satisfying

A =un=v(=m. (3.14)

(II) Moreover, exactly one of the following cases holds:

(s A=nC, pu=¢ v==E&n, w=E&n0
up {l:a,+d, m:b+e, n:C+f, or (315)
. , E=pv, n=vA (=g, T=Aw
down {l:a+d+1, m=b+e+1, n=c+f+1 (3.16)

Remark 3.24 The group A doesn’t really come into our arguments, which
deal with all diagonal groups at one and the same time. For example, A =0
makes perfectly good sense. The particular group for which 7 is an A-cluster

66



3.7 Nakamura’s theorem

is determined from the exponents in (3.13) as follows: its character group A*
is generated by its eigenvalues x,, Xy, X» on z,¥, 2, and related by

(I+1)xe =bxy + fx:
Xoe+ Xy +X:=0 and (m+1)x, =cx, +dx, (3.17)
(n+1)x. = axz + exy-

This is a presentation of A* as a Z-module, as a little 4 x 3 matrix; all our
stuff about regular triples, regular tesselations and so on, can be viewed as
a classification of different presentations of A* of type (3.17).

PROOF OF THEOREM 3.23(I). By Definition 3.22 the ring H°(Z,0z) =
klx,y,z]/1; = Ocs /I; of Z is the regular representation so each character
of A has exactly a 1-dimensional eigenspace in H(Z, Oz) (written as Oz
hereafter). Arguing on the identity character and using the assumption that
A C SL(3,C) provides an equation zyz = « for some 7 € C.

Since k[x,y, z] is based by monomials, their images span Oz; monomials
are eigenfunctions of the A action. Obviously, each eigenspace in Oy contains
a nonzero image of a monomial m, and is based by any such. Moreover, if
m is a multiple of an invariant monomial, say m = mym; with m, invariant
under A, and is nonzero in Oy, then the other factor m; is also a basis of
the same eigenspace. From now on, we say basic monomial in Oz to mean
the nonzero image in Oz of a monomial that is not a multiple of an invariant
monomial; in particular, it is not a multiple of xyz, so involves at most two
of z,y, z.

Lemma 3.25 below shows how to choose the equations in (3.13). Indeed
1 42/ belong to a common eigenspace, and therefore, because zyz is
invariant, also 2! and y’T'2/*! belong to a common eigenspace. This is
based by ' by choice of [, hence we get the relation y*™'2/** = Az!. Finally,
since y’z/ is a basic monomial, A = 7 corresponds to the syzygy A(i) +
(i) — y®27 (iii) between the three relations

(i) 2T =&y, (i) T =Nl (Gi) ayz =

The relations involving y™*! and 2"*! arise similarly.

Now (I) says that, for any A and any A-cluster Z, once the relations
(3.13) are derived as above, Oy is based by the monomials in the tripod of
Figure 3.9, and the relations reduce any monomial m to one of these. We
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ym
+1, e+1
ry
a,,e hd
'y l,e
b.f Y
Yy z
Y 4
T ZEZIZ+1
[ ]
¥4

Figure 3.9: Tripod of monomials basing Oy

derived the relations in pairs z!*! — 3’2/ and 3?12/ — 2!, The first type
reduces pure powers of = higher than z!. Suppose we have a further relation
in the first quadrant, (say) z%y° — m: if m involves z or y the new relation
would be a multiple of a simpler relation. On the other hand, if m = 27 is a
pure power of z, the above argument shows the new relation is paired with a
relation 27! — x® 1y#=! which contradicts our choice of n (in the exponent
of 2"*1). This concludes the proof of (I), assuming Lemma 3.25. 0

Lemma 3.25 Let x" be the first power of x that is A-invariant. Then there is
(at least) onel € [0,7—1] such that 1,z,2%,..., 3" € Oy are basic monomials,
and £+ is a multiple of some basic monomial y*2/ in the same eigenspace,
say o' = EyP2) for some € € C.

PROOF. If 27! # 0 € Oy it is a basic monomial, and one choice is to take
I=7r—1and b= f =0, and to take the relation z!™ = 2" = £ - 1. (Other
choices arise if the eigenspace of some z'*! with I’ < [ also contain a basic
monomial y¥ 27").

If not, there is some [ with 0 <1 < r—1 such that 1, z, 22, ...,z are basic
monomials and z'*! = 0 € 0. Now the eigenspace of z/*! must contain a,
basic monomial m; under the current assumptions, we assert that m is of
the form 1%/, which proves the lemma. We need only prove that m is not a
multiple of z. If m = xm’ then m’ must in turn be a basic monomial in the
same eigenspace as z!. But then z! = (unit) - m’ contradicts z'*? = 0 and
rm’ # 0. O
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PROOF OF THEOREM 3.23(II) The point is that a monomial just outside
one of the shoulders of the tripod of Figure 3.9 such as z!T!y¢*! or y™*!12/+1
etc., reduces to a basic monomial in two steps involving two of the &, n, (
relations, or two of the A, u, v relations. (Compare [Rei97, Remark 7.3] for a
discussion.)

The first reduction applies if b+ e > m:

xl+1ye+1 s §yb+e+lzf — gnberefmxdchrf

l—d+1, m—b+1

This implies that the monomials z Y and 2T/ are in the same

eigenspace, and the existence of the relation

I—d+1, m—b+1 __ ctf
iy Yy =&nz

between them. But from the argument in (I), there is only one relation in
this quadrant, namely z¢'y¢t! = pz?. Therefore [ —d = a, m — b = e,
c+f=nandv=~&n Nowa+d>1and ¢+ f > n, so that we can run the
same two-step reduction to other monomials to get A = n¢ and pu = &C.

The second type of reduction appliesif m > b+e+1

[—a—1, m—b—e—1_n

Yy Ny s v y 2z

Therefore the two monomials y*+¢*2 and '=%"'2"~/~! are in the same eigen-
space, and y*T¢*t2 = \pa!=7127=/=1 As before, this must be identical to the
n relation, so that m+1=b+e+2,l—a—1=d,n— f—1=cand n = Av.
This proves the theorem. O

3.8 Proof of Theorem 3.3

The point is to identify the objects in the conclusion of Proposition 3.19 and
of Theorem 3.23; this is really just a mechanical translation. To distinguish
between the two sets of symbols in the monomial bases of Proposition 3.19,
we first substitute for d, e, f from (3.6-3.7) of Proposition 3.15, and then
replace

a— A, b— B, c—C.

Each of the monomial bases of Proposition 3.19 gives rise to a triple of
equations, either up:

:L,A—i—r—z — fyB—HZl, yB-l-C-i-r—] — T]Z]:EA+‘7, Zr—k — kayC—l—k in Case a,
xA-l-r—z — gyBHZz’ yB-H"—] — T]ZC—HZE], ZC—I—r—k — CIA+kyk in Case b
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with 7,75,k > 0 and ¢ + j + k =r — 1; or down:

k

B-l—zzz — )\IA-FT—Z, B—I—C’—l—r—y7 k, C+k in Case a

"y =vz'"

Bir=j g Atkyh o Cr—k

y M = py

Y in Case b

B-l—zzz — )\IA-FT—Z, P

with 4,5,k >0and i +j+k =r+1.
Each triple can be completed to the equations of an A-cluster; for exam-
ple, the first triple gives:
gt = gy B BTk ik — pepAtith
B+C+r—j5 _—_ 772j£lfA+j erikaAJrrfz'fk — C§y3+0+k+i
erk — CiEkyc+k ',L.T‘fiijC‘}'T‘*ifj — 6772i+j

Yy ryz = &§n¢.

(The method is to multiply together any two of the equations and cancel
common factors.) Since i+j+k = r—1, these are of the form of Theorem 3.23,
with [ = A+j+k, b= B+i,f = i, etc.. The other cases are similar. Therefore
each affine piece X, = C* C Yy determined by the triangle T = 7N A
parametrises A-clusters.

Conversely, we prove that for A C SL(3,C) a finite diagonal subgroup
and Z an A-cluster with equations as in Theorem 3.23, Z belongs to one of
the families parametrised by X .. If Z is ‘up’ its equations are determined
by the first three:

gL —gbof el poepd - ekfHL _ cpage (3.18)
Consider first just two of the possibilities for the signs of f — b, d — ¢, e — a.
1. Suppose b > f,d > c and e > a. We define A, B,C, 1, j, k by
A=d—-c¢, B=b-—f, C=e—aqa, i=f j=c¢ k=a
and set r =7+ j + k + 1. Then, obviously,
a=k, b=B+i c=j d=A+j, e=C+Ek, [f=u.

Substituting these values in the exponents of (3.18), puts the equations
of Z in the form up, Case a.

2. Similarly, if b > f, ¢ > d and a > e, we fix up A, B,C, 1, j, k so that
a=A+k, b=B+i, ¢c=C+j, d=j, e=k [f=i.

Substituting in (3.18), shows that Z is up, Case b.
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One sees that the permutation y <> z leads to b <» f, a <> d and ¢ < e,
and the other possibilities for the signs of e — a, f — b, d — ¢ all reduce to
these two cases on permuting z,y, 2. In fact, Figure 3.6(a) has 6 different
images on permuting z,y, z (corresponding to the choices of e; and e3), and
Figure 3.6(b) has 2 different images (corresponding to the cyclic order).

If Z is ‘down’ its equations can be deduced from the second three:

b-l—lZf—l—l — )\Ia+d+1, ZC+1Id+1 b-l—e-i-l, :L,a-i—l e+l __ ct+f+1 (319)

Y = ux Yy =vz

Exactly as before, if b > f, d > ¢ and e > a then we can fix up A, B,C' >0
and 7, 7,k > 0 so that

a+1=k b+1=B+i, c+1=j,
d+1=A+j, e+1=C+k f+1=1i,

which puts (3.19) in the form down, Case a. The rest of the proof is a routine
repetition. This proves Theorem 3.3. O
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Chapter 4

The McKay correspondence for

A-Hilb C°

For a finite Abelian subgroup A C SL(3,C), Ito and Nakajima [INOO] es-
tablished an isomorphism between the K-theory of Nakamura’s A-Hilbert
scheme A-Hilb C* and the representation ring of A. This leads to a basis
of the rational cohomology of A-Hilb C? in one-to-one correspondence with
the irreducible representations of A. In this chapter we construct an explicit
basis of the integral cohomology of A-Hilb C? in one-to-one correspondence
with the irreducible representations of A, as conjectured by Reid [Rei97].

4.1 Statement of the results

Gonzalez-Sprinberg and Verdier provided a geometric explanation for the
classical McKay correspondence by constructing tautological bundles on the
minimal resolution Y — C? /G of a Kleinian singularity as described in §1.2.2.
Reid [Rei97] generalised the Gonzalez-Sprinberg and Verdier construction to
higher dimensions and formulated the following conjecture:

Conjecture 4.1 (Reid’s second McKay conjecture) Let G C SL(n,C)
be a finite subgroup and suppose that Y := G -Hilb C" s a crepant resolution
of the quotient X := C"/G. Then

(i) the Gonzalez-Sprinberg and Verdier sheaves F; on' Y are locally free
and form a Z-basis of the K-theory of Y.

72



4.1 Statement of the results

(ii) a certain cookery with the Chern classes of the sheaves F; leads to a
Z-basis of H*(Y,Z) for which the following bijection holds:

{irreducible representations of G} < basis of H*(Y,Z). (4.1)

To support this conjecture Reid calculated Y = A-Hilb C? for several
examples of finite Abelian subgroups A C SL(3,C). In each example, the first
Chern classes of the tautological bundles ¢ (F;) span H?(Y,Z). By using the
relations in Pic(Y") between tautological bundles, Reid introduced a recipe
to cook up virtual bundles V,, on Y whose second Chern classes co(V,,) base
H*(Y,Z). Moreover, the virtual bundles V,, are indexed by certain characters
Xm of the group A and, by removing the corresponding classes ¢;(F,,) from
the set spanning H?*(Y,Z), he produced a basis for H*(Y,Z). Thus, the
McKay correspondence bijection (4.1) holds for each of Reid’s examples.

Ito and Nakajima [INOO] subsequently proved part (i) of Conjecture 4.1
for a finite Abelian subgroup A C SL(3, C). By applying the Chern character
they established a basis of H*(Y,Q) in one-to-one correspondence with the
irreducible representations of A, a rational version of bijection (4.1).

The main result of this chapter establishes part (ii) of Conjecture 4.1 for
a finite Abelian subgroup A C SL(3,C). We begin by constructing a basis of
HYY,Z):

Theorem 4.2 For any finite Abelian subgroup A C SL(3,C) we construct
virtual bundles V,, on' Y = A-Hilb C? indexed by certain characters x,, of the
group A. Moreover, the classes ca(V,,) form a basis of H*(Y,Z) dual to the
basis [S] € Ha(Y,Z) of the compact exceptional surfaces S of the resolution
p:Y — X.

Remark 4.3 The proof of Theorem 4.2 uncovers certain relations between
tautological bundles of the form, say, F,, = F, ® F; for characters x,, =
Xk ®x;- In fact, one such relation arises for each compact exceptional surface
S of the map ¢ and determines the virtual bundle V,, on Y according to
“Reid’s recipe” described in §4.3. However it is not true in general that the
map x; — JF; is multiplicative. See Remark 4.38 for more on this point.

The first Chern classes ¢ (F;) of the tautological bundles span H?(Y,Z),
but they do not form a Z-basis in general. However, we determine a subset
which does base H*(Y,Z):
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Theorem 4.4 Given the first Chern classes of all nontrivial tautological
bundles, discard those classes c¢1(Fy,) determined by characters X, which
form the indexing set of the basis co(V,,) of H*(Y,Z). The remaining classes
form a Z-basis of H*(Y,7Z).

The trivial character determines the trivial tautological bundle Fy = Oy
which generates H°(Y,Z). This leads immediately to our main result:

Corollary 4.5 The McKay correspondence bijection (4.1) holds (replace G
by A) for all finite Abelian subgroups A C SL(3,C).

Remark 4.6 Bridgeland, King and Reid [BKR99] proved Conjecture 4.1(i)
for a finite subgroup G' C SL(3,C) by identifying the K-theory of ¥ with the
G-equivariant K-theory of C*. However, Conjecture 4.1(ii) is still an open
problem for non-Abelian subgroups G C SL(3,C).

4.2 Tautological line bundles on A-Hilb C°

Let A C SL(3,C) be a finite Abelian subgroup. Write 7: C* — X := C3/A
for the quotient, Y := A-Hilb C® for the A-Hilbert scheme and ¢: Y — X
for the crepant resolution.

Definition 4.7 For an irreducible representation p;: A — GL(V}), let
M; := Homgyy) (Vi, Clz, y, 2])

denote the Ox-module generated by monomials 2%y%27 in the y;-character
space. Define F; := ¢*M;/Torsp, , where Torsp, denotes the Oy -torsion of
©*M;. The sheaf F; is invertible [Rei97, §5.5] and is called the tautological
line bundle on Y associated to p;.

Reid [Rei97, §6] constructs A-Hilb C* as the ‘simultaneous dual Newton
polyhedron’ of the modules M; and proves that A-Hilb C? is the smallest
resolution of C* /A on which every sheaf F; is locally free. A worked example
can be found in Reid [Rei97, p. 20], but for convenience we provide our own:

Example 4.8 We return to the singularity 1—11(1, 2,8) of Example 3.11. A
conventional representation of the Newton polyhedron of M; is shown in
Figure 4.1(a), where we draw only the spanning monomials as a plane figure.
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(a) (b)

Figure 4.1: (a) Newton polyhedron of Mj; (b) the minimal partial resolution
on which Fj is locally free and the monomial generators on each open set

The weights (11,0,0) and (6,1,4) have common minima on y® and y?z,
so the line parametrised by their ratio y* : z joins e; to 1—11(6, 1,4) in the
partial resolution. We draw the resulting fan of the partial resolution and
record the monomial generator of F; on each open set (i.e. each triangle) in
Figure 4.1(b).

The degree of F; is nonzero on the curves which appear on the partial
resolution (we write the degree on the corresponding line in Figure 4.1(b)),
and is zero on every other curve in Y. In fact the degree can be read directly
from the Newton polyhedron of M;. For instance, the monomials 4% and 2z
are adjacent in Figure 4.1(a) and a calculation similar to that from Exam-
ple 1.21 shows that the degree of F; on the curve cut out by their common
ratio y* : 2 is one. However, the monomial yz? lies on the line joining y2z
and 27 in Figure 4.1(a) and it follows that the degree of F; on the curve cut
out by y: 2% is two. Finally, F; has degree one on the curves cut out by the
ratios z:y%, z:y?z and x:2” whose monomials lie in M;.

Definition 4.9 A line [ in ¥, or equivalently an exceptional curve P! C Y,
is said to be marked with the character y if the monomials in the ratio
parametrising the P! lie in the y-character space (see also Proposition 3.16).

Lemma 4.10 The bundle F; has degree one on each curve marked with ;.
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Proor. Consider a line in ¥ marked with the character y;, and suppose
by permuting x,y, 2 if necessary that the corresponding curve P! C Y is
parametrised by the ratio z/=%:2*y°t%. Then z/~* zFyct* € M;. Moreover,
2/ =k generates F; on the open sets defined by the triangles to one side of the
line, while 2%y“** generates F; on the other side. The result follows from a

calculation similar to that of Example 1.21 O

The converse to Lemma 4.10 is false because the bundle F; of Example 4.8
has degree one on the curve cut out by y*: 2.

4.3 Reid’s recipe for a dual basis of H*(Y,Z)

In this section we prove Theorem 4.2. First we establish that Reid’s recipe
for constructing virtual bundles V,, on Y indexed by certain characters x,, of
the group A applies for any finite Abelian subgroup A C SL(3,C). Worked
examples are provided in §4.3.2 to illustrate the construction. We conclude
by proving the classes ¢3(V,,) define a basis of H*(Y,Z) dual to the basis in
homology [S] € H4(Y,Z) determined by the compact exceptional surfaces S
of the resolution ¢: Y — X.

4.3.1 Virtual bundles on A-Hilb C3

Every compact exceptional surface of the crepant resolution ¢: Y — X
corresponds to an internal vertex of the triangulation >. We now demonstrate
that for every such vertex there is a relation between the tautological bundles
F; on Y. Following Reid’s examples [Rei97], we use these relations to cook
up virtual bundles V,, on Y having trivial rank and trivial first Chern class.

Definition 4.11 For a 3-dimensional cone 7 in the fan of A-Hilb C* (or
equivalently, for a triangle in the triangulation ), write f; , for the generator
of F; on the open affine subset U, = Spec C[r¥ N M].

For each vertex v in X we uncover a relation between the generators f; ;
on every open set U, in the open cover of Y. The vertices in ¥ have valency
3,4, 5 or 6 (see Corollary 3.5) so we perform a case by case analysis:

CASE 1: A VERTEX OF VALENCY 3.
A vertex v of valency 3 in ¥ determines an exceptional P2. This happens
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only when three champion lines cut out by z®:y®, 4°: 2¢ and 2°: 2®

meet, at v, so each line is marked with the same character, say x;.
Proposition 4.12 For x,,,:= x1 ® x1, we have Fp, = F; Q F;.

PROOF. Each of the monomials 2%, y* and z¢ generates JF; on certain
sets U, of the open cover of Y, as illustrated by Figure 4.2(a). The

/ €1

Figure 4.2: (a)The generators of F; (b) Ratios on the lines meeting at F,

monomials z2%, 2%y’ y?, y®2¢, 2%¢ and 2%z°¢ lie in M,,, but only x2?,
y?® and 2% already generate F,,|p,.. Clearly f,.. = fi, - fi- on every

open set U, in the cover of Y, proving the result. O

Definition 4.13 (Reid’s recipe, Case 1) The virtual bundle
Vi = (Fi® F) © (Fu @ Oy)

has trivial rank and, by Proposition 4.12, trivial first Chern class. We
mark x,, on the vertex of valency 3 in ¥ to indicate that V,, is associated
to the corresponding surface S, := P2.

CASE 2: A VERTEX OF VALENCY 4.
A vertex v of valency 4 in ¥ determines an exceptional scroll F,.
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Lemma 4.14 There are distinct characters xi and x; which each mark
a pair of lines meeting at a vertexr v of valency 4.

PROOF. A vertex v of valency 4 occurs only when a line L, g from
e, defeats lines emanating from both of the other corners of A. By
permuting x, y, z if necessary we assume that a = 3 (see Figure 4.2(b)).
Let x; denote the common character space of the monomials z¢ and y°
in the ratio marking Lj g. If there are no vertices on L3z between e;
and v then z is one of the monomials in the ratios marking the defeated
lines from e; and e;. More generally, it follows from the calculation of
A-Hilb C? that if (f—1) vertices lie between ez and v then 2/ occurs in
both A-invariant ratios on the defeated lines, as shown in Figure 4.2(b).
In particular, if 2/ lies in the y;-character space then the lines from e,
and ey are marked with the character x;. Finally, ¢ > b as L3 3 defeats
the line from ey, so xx # xu. a

Proposition 4.15 Set x,,,:= xx®xy, with xi and x; from Lemma 4.14.
The relation F,, = Fr ® F; holds.

PROOF. It is enough to show that f,, . = fi, - fi,- on every open
set U, in the cover of Y. We adopt the notation of Lemma 4.14 and
Figure 4.2(b). Each of the monomials 2, y¢ and 2/ generates J; on
certain sets U, of the open cover of YV, as illustrated by Figure 4.3(a).
One can similarly compute that fz, = x¢ and f,,, = 7% whenever
fir = 2% and that fi, =" and f,,, = ¢y’ whenever f,, = y°.

It remains to prove that f,, , = 2f. fr,r whenever f;, = 2f. This clearly
holds on two of the open sets U, C F, defined by triangles adjacent to
the vertex v, as shown in Figure 4.3(b). By considering the positions
of 22/ and y®2/ in the Newton polyhedron of M,, it is clear that,
for every open set U, for which f;, = 2/, the monomial f,, , must be
divisible by 2/. Thus, for every such 7 we have f,,,/2/ € Mj, hence
fmr = 2. [+ as required. O

Definition 4.16 (Reid’s recipe, Case 2) The virtual bundle
Vi = (Fr ® F) 6 (Fr ® Oy)
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Figure 4.3: Generators of (a) Fy; (b) Fp,|p, for U, C T,

has trivial rank and, by Proposition 4.15, has trivial first Chern class.
We mark x,, on the vertex of valency 4 in ¥ to indicate that V), is
associated to the corresponding scroll S, :=F,.

CASE 3: A VERTEX OF VALENCY 5 OR 6, BUT NOT 3 STRAIGHT LINES.
This is similar to the preceding case. A vertex v of valency 5 or 6 (but
not 3 straight lines) corresponds to a scroll blown up in one or two
torus-invariant points (but not the del Pezzo surface of degree six).

Lemma 4.17 There are uniquely determined characters x, and Y
which each mark a pair of lines meeting at a vertex v of wvalency 5
or 6 (not three straight lines); we say that these lines ‘pass through’
the vertex. The remaining line or pair of lines are marked with distinct
characters.

PROOF. A vertex of valency 5 occurs only at the intersection point
of a line L, 3 from e, with a line L, from e,. We may assume that
a = 3,7 =1, and that L; g is defeated so L 5 extends. This accounts
for three lines meeting at v; the fourth and fifth lines are tesselating
lines of a regular triangle T which is either a corner triangle from ey,
the meeting of champions triangle or a corner triangle from e;,. We
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illustrate the first case in Figure 4.4(a): the lines L3 g and L; 5 are cut
out by 2%:9° and y°: 2/ respectively, while the tesselating lines which

extend from v into T are cut out by z% " :9*+72", for r satisfying the

relations (3.6), and by 2"~¢:2'y9* for some g, h,i (i #0).

Figure 4.4: (a) Ratios on lines meeting at v; (b) Local generators of F,, |y,

The character y;, marking L, s ‘passes through’ v. From (3.6) we have
297" = 2% therefore a single character x; marks the lines cut out by

@y and x%7" : P72, so it also ‘passes through’ v. Finally, the
character x; marking the fifth line is neither x; nor x;. Indeed, the
relations (3.6) for T ensure that h —i > f, so x; # xx. Also, if x; = x
then F; has degree one on the line cut out by z"~*:z'y9*". But F is
generated by x® on both sides of the line, a contradiction. This proves
the lemma when 7' is a corner triangle from e;. When 7' is the meeting
of champions or a corner triangle from e9, the ratios cutting out the
fourth and fifth lines are either 2977 :9"*2% together with 2" :z9tFyk,
or 2970y 2" and 2"k :29+kyF . In each case the same argument holds.
This proves the lemma for a vertex of valency 5. The case where the

vertex has valency 6 is similar and is left as an exercise. O

Proposition 4.18 The relation F,, = Fr Q@ F; holds for Xm:= X ®X.
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ProOOF. As with Proposition 4.15 it is easy to show that f,, ; = y°- fi,
on the open sets U, where F; is generated by y¢. On every other subset
U- in the cover of Y we have either f; , = 2! or fi- = 2% In each case,
making reference to Figure 4.4(b), repeat the argument at the end of
Proposition 4.15 to establish the relation f,, ; = fi - fi, as required.
([l

Definition 4.19 (Reid’s recipe, Case 3) The virtual bundle
Vi = (Fr ® F) © (F ® Oy)

has trivial rank and, by Proposition 4.18, trivial first Chern class. We
mark x,, on the vertex of valency 5 or 6 in X to indicate that V), is
associated to the corresponding once or twice blown up scroll S,,.

CASE 4: 3 STRAIGHT LINES THROUGH A VERTEX OF VALENCY 6.
A vertex v of valency 6 defines a del Pezzo surface dPg of degree six.

Lemma 4.20 The monomials defining the pair of morphisms dPg —
P? lie in uniquely determined character spaces x; and Xm satisfying

Xt @ Xm = Xi @ X5 @ Xk, (4.2)

where x;, X; and X, mark the straight lines through the vertez v defining
the del Pezzo surface dPg.

PROOF. A vertex v defines a del Pezzo surface only when three lines
tesselating a regular triangle intersect. If v lies in a corner triangle
then the three ratios listed in (3.8) which cut out the lines satisfy
i+ j + k = r (the case where the lines are cut out by the ratios (3.9)
is similar and is left as an exercise). These ratios determine a Segre
embedding P' x P! x P! — P7 given by

d—i d7z+kyef]+c+k . d—i+a+j fokJr] :xdfz+a+]+kyc+kzj .

b+z+c+kzz+] ) )

(x4 ity I kg
ye—]-l-b-l-zzf—k-l-z :

X

Ikye—]-l-c-i-k-i-b-l-zzz - ot yb-l-zzf—k-l-z-i-] 2Ia+]+ky

The del Pezzo dPg C P is the intersection of the image of this map with
the hyperplane xy = x7, assuming that g, ..., x7 are the coordinates on
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P7. Moreover, the maps dPg — P? are the restriction of the projections
(xo:xg:x3) and (xg:x4:x5) to dPg. After removing the common factors
2%727 and y°*~72%, and after simplifying the exponents using (3.6), these
morphisms are

(ye_jzi:x“+jzf_k::z:d_inJrk) and (xd_izj:yb+izf_k::z:kye_j). (4.3)
The required characters y; and y,, are the common character spaces
of the monomials defining these maps; i.e. the character spaces of the
monomials %7 2/~* and 2% ?27. The product of these two monomials
is equal to the product of z¢7%, /=% and 29727, so the relation (4.2)

holds as required. O

Proposition 4.21 The relation F; @ Fp, = F; @ F; @ Fy, holds for the
characters i, Xj, Xk, Xi and Xm of the previous lemma.

PrROOF. The monomials listed in (4.3) generate F; and F,, on the
open sets U, defined by triangles adjacent to the vertex v, as shown in
Figure 4.5.

Figure 4.5: Local generators of (a) F;; (b) Fy,

Of course, the lines in Figure 4.5 should pass straight through v, leaving
six triangles with v as a vertex. Three of these triangles lie to one side of
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the line cut out by 2/~ :2Fy“** where F, is generated by the monomial

z/=F. By extending the lines in Figure 4.5(a) through v, we see that
F, is generated by °772% on one of these triangles, and by z%t72/=% on
the other two. If U, C dPg is an open set determined by one of these
three triangles then

Zi . ye_j

fir = { 2 (g0 5 } =2 fin (4.4)

because z/=F = 2. 27 follows from (3.6). Also, JF,, is generated by
y*T12/=% on two of these triangles, and by 2% %2/ on the third. Hence

Y
In particular, on these three subsets U, C dPg we have

fl,T ' fm,T = fi,'r : fj,T . fk,T- (46)

We claim that (4.6) holds whenever f;,, = z/=%. The argument goes
as before: by considering the positions of 3 772* and 2*t72/=F in the
Newton polyhedron of M; it’s clear that, on every open set U, for which
fer = 2/ 7%, the monomial f;, must be divisible by 2¢. Thus, for every
such 7 we have f; /2" € M;, hence (4.4) holds. The relation (4.5)
holds similarly whenever fi,, = z/~*. This proves the claim. One can
similarly show that

fir=2""f. and fn,=2"-f;, whenever fi, ="
and that

& i .
fl,T = yc+ : fi,T and fm,T =Yy +ka,’r whenever fj,T = ye J'

Finally, since the lines cut out by the ratios (3.8) intersect at v, it
follows that for every open set U, in the cover of Y we have either
fir=2%" fi =y Jor fr, =27"% Asaresult, (4.6) holds for every
U,. This proves the proposition, under the assumption that the vertex
v lies inside a corner triangle whose tesselating lines are cut out by the
ratios (3.8). We leave as an exercise the case where the vertex v lies
inside the meeting of champions triangle whose tesselating lines are cut
out by the ratios (3.9). O
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Definition 4.22 (Reid’s recipe, Case 4) The virtual bundle
V= (Fi@F;@F) e (FieFnsd Oy), (4.7)

has trivial rank and, by Proposition 4.21, trivial first Chern class. We
mark both x; and x,, on the vertex of valency 6 in ¥ to indicate that
V,, and F; are associated to the del Pezzo surface.

Remark 4.23 There are three maps dPg — P! given by restriction of
the bundles F;, F;, F, and two maps dPs — P? given by restriction
of F; and F,,. The maps to P! determine the embedding dPg < P7 of
Lemma 4.20, but they do not generate the Picard group of dPg. All
five maps span Pic(dPg), and the relation of Proposition 4.21 holds.
We break the symmetry in this relation by choosing the restriction of
the bundles F;, F;, Fi, F; as a basis for Pic(dPg). We discard F,, and
instead label the virtual bundle of Definition 4.22 with the character
Xm. However, we could equally well choose the restriction of F,, as the
fourth basis element in which case the virtual bundle would be denoted
V,. See Example 4.25 below.

4.3.2 Illustrating Reid’s recipe

Example 4.24 The triangulation X for 1—11(1, 2,8) is shown in Figure 4.6.
The lines meeting at the vertex of valency 3 are marked with y, = &2
(see Definition 4.9 and Figure 3.7). According to Definition 4.13 we mark
the vertex of valency 3 with x4. The characters y, and yg mark lines passing
through the vertex of valency 4 so, by Definition 4.16, we mark the vertex
with x19. The remaining vertices have valency 5, so Definition 4.19 applies.

Example 4.25 Let C?/A be the singularity of type %(25, 2,3). The fan ¥
of A-Hilb C? for this A-action is shown in Figure 4.7. There are three regular
triangles of side 2 to the left of the line from e; to p, and two regular triangles
of side 3 to the right.

Every internal vertex has valency 5 or 6. Most of the vertices are marked
with a single character determined by Definition 4.19. However, inside each
regular triangle of side 3 is a vertex of valency 6 which defines a del Pezzo
surface dPg. The characters x4, x5 and xi2 mark the lines passing through
one of the vertices. The proof of Lemma 4.20 reveals that the monomials
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€3 2

€9

Figure 4.6: Reid’s recipe for ﬁ(l, 2,8)

defining the morphisms dPg — P? are global sections of the bundles F; and
Fis4. According to Definition 4.22 we mark y7 and x14 on the vertex of valency
6 to indicate that the bundles V; and Fyy (or Vi4 and F7, see Remark 4.23)
are associated to the del Pezzo surface.

4.3.3 The basis of H(Y,Z)

We now prove the second part of Theorem 4.2, namely that the classes c2(V,,)
form a basis of H*(Y,Z) dual to the basis [S] € H,(Y,Z) of compact excep-
tional surfaces S of the resolution ¢: Y — X.

PROOF OF THEOREM 4.2 The C*-action (z,y,2) — (Az, Ay, Az) defines a
retraction of Y onto the compactly supported exceptional locus of ¢, so the
homology classes of the compact exceptional surfaces form an integral basis
of H,(Y,Z). To prove Theorem 4.2 we must show that

/ oV = (4.8)
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es €2

Figure 4.7: Reid’s recipe for %(25, 2,3)

where .5, is the exceptional surface corresponding to the vertex v := v, in ¥
marked with the character y,,, as described in §4.3.1. There are four cases:

CASE 1: A VERTEX OF VALENCY 3.
In the notation of §4.3.1 CASE 1, the bundle F; has degree one on the
curves in Y determined by lines in Figure 4.2(a), and degree zero on
every other exceptional curve. Now, x,, marks the vertex v, of valency
3 corresponding to S,, = P? and Fj|s, = Op2(1), so

/ (Vi) = | elFils,)* = 0n(1? =1

m
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as required. Next, consider a vertex v, # v,, in X. If v, lies on a line
from v, to some e; in Figure 4.2(a) then S, is a (possibly once or twice
blown up) scroll F,. The bundle F; has degree one on the classes' M
and D, and degree zero on F' (and on each —1-curve E;). It follows that
Fils, = Os, (F), so ¢1(Fls,)? = F? = 0. Otherwise v, lies inside one
of the triangles pictured in Figure 4.2(a), in which case F|s, = Og,,
so ¢1(F|s,)? = 0. Hence

/n 02(Vm):/5n01(75|sn)2:0

for any v, # v,,. This establishes relation (4.8) for CASE 1.

CASE 2: A VERTEX OF VALENCY 4.
In the notation of §4.3.1 CASE 2, recall that y; marks the straight line
through the vertex v, of valency 4 so Fj, has degree one on the classes
M and D on the surface S,, = F, corresponding to v,,. It follows that
Fkls,, = Os,, (F). Also, F; has degree one on F' because x; marks the
other two lines meeting at v,,, so Fi|s,, = Og, (M + ¢ - F), for some
¢ € Z. Thus

/ CQ(Vm):/ Cl(fk|5m)'cl(ﬂ|5m) :F(M+CF):1

We now prove that the integral over every other surface is zero. From
Figure 4.2(b) (and Figure 4.3(a)) we see that Fj, (and F;) has degree
one (respectively degree d > 1) on the line v, to ez, and degree zero
(respectively degree 1) on the lines v, to e; and v, to es. If v, # vy,
lies on the line v, to e3 then S, is a scroll F, (possibly blown up in
one or two points) and, as above, it follows that Fi|s, = Og, (F') and,
similarly, F|s, = Og, (dF), for some d € Z. Thus

/n ¢2(Vim) :/ c1(Fels,) - 1 (Fils,) = F - (dF) = 0.

n

If v, # vy, lies on the line v, to e; or v, to e then Fils, = Og, so the
Chern class calculation is trivially zero. Similarly, if v,, # v, does not
lie on a line from v, to some e; then F|s, = Og, and the calculation
is trivially zero. Hence the relation (4.8) holds for CASE 2.

'We adopt the following notation: let F, M and D denote the classes on a surface
scroll IF,. with selfintersection 0, r and —r respectively; we use the same notation for the
strict transforms of these classes in a once or twice blown up scroll.
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CASE 3: A VERTEX OF VALENCY 5 OR 6, BUT NOT 3 STRAIGHT LINES.
Similar to CASE 2, so we leave it as an exercise.

CASE 4: 3 STRAIGHT LINES THROUGH A VERTEX OF VALENCY 6.
In the notation of §4.3.1 CASE 4, write v,, for the vertex marked with
x: and x,, defining a surface S,, := dPg. The divisor class group is

DIV(Sm) == <d1, dg, dg, C1,Co ‘ d1 + d2 + d3 = + CQ> y

where Og, (c,) and Os,, (dg) define morphisms from S, to P? and P!
respectively. The characters x;, x; and x; mark the straight lines

passing through v cut out by the ratios (3.8) or (3.9), and it follows
that -,Fi|5'm = Osm (dl), f:j|Sm = Osm (dg) and fk|Sm = Osm (dg) Thus

| aForof) =Y d d-3

m a<f

Also, from the construction of the characters x; and y,, in Lemma 4.20,
we have Fi|s,, = Og, (c1) and F,|s,, = Os,, (¢2), so

/m e (F® Fn) = /m cr(F) - er(Fpn) =cr-cp=2.

By computing the difference of these two integrals we see that, for the
bundle V,, constructed in Definition 4.22, the relation (4.8) holds when
m =n.

Next, fix v,, # v,,. Every basic triangle in ¥ with v,, as a vertex defines
an open subset U, C S,,. The lines cut out by the ratios (3.8) intersect
at vy, # vy, s0 every U, C S, satisfies either f; . = 29" f, =y°J or
fer = 2/ 7. Assume without loss of generality that f;, = 2/ * on every
open set U, C S,,. Then Fils, = Og,, so ¢1(Fls,) = 0. It follows from
(4.4) and (4.5) that c1(Fils,) = c1(Fjls,) and e1(Fnls,) = a(Fils,)-
As a result

/02(73@7'}'@%) = ca(Fils,) - ci(Fils,)

n

:qwm»qmm»5/@m@ﬁ@

n

so (4.8) holds for n # m. This proves CASE 4.

This completes the proof of Theorem 4.2. O
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4.4 Every character appears once on X

Reid’s recipe calculates the character of A marking each vertex in ¥ in terms
of the characters marking the lines meeting at the vertex. It is not clear a
priori from this construction that different vertices are marked with different
characters. Nevertheless, this is the case in the worked examples of §4.3.2. In
fact a much stronger statement holds: every character of A marks either lines
in ¥ according to Definition 4.9, or a vertex according to Definitions 4.13,
4.16, 4.19 or 4.22. In this section we prove that this statement is true for
every finite Abelian subgroup A C SL(3, C).

4.4.1 A coarse subdivision of the fan X

There is a significant dichotomy in the calculation of A-Hilb C?: the fan ¥ has
either a meeting of champions or a unique ‘long side’ (see Proposition 3.14).
If a meeting of champions exists we use the champion lines to subdivide ¥
into four regions (see Figure 4.8(a)), three if the champion has side zero and
one if the meeting of champions is the whole of A. Otherwise, permuting
x,y, z if necessary, we subdivide ¥ along a line from e; which cuts the long
side ege3 (see Figure 4.8(b)). There may be more than one line from e; which
cuts the long side so this subdivision is not canonical.

Figure 4.8: Coarse subdivision: (a) meeting of champions; (b) long side

In each case we produce a coarse subdivision of ¥ into at most four

89



The McKay correspondence for A-Hilb C3

regions which are themselves unions of regular triangles. Each region, apart
from the interior triangle in Figure 4.8(a), is a triangle with vertices e;, p;, ex;
in Figure 4.8(b), the point p = p; lies on the edge eze3 cut out by z%.

4.4.2 Representing characters by monomials

In Examples 4.24 and 4.25 the integer i denotes the character y; = &, for
some " = 1. When tackling the general case we identify characters of A with
monomials in the eigenspace of that character. There is of course no canonical
monomial for each character. However we now show that the characters
which mark the points and lines in any outer region (i.e. not the interior
triangle in Figure 4.8(a)) prefer a single monomial above all other choices.

Proposition 4.26 The characters which mark the points and lines which lie
in the region e;pses of Figure 4.8(a) can be represented by the monomials

22 for i=0,...,d;j=0,...,f (4.9)

By permuting z,y, z if necessary, this proposition computes the characters
marking any of the outer regions e;p;e; in Figure 4.8(a) or 4.8(b). The proof
of the proposition follows from the next lemma:

Lemma 4.27 The characters which mark the reqular triangles of side r in
Figure 3.6 can be represented by the monomials

7R and 2R for i k=0,...,r in Case a, (4.10)

2’2 7F and 2R for 0<i+k<r in Case b. (4.11)

PROOF OF PROPOSITION 4.26, ASSUMING THE LEMMA. Starting from the
edge ejeg, run an MMP (see Definition 3.9) which eats all regular triangles
inside the region e;pses of Figure 4.8(a). We prove the proposition by induc-
tion on the number of contractions in the MMP. If the MMP consists of a
single contraction then the region can be viewed as a regular corner triangle
from e3 (see Figure 3.6(a)). The ratio x®:y® which cuts out the edge eje;
is simply 3¢, hence a = 0. Since d — a = f = r holds by (3.6), substitute
d = f = r into the list (4.10) of characters which mark a corner triangle to
see that the proposition holds in this case.

Suppose now that we have performed an MMP which has eaten all regular
triangles in a region with vertices e;ge3 where the lines e;q and e3q are cut
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Figure 4.9: Inductive step in the proof of Proposition 4.26

out by the ratios 2/ :y¢ and z%:y® respectively (see Figure 4.9). We assume
by induction that the characters which mark the union of regular triangles
inside this region are

22 for i=0,...,a;5=0,...,f (4.12)

If the next contraction of the MMP eats a corner triangle from e, then the
line e;q extends to a lattice point p, and the line e3p has ratio 2¢:¢° say, as
shown in Figure 4.9. The characters which mark the new corner triangle are
listed in (4.10). The region e;pqe3 of Figure 4.8(a) is therefore marked with
the union of characters (4.10) and (4.12); namely z'z7 for i = 0,...d; j =
0,...f as required. The case where the final triangle is from e; is similar. O

Proor oF LEMMA 4.27. For Case a, the triangle is eaten by an MMP from
the side ejes so we choose to represent the characters marking this triangle
by monomials in x, z. From (3.8), the characters which mark the tesselating
lines of the triangle are

24 vt R for i jk=0,...r—1. (4.13)
The vertices along the edges of the triangle are marked with the characters
g0k gyl kel ] oy Gk =0,...r — 1. (4.14)

Indeed, the edges emanating from e; are marked with #° and z?. The tes-
selating lines 2/ =% cross them so, as explained in Definitions 4.13, 4.16 and
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4.19, the product of these characters marks the vertices along these edges.
Similarly, the tesselating lines %% cross the edge z/ from e;, so the char-
acters 2%%2/ mark the vertices along this edge. Finally, from the proof of
Lemma 4.20, we know that the characters

gt I =k %0 for d,5,k=1,...r —1such thati+j+k=r (4.15)

mark the internal vertices in the tesselation of the regular triangle of Fig-
ure 3.6. As a result, the union of the characters listed in (4.13), (4.14) and
(4.15) mark the regular triangle of Figure 3.6(a). It is an easy combinatorial
exercise to see that the union of these characters is equal to the list (4.10) as
claimed. This proves Case a of Lemma 4.27.

To prove Case b, one proves similarly that the characters 2%, 272t/
and 2/~ for 4,5,k = 0,...,7 — 1 mark the lines of the regular tesselation;
the characters x%2/ =%, 2%72tJ and 2%%2¢ for 7,5,k = 0,...,7 — 1 mark
the vertices along the edges of the triangle; and the characters x/z/~* and
9712 for i,5,k = 1,...r — 1 such that i + j + k = r mark the internal
vertices of the triangle. As with Case a, the union of these characters is equal
to list (4.11) as claimed. 0

Remark 4.28 There is symmetry in Lemma 4.27 Case b. We list the char-
acters in terms of x, z, but equally we can write them in z,y or y, z using
the relations (3.9). This doesn’t alter the character, because the ratios in
(3.9) are A-invariant. In short, the characters marking strata in the interior
triangle in Figure 4.8(a) do not prefer a single monomial over all others.

4.4.3 Plotting characters on the McKay quiver

The condition A C SL(3,C) ensures that the monomial zyz is A-invariant
so corresponds to the trivial character. Thus, characters of A correspond to
Laurent monomials modulo xyz. We represent this as a tesselation of the
plane by regular hexagons, part of which is illustrated in Figure 4.10.

Definition 4.29 The (universal cover of the) McKay quiver is the tessela-
tion of the plane by regular hexagons, where the arrows are ‘multiply by
x,y or z’. Some power of each monomial z,y and z is A-invariant so the
tesselation is periodic, and we say that any connected region in the quiver in
one-to-one correspondence with the characters of A is a fundamental domain.
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Figure 4.10: The McKay quiver as the lattice of monomials modulo zyz

Proposition 4.30 The characters marking the points and lines in X form a
fundamental region in the McKay quiver (assuming that a character marking
two lines meeting at a vertez is recorded only once on the quiver).

PRroOOF. The coarse subdivision of ¥ is one of the two types shown in Fig-
ure 4.8. Beginning with Case a, we plot the characters which mark each
region on the McKay quiver. The characters marking the three outer re-
gions in the subdivision form parallelograms, by Proposition 4.26, and the
characters marking the meeting of champions form a pair of triangles, by
Lemma 4.27, Case b. The parallelograms and triangles intersect along char-
acters x'y® = 2°2°, y/2/ = y/2® and 2¢2* = y*2* which mark the vertices on
the champion lines as shown in Figure 4.11

The union of these regions is slightly larger than a fundamental domain in
the quiver. However, the characters x?, 47, 2¥ around the edge of the shape in
Figure 4.11 mark tesselating lines in different regions and have been plotted
more than once. In each case, the lines marked with the same monomial meet
at a scroll or a blown up scroll and pass from one region to another. From
Lemmas 4.14 and 4.17 the monomials lie in the character space x; marking
the pair of lines cut out by the divisor class F' on the underlying scroll. Thus,
the monomials z¢, 3/, ¥ around the edge of the shape determine pairwise the
same tautological bundle F; whose character x; marks a pair of lines meeting
at a (possibly blown up) surface scroll. As a result, we identify in pairs (the
trivial character 1 appears three times) the monomials around the outside of
the shape of Figure 4.11, leaving a fundamental domain.
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Figure 4.11: Three parallelograms and two triangles in the McKay quiver

Otherwise, the subdivision is Case b, as shown in Figure 4.8(b). The
characters which mark the two regions are

2% and 2%y’ for i=0,...d;j=0,...c;k=0,...,f (4.16)

These parallelograms intersect along the characters x'y® = 22/ marking the
vertices on the line of intersection of the regions. Since x¢ is A-invariant,
we identify the characters 3/ and x%y’ pairwise, and similarly z¥ and z?z*.
Finally, as with Case a, we identify the two collections 1,z, ..., 2% around
the edge of the figure. O

Remark 4.31 We observed in §4.4.1 that the coarse subdivision of ¥ is not
canonical in Case b. Different subdivisions vary by a corner triangle T of side
r from e; whose sides extend from e; to the long side. If the long side is cut
out by the monomial z/ and the other sides of 7" are cut out by y®:2¢ and
y?: 2% say, where the relations (3.8) hold, then the characters which mark T
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are y? /=% fori,k = 0,...,7 by Lemma 4.27. This is a single parallelogram
with sides of length r, and the pair of parallelograms which we plot on the
McKay quiver would be translated. In particular, the overall result would be
unchanged by choosing an alternative coarse subdivision.

Corollary 4.32 FEvery character of A appears once on % and is either
(i) the trivial character xo marking the edges of A; or

(ii) a character x; marking a line (possibly passing through several vertices)
inside X; or

(iii) a character x,, marking a vertex in ; or
(iv) the second character x; marking a vertex defining a del Pezzo surface.

Example 4.33 (Subdivision with 3 regions) The coarse subdivision of
Y in Example 4.24 has 3 regions. Let p denote the vertex of valency 3 in 3,
i.e., the vertex marked with x4 in Figure 4.6.

Figure 4.12: Part of the McKay quiver of ﬁ(l, 2,8)

Each of the 3 regions in ¥ is marked with characters which form a paral-
lelogram when plotted on the McKay quiver. Indeed, the sides of the region
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e1pes are cut out by 22 : y and y : 23, so the characters

01 2 1 T x?

&8 9 10 . z xz x%z
56 7 corresponding to 2 2 2.2
2 3 4 23 x2 1228

mark this region. These characters form a parallelogram in the quiver, as
shown in Figure 4.12. Similarly, the sides of the region e;pes are cut out by
y : 2% and 22 : 23, so this region is marked with the characters

_ W

2 4 . y xy 1’y

0 9 } corresponding to { 1 2 a2

Finally, the sides of the region espes are cut out by 22 : y and 22 : 23, so the
characters which mark this region are

10 y yz yz? y2?

2 7 4 dine ¢
0 8 5 2 corresponding to 1, 2 s

These three parallelograms are drawn on the McKay quiver of 1—11(1, 2,8) in
Figure 4.12, glued along the characters 2,3,4,7,10 which mark the cham-
pion lines and the vertices on the champion lines. As in the proof of the
Proposition 4.30, the characters around the edge of the shape in Figure 4.12
are identified, leaving exactly eleven hexagons marked with the characters
0,1,...,10; that is, a fundamental domain for A = Z/11.

Example 4.34 (Subdivision with 2 regions) The coarse subdivision of
Y in Example 4.25 has 2 regions. The line from e; to the lattice point p
in Figure 4.7 which subdivides ¥ is cut out by %? : 22 and the edge ese; is
cut out by 2% : 1. The region e;pe, is marked with the characters x'y’ for
1=20,...6;7=0,...,3 as shown in Figure 4.13.

The region e;pes is marked with characters x'z* for i = 0,...6 ;k =
0,...2. The pair of parallelograms in the McKay quiver are shown in Fig-
ure 4.13, glued along the characters 6, 11, 16, 21, 26, 1 which mark the dividing
line from e; and the vertices on this line. As before, the characters around
the edge of the shape in Figure 4.13 are identified, leaving hexagons marked
with the characters 0,1, ...,29; a fundamental domain for A = Z/30.
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Figure 4.13: Part of the McKay quiver for (2, 3, 25)

4.5 A basis for the cohomology of A-Hilb C?

The basis of H*(Y,Z) introduced in §4.3 is determined by the characters x,,
marking the internal vertices in ¥, denoted type (iii) in Corollary 4.32. We
now prove Theorem 4.4 by showing that the remaining nontrivial characters,
namely those denoted type (ii) and (iv) in Corollary 4.32, determine classes
c1(F;) and ¢;(F;) which form an integral basis of H*(Y,Z).

PROOF OF THEOREM 4.4 For a finite Abelian subgroup A C SL(3,C), Ito
and Nakajima [INOO] established that the tautological bundles F; span the
K-theory of Y. In particular, they span Pic(Y") so the first Chern classes of
the nontrivial tautological bundles F; span H*(Y,Z), though in general they
do not form a Z-basis.

For every bundle V,, constructed in §4.3.1, remove the corresponding class
¢1(Fn) from the set spanning H?(Y,Z). It follows from Propositions 4.12,
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4.15, 4.18 and 4.21 that the first Chern classes of the remaining bundles
still form a spanning set for H?(Y,Z). To prove that these classes form an
integral basis, recall from the generalised McKay correspondence that the
Euler number ¢(Y') equals the order of A (see Theorem 1.24(ii)). Write b;(Y")
for the ¥ Betti number of Y, and write # as shorthand for the number of
bundles of the appropriate type. Then

#{FY+#{F} =4 — #{Vn} -1 by Corollary 4.32
=e(Y) —#{Vn} -1
=e(Y) = by(Y) = bp(Y) by Theorem 4.2

Thus the first Chern classes of the bundles F; and F;, corresponding to
the characters denoted type (ii) and (iv) in Corollary 4.32, form a basis of
H?(Y,Z). This completes the proof of Theorem 4.4. O

Remark 4.35 An alternative approach to proving Theorem 4.4 would be to
prove that

/ c1(Fi) = bij, (4.17)

Gj

for the bundles denoted type (ii) and (iv) in Corollary 4.32, and for curves
C C Y indexed by the corresponding characters y; and x; whose classes
[C] € Hy(Y,Z) form a basis. Such a basis of Hy(Y,Z) exists, but in general
the intersection matrix relating ¢, (F;) and C; is not the identity, so the
relation (4.17) does not hold; to see this, compute the degree of Fy5 and
Fig on the curves marked with y3 in the example %(25, 2,3) illustrated in
Figure 4.7.

The trivial character determines the trivial tautological bundle Fy = Oy
which generates H°(Y,Z). This leads immediately to our main result:

Corollary 4.36 The McKay correspondence bijection

{irreducible representations of A} < basis of H*(Y,Z)

holds for all finite Abelian subgroups A C SL(3, C).
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Warning 4.37 It follows from Remark 4.23 that if x; and x,, mark the
same vertex then there is a choice as to whether ¢,(F;) or ¢;(F,,) is a basis
element of H*(Y,Z), and as to whether we label the virtual bundle (4.7) as
Vi or V,. In particular, when there is a del Pezzo surface dPg C Y, there

is no canonical answer to the question ‘Which characters of A correspond to
elements of H*(Y,Z) and which to H*(Y,Z)?".

Remark 4.38 Reid’s recipe calculates a single relation between tautological
bundles for each compact exceptional surface of the resolution ¢: Y — X.
However the map y; — F; is not multiplicative in general. Consider for
example Reid’s recipe applied to Y = A-Hilb C? for the A-action 1—11(1, 2,8)
illustrated in Figure 4.6. The relation yg = x1 ® x5 holds, yet on the open
set U = Spec Clz/y°, y't, z/y'] C A-Hilb C* we have

.7:1|U = <y6>, f5|U = <y8> and 7:6|U = <y3>a

so F¢ # F1 @ F5. In this example, the characters i, x5 and yg mark lines
in the triangulation ¥ of Figure 4.6. Theorem 4.4 reveals that the tauto-
logical bundles F; associated to characters x; marking lines in ¥ must be
independent in Pic(Y") so that their first Chern classes are independent in
H?*(Y,Z).
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Chapter 5

Moduli of representations of
the McKay quiver

For a finite subgroup G C SL(3, C), G -Hilb C? can be constructed as a mod-
uli space My of representations of the McKay quiver. Given that G -Hilb C3
is a minimal model of C* /G (see Chapter 3 for the Abelian case), it is natural
to ask whether every minimal model of C* /G is of the form My for some 6.
For a finite Abelian subgroup G C SL(3, C), we propose a simple procedure
to realise toric minimal models of C* /G as moduli spaces of representations of
the McKay quiver. Inspired by Nakamura’s ‘G-igsaw transformation’ which
calculates G -Hilb C?, we introduce the more general notion of ‘O-stable G-
igsaw transformation’. Worked examples are provided in Section 5.8 where
every toric minimal model of the cyclic quotient singularities %(1, 2,3) and
ﬁ(l, 2,8) is constructed as a moduli space M, for some 6 by performing a
sequence of #-stable G-igsaw transformations.

5.1 Nakamura’s G-igsaw transformations

For a finite Abelian subgroup G' C SL(3,C), Nakamura [Nak00] calculates
G -Hilb C* by performing a sequence of ‘G-igsaw transformations’. In this
section we describe the calculation using the notation from §1.1.4.

Given an ideal I C C[z,y, 2| generated by monomials, write ['(1) for the
set of monomials lying in the complement C[z,y, z] \ I. Every monomial in

In this chapter G (rather than A) denotes the finite Abelian subgroup of SL(3,C),
otherwise the ‘G-igsaw’ joke falls rather flat.
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5.1 Nakamura’s G-igsaw transformations

Clz,y, 2] lies in a well defined character space of the G-action, giving rise to
a map wt: I'(I) — GV from T'(I) to the character group of G. The set I'(I)
is called a G-graph if the map wt is one-to-one.

For each monomial ideal I, defining a G-cluster Z € G -Hilb C3?, the set
['(Iz) is a G-graph (see Figure 3.9 for an illustration of I'(Iz)). Conversely,
every G-graph I' gives rise to a monomial ideal I(I") C Clz,y, z] such that
the subscheme Z(I') C C? is a G-cluster. According to Theorem 3.23, the
ideal I(T') is either ‘up’ or ‘down’, and the set Def(I") of toric parameters for
deforming Z(I") consists of

6 — ,Tl+1/yb2f, n= ym+1/ZC$d, C _ Zn+1/xaye if ‘llp’,
\ = b+1_f+1 l _ _c+l _d+1 m _ _a+l e+l /_n re )
=y T p= 2y, v=a Y 2 if ‘down’,

for integers a, b, ¢, d, e, f,[,m,n > 0. Every such parameter lies in the lattice
M = Hom(L, Z) of G-invariant Laurent monomials and defines a hyperplane
in LR, say &8 = {o € L ®R|[&(a) = 0}. Taken together, all three
hyperplanes support a 3-dimensional cone o(I') C L ® R such that Z(I) is
the origin in the toric variety Xy, ) & C*. For instance, in Case ‘up’

o) :={ae L&R|&(a) >0, n(e) >0, ((a) >0} (5.1)

and X7, ,(r) = Spec C[¢,n,(] = C*. Case ‘down’ is similar.

Given a G-graph I'; every other G-graph is determined by performing a
sequence of G-igsaw transformations. The codimension 1 faces of o(I") are
of the form 7 = (') N vt for some v € Def(T"). Write vpum, Vaen € Cl, y, 2]
for the numerator and denomenator of v (e.g., if v = £ then vy, = 2 and
Vgen = y"27). Deform I = I(T) in the v-direction to produce an ideal I(v)
for each v € Al.

Key Lemma 5.1 Assume v € C[z,y,2]%. The ideal I':= lim, ., I(v) is a
monomial ideal for which the set I":= I'(I') is a G-graph given by

= {UCm“(m) .m|meTr}, (5.2)

for Cmax(m) := max {c € Z ‘ v®-m € Clz,y,2]}. That is, I is obtained from
[' by replacing every occurence of vgen € I' by ¥num-

The G-graph I is called the G-igsaw transform of T in the v-direction.
The cones o(I") and o(I") share the codimension 1 face 7 = o(I') N o(I"') so
lie adjacent in L®R. Having performing one G-igsaw transformation, repeat
the process using the G-graph I'" and the ideal I’. Nakamura [Nak00] proves
that this procedure sweeps out the whole of the fan ¥ of G -Hilb C3:
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Theorem 5.2 Let ¥ C L®R be the fan consisting of cones o(T') defined by
G-graphs I'. Then Y is obtained from a given G-graph by a finite sequence
of G-igsaw transformations. Moreover, the toric variety X1 s is G -Hilb C?.

Example 5.3 Consider the action on C* by the group
1 1
G=Z267Z]2= <§(1, —-1,0), 5(0, 1, —1)> C SL(3,C).

The ideal I} = (2%, y?, z) defines the G-graph T'; := ['(I;) shown in Figure 5.1.
According to Theorem 3.23, Z(I';) has deformation parameters £ = 22,7 =

y* and ( = z/xy which determine the three supporting hyperplanes of the
cone 01 :=o(I'1) = {a € L&R| &(a),n(a),((a) > 0} in Figure 5.2.

C:z/xy/, \u:ajz/y

G Joc:
Figure 5.1: The G-igsaw puzzle for Z/2 x Z/2

Neither £ = 22 nor n = y? give rise to G-igsaw transformations because
22, y? € Clz,y,2]%. However, deforming in the (-direction defines the ideal
I,(¢) = (2%, y* 2z — Cxy) for any ¢ € A'. The ideal I = lim¢,o [1(€) is a
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monomial ideal defining the G-igsaw transform of I'y in the (-direction. The
corresponding G-graph I'y:= I['(1]) is obtained by replacing xy in I'; by z, as
shown in Figure 5.1.

The ideal I} = I(T'y) = (2%, y?, 22, xy, 22, yz) has deformation parameters
A =yz/x,up=2xz/y and v = zy/z defining the cone oy := o(I'y) of Figure 5.2.
All three of these parameters determine G-igsaw transformations: the A- and
p~directions define the graphs I'; and T'y of Figure 5.1 respectively, while the
v-direction leads straight back to I'y. This completes the ‘G-igsaw puzzle’
of Figure 5.1, where each G-graph I'; is drawn as a subset of the McKay
quiver (see Definition 4.29). The resulting fan ¥ shown in Figure 5.2 defines
G -Hilb C3.

€1

€3 €2

Figure 5.2: The fan ¥ of G -Hilb C? for the Z/2 x Z/2-action

Remark 5.4 Nakamura [Nak00] calculates the ‘dynamic’ G-Hilbert scheme
G -Hilb C* for a finite Abelian subgroup G C GL(n,C) rather than the
‘algebraic’ version considered in this thesis (see §3.7 for the rival definitions).
However, we are currently interested in the case G C SL(3,C) when these
definitions agree.

5.2 Flops of G-Hilb C* for G =7Z/2 x Z/2

The suggestion that it may be possible to adapt Nakamura’s approach for
calculating G -Hilb C* in order to calculate flops of G -Hilb C* was made
independently by Akira Ishii and Alastair King. The basic idea is to deform
a free orbit not as a G-equivariant subscheme of C* but, more generally, as
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a G-equivariant Clz, y, z]-module. We illustrate this idea by considering the
simplest finite Abelian subgroup G C SL(3,C) for which G -Hilb C* admits
a flop, namely the action of G = 7Z/2 x Z/2 introduced in Example 5.3.

Example 5.5 The G-graph I'y from Example 5.3 is generated by 1 as a
C[z,y, z]-module. Replacing 1 by the G-invariant monomial z? gives rise to
the G-equivariant C[z,y, z]-module’* M; := {z? z,y,ry} whose monomials
correspond one-to-one with the characters of G = Z/2 x Z/2. To calculate
the deformation parameters of Mj as a G-equivariant C[z, y, z]-module, write
three 4 x 4 matrices corresponding to multiplication of (22, z,y, zy)! by x, y
and z. Deforming these matrices G-equivariantly leads to

O O = O
oo o
D O o o
<
I
S O O O
A O OO
o O o
o O = O
N
I
-~ O O O
S >O O
o o3 O
S O DYy

(check: the module structure on Mj; is recovered when a = --- = ¢+ = 0).
These matrices commute pairwise after a flat deformation giving rise to re-
lations between the parameters «,...,t, leaving only three free parameters
, 8,1 satisfying z-2? = ax, y-y = 62? and z-2? = Cxy. Thus, the deformation
parameters of My are

a=1% §=19y*/2> and (=zz/y.

These Laurent monomials cut out the supporting hyperplanes a*, 6+ and
¢t of the cone o5 := o(M;) C L ® R shown in Figure 5.3. Put another way,
M; lies at the origin in the toric variety Xy, = C3.

It is natural to ask whether the method introduced in §5.1 can be applied
in this more general setting to calculate the entire fan shown in Figure 5.3.
With this goal in mind, mechanically replace every occurence of y € Ms by
the monomial xz to simulate a G-igsaw transformation of M5 in the ¢ =
rz/y direction. The resulting module My := {x? z,z2, 2?2} has deformation
parameters z2,y/zz and 2% which cut out the cone o4 of Figure 5.3, so My
lies at the origin of X ,, 2 C*. It appears then that our simulated G-igsaw
transformation actually corresponds to a deformation across the common
face 7 = 05 N o4 cut out by the ratio y:xz.

ZHereafter we represent C[z,y, z]-modules by writing down a C-basis only.
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€1

€2
Figure 5.3: The fan Y’ of a flop of G-Hilb C* for G =Z/2 x Z/2

Similarly, simulating a G-igsaw transformation of Mj in the § = y?/z?
direction leads to the G-equivariant Clz,y, z]-module Mg = {y? z,y,zy}
whose deformation parameters z2/y?, y? and yz/z cut out the cone o5 shown
in Figure 5.3. Finally, replacing every © € Mg by yz defines the module
My = {y* yz,y,y?2} with deformation parameters z/yz,y* and 2? cutting
out o3. This sequence of ‘simulated G-igsaw transformations’ illustrated in
Figure 5.4 determines the fan shown in Figure 5.3.

This example suggests that it may be possible to generalise Nakamura’s
G-igsaw transformations in order to calculate flops of G -Hilb C? for finite
Abelian subgroups G' C SL(3, C).

5.3 Moduli of #-stable G-constellations

Let G C GL(n,C) be a finite subgroup (nothing is gained by restricting to
the case G C SL(3,C) at this stage). In this section we define moduli of G-
equivariant Clxy, ..., z,]-modules in terms of representations of the McKay
quiver introduced in §1.3.

Definition 5.6 A G-constellation is a G-equivariant C[zy,...,z,]-module
which is isomorphic as a G-module to the regular representation R of G.

For Z € G-Hilb C", the ring C[zy,...,x,]/Iz = R may be regarded as a
G-equivariant C[zy, ..., z,]-module with generator 1 mod I;. Thus, as the
terminology suggests, ‘G-constellation’ is a generalisation of ‘G-cluster’.
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o
A=vyz/x @
w @

M,
e
o G

~/

Figure 5.4: A new G-igsaw puzzle for Z/2 x Z/2

A G-constellation M has a quiver-theoretic interpretation as follows. Let
@ = C" denote the given representation of the group G induced by the
inclusion G C GL(n,C). The G-equivariant Clxy, ..., x,]-module structure
on M defines a G-equivariant map B = (By,...,B,): M — @ ® M given by

Bi(m)=z;-m for i=1,... n;

here w4,...,x, is a basis of (). Clearly [B;,B;] = 0 for i,5 = 1,...,n or,
more invariantly, B A B = 0. Since M = R as G-modules, B defines a point
of the affine variety introduced in (1.18):

{B € Homg(R,Q® R) | BAB =0} =2 X C Rep(Q,r).
Conversely, a point V€ X C Rep(Q,r) determines a G-equivariant map
B: R — @ ® R satisfying B A B = 0 or, equivalently, maps B;: R — R for
i =1,...,n such that [B;,Bj] =0 for i,j = 1,...,n. By regarding B; as
multiplication by z;, the maps B; define a G-equivariant C[z1, .. ., z,]-module
structure on R and hence a G-constellation M. Thus we get:

Proposition 5.7

{G-constellations} /isom = X/PGL(r).
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It follows immediately that the moduli M, of f-stable representations
described in §1.3 may also be regarded as moduli of G-constellations. For
convenience we translate the notion of stability for representations into the
language of G-modules: for a parameter § = (6,...,0y) € QV™! and a
G-equivariant Clzy, ..., z,]-module V' whose decomposition into irreducible
G-modules is V' = €, vip; where v; = dim¢ Homg(p;, V'), set

0(V):= Z g; - v;.

Definition 5.8 A G-constellation V' is said to be 0-stable if (V) = 0 and
every proper Clzy,...,z,|-submodule 0 & W ¢ V has §(1¥) > 0. The notion
of #-semistable is the same with > replacing >.

By construction, the moduli space of #-stable G-constellations coincides
with the moduli space My of #-stable points of X C Rep(Q,r) introduced
in Definition 1.35. As a result, all of the results described in §1.3.2 apply to
the moduli of G-constellations.

For a finite subgroup G C SL(2, C), Ito and Nakamura [IN99] proved that
G -Hilb C? is the minimal resolution of C?/G. Combined with Kronheimer’s
Theorem 1.36, it follows that G-Hilb C* = M, for generic # € II (see
(1.19) for the definition of II). Ito and Nakajima subsequently observed that
G -Hilb C* =2 M, for some 6 € II; the appropriate parameters # € II were
calculated by King using his own direct interpretation of stability.

Proposition 5.9 ([IN00],[Kin00]) For a finite subgroup G C GL(n, C),
G -Hilb C* = M,
for 8 € 11 satisfying 8y < 0 and 6; >0 forv=1,...,N.

PRrROOF. Write M := C[zy,...,z,]/Iz for the G-constellation determined by
a G-cluster Z € G -Hilb C". The condition 0 € II gives 8y = — > 6; - r; so
O(M) = 0 because M = R as a G-module. The element 1 mod I, generates
M as a Clxy,...,x,]-module, so no proper submodule S ¢ M may contain 1
mod Iz. Hence the decomposition S = @ielsz-pi must have sy = 0. Then
6(S) > 0 as required because 6; >0 fori=1,..., N.
Conversely, a 0-stable orbit of X is (up to the action of PGL(r)) a map
B = (By,...,B,) satistying [B;, B;] = 0 for 4,5 = 1,...,n. Define a map
¢: Clxy,...,xy) = R by o(f) = f(By,...,Bn)po. Then S := im¢ is a

107



Moduli of representations of the McKay quiver

submodule of R containing ¢(1) = py so the G-module decomposition S =
EBiE]sz-pi has sy = 1. The stability assumption ensures that S = R. Hence
Clxy,...,x,)/ ker ¢ =2 R, so ker ¢ defines a G-cluster Z € G -Hilb C". O

Remark 5.10 For a finite subgroup G C SL(3,C), Bridgeland, King and
Reid established that ¢: G-Hilb C* — C*/G is a crepant resolution by
showing that certain full subcategories of the derived category of G -Hilb C?
have trivial Serre functor (see Bridgeland et al. [BKR99, Lemma 3.1]). The
same method shows that ¢y: My — C3/G is a crepant resolution for generic
6 € 11, but this approach yields little explicit information about M,.

For a finite Abelian subgroup G C GL(n,C) acting freely away from
the origin, Sardo Infirri [SI94, SI96b] constructed the moduli spaces My as
n-dimensional toric varieties. This description led to the following simple
procedure to compute the parameters 6 € II with respect to which a given
G-constellation M is f-stable. First, regard a G-constellation M as a repre-
sentation of the McKay quiver with vertices my,...,my € M. The module
structure on M is determined by the linear maps of the representation and
hence by the arrows in the quiver. For G C SL(3,C), multiplication by x
(resp. y, z) is represented say by an arrow pointing east (resp. north-west,
south-west).

Definition 5.11 A flow f on M is the assignment of a non-negative rational
number f(a) € Q¢ to each arrow a of the quiver. The support of a flow
Supp(f) is the set of arrows a for which f(a) # 0. For a vertex m, write
Head(m) (resp. Tail(m)) for the arrows which have their head (resp. tail) at
m. The net contribution of f at m is the rational number

ofm)=>_ fla)— Y. fla)
)

ac€Head(m a€Tail(m)
Define 0f := (0f (my), 0f (ma),...,0f (my)) € Q¥
Proposition 5.12 ([SI96b]) A G-constellation M is 0-stable if and only if

there exists a flow f on M such that Of = 0 whose support connects any two
vertices of M.
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Example 5.13 A flow f on the G-constellation Mj; introduced in §5.2 is
shown in Figure 5.5(a) for a,b,c € Qs¢. Assume that the support of f
connects any two vertices of Mj, so in fact a, b,c¢ > 0. List the elements of Mj
as moo = %, m19 = x,mp1 =y and my; = zy, so df = (¢, —b—c,—a,a+D).
Then Mjy is f-stable with respect to parameters in the set

0(Ms) = {0€Q"|0=(c,—b—c,—a,a+D) for some a,b,c > 0}
= {9 ell ‘ 00,0 > 0; 00,1 < 0; 91’0 —+ 90’0 < 0; 01,1 + 00,1 > 0}

Observe that 9(M5) C {0 eIl ‘ 91’0, 90’1 < 0, 00,0, 01,1 > O}

a (0%
Yy — Yy T — 32
b ﬂ/
N 5
ZL’—>IQ xZ_’:L’ZZ

(a) (b)
Figure 5.5: Flows on the G-constellations (a) Ms; (b) Mg

Similarly, a flow f on Mg is shown in Figure 5.5(b) for o, 3,7,0 € Q.
Assume that the support of f connects any two vertices of Mg, so at most
one of a, (3,7, 0 is zero. The set of parameters

for which Mg is f-stable is a cone lying in {6 € II ‘ 010 <0; 611 >0},
Definition 5.14 Define (M):= {6 € IT| M is 6-stable}.

The set §(M) is an open (in the Euclidean topology) cone which may be
hard to calculate explicitly in general. Nevertheless, it is easy to see that

wne{ e

Indeed, let f be a flow on M which connects any two vertices. If m; € M is a
Clz1, . .., zy)-module generator then Head(m;) = () so df(m;) < 0. Similarly,
if m; is annihilated by z, ..., z, then Tail(m;) =0 so df(m;) > 0.

0; < 0} if m; is a generator of M,
6; > 0} if m; is annihilated by xq, ..., z,.

(5.3)
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5.4 The mysterious first step

Hereafter, let G C SL(3,C) be a finite Abelian subgroup. Our goal is to
generalise the procedure from §5.1 to construct a flop X s of G-Hilb C?
as a moduli space My for some # € II. The first step is the construction of
a G-constellation M’ which corresponds to a T3-fixed point of Xrs. Our
somewhat mysterious ‘trial and error’ method is motivated by the easiest
case G =7Z/2 x L/2:

Example 5.15 The sequence of simulated G-igsaw transformations from
§5.2 leading to the fan ¥’ shown in Figure 5.3 begins with the creation of
the G-constellation M = {z?, z,y, vy} from the G-graph T'; = {1, 2,y, zy}.
The process of passing from I'; to M5 determines a jump?® from one chamber
to another inside the parameter space II. Indeed, I'y (when regarded as a
G-constellation) is generated by 1 over Clz,y, z] so, by (5.3), it is #-stable
with respect to parameters in the set

0('1) C {0 € IT| 6o, < 0}.

Compare this with the calculation of 0(Ms) from Example 5.13 to see that
6(Ms) N G(T1) = 0. Thus the process of creating M; from I'; necessitates a
jump from 6(T'y) to #(M5) inside II.

This example can be generalised as follows. Suppose that ¥’ (# X) is a
basic triangulation of the junior simplex A of C*/G so that the toric variety
Xy isaflop of X;x =2 G-Hilb C*. Choose 3-dimensional cones o' € X'\ &
and o € ¥\ ¥’ such that o N o' N A # (). Let T' be the G-graph of the cone
o and let S C T" be a connected subset of monomials including 1. Replace
each monomial s € S by a monomial s’ of the same weight to form a set
S':= {s'| s € 5} so that the resulting set of monomials (I' \ S) U.S" defines
a G-constellation M’ = {myj,...m/;} which is endowed with the obvious
Clz, y, z]-module structure.

Remark 5.16 The process of choosing the sets S and S’ so that the defor-
mation parameters of M’ cut out the cone ¢’ is done by trial and error. In
fact it is not even clear whether S and S’ can always be chosen so that the
deformation parameters of M’ cut out ¢’. Our understanding of this process
is limited so we label it the mysterious first step.

3We deliberately avoid the phrase ‘wall crossing’ which suggests that the chambers
involved share a common wall.
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Example 5.17 Consider the action of G =2 Z/6 on C* defining the quotient
singularity é(l, 2,3). The fans ¥ and ¥’ defining G -Hilb C* and a flop X 5
of G -Hilb C? respectively are shown in Figure 5.6. The cones o7, 0y lie in
¥\ ¥ so choose one, say o' = 0g. Both 09,04 € 3\ ¥/ intersect o7 in the
junior simplex A so choose one, say o = 0.

Figure 5.6: (a) ¥ of G-Hilb C?; (b) ¥’ of a flop of G -Hilb C*

By convention we list the elements of a monomial G-constellation in
‘cyclic order’, beginning with the G-invariant monomial. Thus, write the
monomial G-cluster defining the cone o as I' = {1,z,y, ry, y% zy*}. Choose
S = {1} and S’ = {3} to give M' = {3, x,y, vy, y% vy?}. However, the
deformation parameters x?/y, y>, z/xy of M’ define the cone ¢ rather than
s, so the first attempt has failed. As a second attempt, choosing S = {1, y}
and S" = {y3, 2*} leads to M" = {y3, z, 2%, ry, y*, xy?} whose deformation pa-
rameters z2/y, y*/x? xz/y* cut out the supporting hyperplanes of the cone
o' = og as required.

Remark 5.18 There are many choices to be made in the mysterious first
step. Nevertheless, this process is successfully implemented in each of the
worked examples in §5.8. Note that particular care is taken in choosing the
cone o' € ¥\ ¥ — see Remarks 5.36 and 5.37.
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5.5 Ishii’s local coordinates on M

For a finite Abelian subgroup G' C SL(3,C), Ishii [Ish00] proved directly
that the moduli My are smooth for generic § € II by calculating explicit
coordinates on the affine toric charts as we now describe.

The representation Q = C* induced by the inclusion G C SL(3, C) decom-
poses into a sum of irreducibles ) = p; @ py ® p3 for which p; @ p2 ® p3 = po.
Recall that m: R — M is the G-module isomorphism.

Theorem 5.19 (Ishii) If a G-constellation M gives a (C*)*-fixed point of
My then there exists a unique irreducible representation ¢ € R such that

z-m(o)=0 y-mlo®p)=0 z-m(o®p Qp)=0.
The three arrows of the oriented triangle 0 — o ® p; — 0 Q p; ® p2 — o give

an affine toric chart isomorphic to C* centred at the fixed point.

The oriented triangle 0 — 0 ® p1 — 0 ® p; ® ps — o appears where
three fundamental domains of M adjoin in the universal cover of the McKay
quiver. We illustrate this point with a simple example.

Example 5.20 The G-constellation Ms = {22, z,y, zy} introduced in §5.2
tiles the universal cover of the McKay quiver; three fundamental domains
are illustrated in Figure 5.7:

Figure 5.7: Three fundamental domains adjoin in the tiling of the plane

Where three fundamental domains adjoin there is a tripod of monomials
ry,y and z?, one from each fundamental domain. In this case m(o) = xy,
m(oc ® p;) =y and m(o ® p; @ ps) = z%. The oriented triangle determines
the deformation parameters: z-2y = ay, y-y = B2? and z-2? = yay. Ishii’s
theorem states that the corresponding Laurent monomials

a=21% p=vy/r" and v=uxz/y

112



5.6 Procedure to calculate flops of G -Hilb C?

form coordinates on the affine toric chart centred at Mj5. It is easy to verify
all of the deformation parameter calculations performed in §5.2 in this way.

5.6 Procedure to calculate flops of G-Hilb C?

Let ' denote a fan defining a flop X, s of X,y = G-Hilb C3. Suppose
that the ‘mysterious first step’ has been performed successfully, i.e., we have
constructed a G-constellation M’ whose elements are monomials and whose
deformation parameters cut out a 3-dimensional cone ¢’ € ¥\ X.

Starting with M’, or more generally any G-constellation M, our goal is to
construct a new G-constellation N from M by deforming in the v-direction,
for some v = Vyym/Vaen € Def(M). Example 5.5 illustrated a first attempt,
where a G-igsaw transform in the v-direction was simulated by replacing
every occurence of vgen € M by vpum to define N. However, this approach
fails for groups of larger order as the next example shows.

Example 5.21 For the G = Z/6-action introduced in Example 5.17, the de-
formation parameters of the G-constellation Mg:= {y3, z, 2%, vy, y*, xy?} cut
out the cone og in Figure 5.6(b). Simulating a G-igsaw transformation in the
v = z?/y-direction leads to My := {2° x, 2% 2* 2% 2°} whose deformation
parameters x° 3 /2% 2 /2% cut out the cone o5 in Figure 5.6(b) as we might
expect. The problem arises when we transform back: simulating a G-igsaw
transformation in the y/z?-direction from Mj; defines the G-constellation
Mg:= {9?, x,y, vy, y? xy?} rather than Mg. In fact, Mg deforms to give the
cone og in Figure 5.6(a) which doesn’t even lie in the fan X',

The problem here is that one of the G-igsaw transformations has made us
jump between chambers in II. To see this, note that y* € Mg is annihilated
by z,y and z. Tt lies in the &% character space (for €® = 1 primitive) so it
follows from (5.3) shows that 6(Ms) C {0 € II| 6, > 0}. However, y € M
also lies in the % character space and is a generator of Mg, so (5.3) gives
0(Mg) C {0 € 11| 0, < 0}. Clearly 0(Mg) NO(Ms) = 0, so an unwanted jump
from 6(Ms) to 8(Ms) has occurred as we transform from Mg — M5 — M.

Our solution to this problem is to replace only a subset of the occurences
of Vgen € M by vyum to define the G-igsaw transform of M in the v-direction.
For the module M" = {my, ..., m/y} constructed in the first step, define

Iyen:= {i € I|m] is a generator of M'}.
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Let M be a G-constellation whose generators m,; are indexed by a subset of
Iyen. Given v = vpum/Vaen € Def(M) such that v ¢ Clz,y,2]¢ (this ensures
that vgen # 1), we now introduce an algorithm to construct a G-constellation
N from M by replacing as many occurences of vgen € M by vnum as possible,
with the proviso that the following statement* holds:

the generators n; of N are indexed by a subset of Igen. (5.4)

Algorithm 5.22 (generalised G-igsaw transformation) Begin with
N:= {vc“"(mi) S my ‘ m; € M} ,

Jfor max(m;) = max {c € Z |v°-m; € Clz,y, 2]}. If condition (5.4) fails to
hold, 31 ¢ Iyen such that n; is a generator of N. Replace n; by pemax(mi)=1 .y,
to define a new G-constellation which we also denote N. If the new module
satisfies (5.4) then we’re done, otherwise repeat the process.

Eventually this algorithm terminates. Indeed, after sufficiently many
loops, every element n; = v°-m; of N is replaced by m; so the resulting
G-constellation is M itself which, by assumption, satisfies (5.4) as required.

Example 5.23 Recall from Example 5.17 that the mysterious first step for
the fan ¥’ of Figure 5.6(b) defines M’ = Mg = {y* z, 2% zy, y? xy*}, so
Iyen = {1,4}. The generalised G-igsaw transformation in the z?/y-direction
is My:= {2°% x, 22 23 2% 25}, where condition (5.4) is satisfied first time.

Next, apply the algorithm to Mj in the y/z%-direction as follows. Begin
with N = {y?, 2, y, zy, y>, zy*}, but ny = y is a generator of N and 2 ¢ Iq,.
Now, y = v'z? for v = y/z?, so the algorithm replaces y by z? to give a new
module N = {y?, x, 2%, 2y, y?, zy*} which satisfies (5.4). Thus, the algorithm
for My in the y/x2-direction leads to N = Mg rather than to the module Mg
of Example 5.21.

Apply 5.22 to Ms in the z/z3-direction: N = {z? z,2°, 2,22, 2%z}, but
n3 = z is a generator of N and 3 ¢ Iy, so the algorithm replaces z by 2°.
The resulting module still has ny = 2? as a generator. Since 0 ¢ I, replace
2% by 2%z to give the new module M, := {2z, z, 2% 2*, x2,2°2} satisfying
(5.4). Now, M, has deformation parameters z3/z,y/x? 2?. Apply 5.22 in
the y/x2-direction to construct Mj := {xyz,z, 2% zy, vz, 222} after twice

4See §5.7 for the significance of statement (5.4).
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failing condition (5.4). Continuing in this way leads to the modules M; listed
in Table 5.1 (the module generators are underlined). We strongly urge the
reader to draw a G-igsaw puzzle similar to that shown in Figure 5.4 using
the information from the table. The resulting cones o; form the fan ¥’ of
Figure 5.6(b).

1 {3 0%, 0% 32, o2, e} /427, 48, 22 o1
O T T Tt S VTN e N VL
8  {vtzatayyt ay?}t 2y yt/at wz/yt o
3 {zyz,xz, 2% Ty, T2, 2z} 22y, y? /w2, 2? o3
4 Axz,z, 2% 1% w2, 2%2} 32,y /a2, 22 o4
5 {28 2, 2% 23, 2, 25} x5y /2% 2 )23 o

Table 5.1: G-constellations M; and cones o; for the fan ¥ from Figure 5.6(b)

This example suggests that it may be possible to generalise Nakamura’s
construction of G -Hilb C?® to calculate fans X' of other minimal models of
C? /G using the following procedure:

Procedure 5.24 Let X' be a basic triangulation of the junior simplex A of
C?/G for a finite Abelian subgroup G C SL(3,C).

STEP 1 Perform the mysterious first step to get a G-constellation M’ and
a set Iyen indexing the generators of M'. Relabel M := M'.

STEP 2 Deform M according to Theorem 5.19 to produce deformation pa-
rameters vy, vy, v3 € Def(M) cutting out a cone o(M).

STEP 3 Run Algorithm 5.22 on M in the vg-direction (for some k =1,2,3)
to produce a G-constellation N satisfying condition (5.4).

STEP 4 Set M := N and return to STEP 2.

Given our limited understanding of the mysterious first step it is not
yet clear when STEP 1 can be performed. Moreover, even if the procedure
does begin it is not clear a priori that it stabilises after finitely many steps,
i.e., that after producing finitely many G-constellations, the only remaining
deformation parameters are those v € Clz, y, Z]G.
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Nevertheless, in Example 5.23 the procedure does stabilise and produces
|G| = 6 modules M; such that the corresponding cones o; = o(M;) define
the fan Y¥'. In §5.8 the procedure is successfully implemented for every basic
triangulation of the junior simplex of the singularities é(l, 2,3) and 1—11 (1,2,8).

5.7 0O-stable G-igsaw transformations

To understand the significance of statement (5.4) we pick out a distinguished
orthant in the parameter space QV*! by defining

Orth(M'):= {0 € QV*' | 0; < 0if i € Igen; 0; > 0 otherwise}.

Lemma 5.25 For the G-constellation M’ constructed in the mysterious first
step, we have (M') N Orth(M") # 0.

PRrROOF. Draw a flow f on M’ whose support connects any two vertices of
M'. Set f(a):= 1if the head of a is annihilated by x, y and z. Next, consider
the arrows b whose head m! is the tail of an arrow a with f(a) = 1. Choose
f(b) > 2 sufficiently large to ensure that df(m}) > 0. Repeat for the arrows
whose head is the tail of an arrow b, and so on. Eventually every vertex
m) with Head(m}) # 0 satisfies df(m}) > 0. The remaining vertices are the
generators for which 0f(m!) < 0. Then M’ is f-stable with respect to f and
df € Orth(M') as required. O

Example 5.26 For the fan ¥’ of Example 5.23 we have Iz, = {1, 4}, hence
Orth(M'):= {6 € Q° ‘ 61,0, < 0; 6y,05,03,05 > 0}. Lemma 5.25 constructs a
flow f on M' = Mg where f(a) = 1 for every arrow a except the arrow from x
to xy for which, say, f(b) = 2. Clearly 0f = (1,-3,1,1,—-2,2) € Orth(M').

As a result, M' is stable with respect to some 6 € Orth(M'). Statement
(5.4) is a necessary condition for a G-constellation N to be stable with respect
to a parameter § € Orth(M') — this follows immediately from (5.3). This
condition is not sufficient in general: to see this, cook up N satisfying (5.4)
where an element n; € N with ¢ € I, is annihilated by z,y, z, so (5.3)
ensures that 0(N) C {6 € I1|6; > 0}, hence (N) N Orth(M’) = 0.

Nevertheless, our examples suggest that the following statement holds:
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Conjecture 5.27 For X' as in Procedure 5.2/, suppose that the procedure
has been successfully implemented to produce |G| modules M; such that the
fan X' is determined by the 3-dimensional cones o; = o(M;). Then there
exists an open subset of parameters 0 in the orthant Orth(M') such that
every M; is 0-stable, i.e., O(My) N -+ NO(Me) N Orth(M’) # 0.

It follows from this conjecture that the statement (5.4) is sufficient to
ensure that N is stable with respect to some 6 € Orth(M') whenever N
is obtained from M' by finitely many generalised G-igsaw transformations.
Given that this is not true a priori, it suggests that #-stability has been
encoded into the generalised G-igsaw transformation.

Theorem 5.28 When Conjecture 5.27 holds, X1 s = My for each of the
parameters 6 € Orth(M') given by the conjecture.

PRrROOF. The conjecture shows that Xp s € Mjy. On the other hand, the
toric variety My is projective over C* /G by Theorem 1.37 (and Remark 1.38)
so the support of its fan is exactly the positive octant in the vector space
L ®R = R*. Hence the inclusion X sy C My must be equality. O

Definition 5.29 When Conjecture 5.27 holds, every application of STEP 3
in Procedure 5.24 is called a 6-stable G-igsaw transformation.

Example 5.30 For ¥ defining G -Hilb C* = X 5, Proposition 5.9 states
that X v = My for 0 € {f € H‘HO <0; 6, >0fori =1,...,N} and
Nakamura’s G-igsaw transformations are #-stable.

Example 5.31 For the fan ¥’ shown in Figure 5.2, the procedure constructs
the G-constellations illustrated in Figure 5.3. The intersection (in Orth(M"))
of the sets 0(M;) for i = 3,4,5,6 is the nonempty open cone

{9 ell ‘ 00,0 > 0; 90,1 < 0; 91,0 + 90,0 < 0; 91,1 + 00,1 > 0; 00,0 + 90,1 < 0}

Hence® X, yv = M, for any parameter in this cone, e.g., 0 = (1, -2, -2, 3).

5The junior simplex admits two other basic triangulations obtained by rotating Fig-
ure 5.3 by 27/3 and 47 /3. The appropriate G-igsaw puzzles are found by permuting y < z
(or & <> 2) in the modules shown in Figure 5.4. This simply has the effect of permuting
the parameters 61 <> 011 (or 619 <> 61,1), hence every toric flop of G-Hilb C? is of the
form M.
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Example 5.32 For ¥’ shown in Figure 5.6(b), Procedure 5.24 determines
the G-constellations listed in Table 5.1. To calculate the intersection of the
sets O(M;) for i =1,3,4,5,7,8, draw a flow on the quiver corresponding to
each G-constellation. This computation is lengthy so we do not reproduce
it here. Suffice to say that each G-constellation is stable with respect to
0=(1,-4,1,1,-3,4) € Orth(M"). Thus X s» = M, for this choice of 0.

In §5.8.1 we exhibit a parameter 6 for which Conjecture 5.27 holds for
every basic triangulation ¥’ of the junior simplex of the singularities %(1, 2,3)
and ﬁ(l, 2,8). It follows that every minimal model of these cyclic quotient
singularities can be described as a moduli space M for some 6.

We conclude this section by proposing an appropriate generalisation of
Nakamura’s Key Lemma 5.1. First we generalise the notion of G-graph to
account for the fact that G-constellations may have more than one generator.

Definition 5.33 Given a pair of ideals I C J C C[z,y, z|, each of which is
generated by monomials, write I'(, J) for the set of monomials lying in J\ I.
There is a map wt: I'(Z,J) — GV and, as in §5.1, we call the set I'(I,J) a
G-graph if the map wt is one-to-one.

Every G-graph I'(I,.J) defines a G-constellation M and the generators
of the ideal J form the C|x,y, z]-module generators of M. In particular, a
G-graph defines a G-cluster if and only if J = (1).

Let M be a G-constellation whose elements can be written in the form
['(I,J) for some J # (1), where the ideal generators of J are indexed by a
subset of I,e,. Each codimension 1 face 7 of the cone o(M) is of the form
7 =o(M)Nwvt for some v € Def(M). Simultaneously deform I and J in the
v-direction to produce ideals I(v) and J(v) for each v € Al. Assume that
v & Clz,y,2]%, so Algorithm 5.22 may be applied to M in the v-direction
giving rise to a G-constellation N.

Conjecture 5.34 With notation as above, suppose the generalised G-igsaw
transformation from M to N is 0-stable, i.e., 30 € 6(M)NO(N)NOrth(M').
Then there is a notion of lim,_,,, determined in some way by 6, such that the
ideals I':= lim,_, I(v) and J':= lim,_,« J(v) are monomial ideals for which
the set T'(I',J") is the G-graph of N. Moreover, the cones o(M) and o(N)
share the codimension 1 face T = o(M)No(N) so lie adjacent in LOQR = R3.
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Remark 5.35 As with Nakamura’s calculation of G -Hilb C*, much of the
work described in this chapter can be generalised to the case of a finite
Abelian subgroup G' C GL(n,C). Of course, Ishii’s Theorem 5.19 no longer
applies in this case so the affine toric varieties Xy ;1) defined by deforming a
G-constellation M are not necessarily smooth. Moreover, the computations
become considerably more difficult because the universal cover of the McKay
quiver is no longer planar. Still, these calculations may provide a deeper
understanding of, say, the relation between G -Hilb C' and other partial
resolutions Y of C* /G, for a finite Abelian subgroup G C SL(4, C).

5.8 Further examples

The monomials in a G-graph correspond one-to-one with the characters of
G. For a cyclic group G = Z/r, it is convenient to list the monomials in
‘cyclic order’, beginning with the G-invariant monomial.

5.8.1 Flops of G-Hilb C* for the G-action 3(1,2,3)

Consider the action of G = Z/6 on C? giving rise to the quotient singularity
£(1,2,3). The junior simplex of C* /G admits 5 basic triangulations; two are
shown in Figure 5.6; the remaining three are shown in Figures 5.8 and 5.9.

€1

Figure 5.8: (a) ¥ of Flop 2; (b) X3 of Flop 3 for £(1,2,3)
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Moduli of representations of the McKay quiver

The mysterious first step for ¥':= X5 uses the cones ¢/ = g9 € X'\ ¥ and
o=o0, €Y\ Y to construct M":= My = {33, 9%2,v, 2,9, yz}. The module
generators y, z lie in the £2, 2% character spaces 0 Iy, := {2,3}. Carry out a
sequence of generalised G-igsaw transformations according to Procedure 5.24
gives rise to the G-constellations listed in Table 5.2; these modules are 6-
stable with respect to (an open subset of IT containing) § = (1,1, -3, —4, 1,4).

Generators M; Def(M;) o)

¢ i

9 <y,Z> {y3ay235yazay2ayz} $y/z,y3,22/y3 09
10 <y,Z> {Z25y2zayazay2ayz} $Z/y2,y3/2’2,22 010
3 (y, z) {22,022y, 2, x2,yz} 2%y, y*/x2,2% O3
4 (22, 2) {22,022, 2% 2,2, 222} 23/z,y/2% 22 oy
5 (2?) {28, 27 2% 23, 2% 2%} 2 y/a? z/2® oy
6 (y) {v*, 29y, 2y, 9% 2y} 2% )y, 9% 2/vy o6

Table 5.2: G-constellations M; and cones o; for Flop 2 of %(1, 2,3)

For Flop 3 with fan ¥/:= X3, the mysterious first step begins with ¢’ = o1
and 0 = o3 to give M':= My = {z% z,yz% z,22,yz}. The generators z, 2
lie in the &, £® character spaces so Iyen:= {1,3}. Procedure 5.24 produces the
modules and cones listed in Table 5.3. These G-constellations are #-stable
with respect to (an open subset of IT containing) # = (1, -2,1, —4,3,1).

¢ Generators M; Def(M;) o;
1 (z) {22,922, y2%, 2, y%2%, yz} x/y?z,y3, 2 o1
12 (x, z) {22, 2,y2°, 2, 02,92} 2?2 [y2? y*z )z, 22 o
11 (x, z) {22, 2,2% 2,02, yz} 22y, xy/z,y2% ) oy
4 (z,2) {23 2,22, 2, w2, %2} 32,y /a2, 22 04
5 () {28 2, 2% 23, 2, 25} 28,y /2% 2 /23 o
6 <,I'> {x2y2,x,x2,xy,x2y,xy2} x2/y,y3,z/xy O¢

Table 5.3: G-constellations M; and cones o; for Flop 3 of %(1, 2,3)

The fourth fan ¥':= ¥, shown in Figure 5.9 contains three cones oys, 013,
o014 which do not lie in the fan ¥ of G -Hilb C3. To perform the mysterious

120



5.8 Further examples

Figure 5.9: The toric fan X' of Flop 4 of G -Hilb C3

first step set o’ to be either o153 or 14 (beginning with 015 leads via Proce-
dure 5.24 to the fan ¥3 shown in Figure 5.8(b); see Remark 5.36). Choosing
o' = o013 and 0 = gg gives M':= M3 = {2*, 22% 2%, 2%, 12, 2%2}. The module
generators z?, 1z, 2% lie in the £% &% 2% character spaces so Iyen := {0,2,4}.
Procedure 5.24 produces the G-constellations listed in Table 5.4; these mod-
ules are f-stable with respect to 6 = (—3,4,—-2,1, -3, 3).

¢ Generators M; Def(M;) o,
1 (22 (22,4223, y22, 23, 4222, 423 /22,43, 2 o1
12 (2, 2%) {22,022, y2?, 2% w2, 923} 22y y%z2/x, 22 op
13 (2% 22, 2%) {22,022 2%, 23, w2, 222} 2323,y e, 22 o3
14 (2% 2, 2%) {22 222,22, 23 vz, 222} 23/z,my/z, 23 )23 ou
5 (x?) {z8 27, 2% 23, 2%, 2°} 28y /2% 2 /23 o5
6 (2?) T e T e e T V) S ) A TR Ty TR

Table 5.4: G-constellations M; and cones o; for Flop 4 of %(1, 2,3)

Remark 5.36 The cones 03,014 € X4 are distinguished in the sense that
they arise only after performing two flops of G -Hilb C3, whereas o5 € 24
also appears in Y3 which can be reached from G-Hilb C? by a single flop.
For more on this point see Remark 5.37.
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Moduli of representations of the McKay quiver

5.8.2 Flops of G-Hilb C* for the G-action :(1,2,8)

Consider the action of G = Z/11 on C* defining the singularity (1,2,8).
The fan ¥ defining G -Hilb C? is shown in Figure 5.10.

€1

Figure 5.10: The fan ¥ of G-Hilb C* for the G = Z/11-action

€2

The junior simplex of C*/G admits 4 other basic triangulations shown
in Figures 5.11 and 5.12. For the first of these fans ¥’ := ¥; shown in
Figure 5.11(a), choose cones 0/ = o1 and 0 = 09 € X. The mysterious
first step defines M’ := My = {3322, y%2, 23,32, 9%, 2%, v3, 22, vy, 222, o}
generated by the monomials y? and 22, s0 Iz, = {4,5}. Procedure 5.24
produces the G-constellations and cones listed in Table 5.5 (module gen-
erators are underlined). It can be shown that these G-constellations are
G-stable with respect to (an open subset of II containing) the parameter
=(1,1,1,1,-7,-9,1,1,1,8,1).

The second fan ¥’ := 3, is shown in Figure 5.11(b). For o' = oy
and o = 0¢ we get M':= My = {xyz, 2,23, 2y, y23, 2%, 2%, y2?, 2, 2,92}
with generators z,z, so Iyn = {1,8}. Procedure 5.24 produces the G-
constellations and cones listed in Table 5.6. These G-constellations are
f-stable with respect to (an open subset of II containing) the parameter
6=(1,-9,1,1,1,1,1,1,—6,7,1).

The third fan ¥’ := X3 is shown in Figure 5.12(a). Choosing ¢’ = o0y
and 0 = o9 gives M' := Mg = {xyz, x,2% 2y, v% 292, >, vy, yt, 22, y°}
with generators z,y?, so Igen = {1,4}. Procedure 5.24 produces the G-
constellations and cones listed in Table 5.7. These G-constellations are 6-
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5.8 Further examples

€1 €1
€3 \ €y €3 \ €9
) (b)

(a

Figure 5.11: (a) ¥ of Flop 1; (b) X, of Flop 3 for £;(1,2,8)

€1 €1
o \ €y €3 \ €9
(a) (b)

a

Figure 5.12: (a) X3 of Flop 3; (b) ¥4 of Flop 4 for 1—11(1, 2,8)

stable with respect to (an open subset of IT containing) the parameter 0 =
(1,-9,1,1,-4,5,1,1,1,1,1).
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Moduli of representations of the McKay quiver

G-constellations M; Def(M;) o;
{y322,y2z, 235y3zay252_2a ygayzzay4ay222ay5} ny/Z2?y4/Z? 24/y5 012
{y3z2,y22,z3,y3z, aZ_2? y3,y22,y4,y222,24} $22/y3,y5/2’4,23/y 013

N

1,6 12,7 2.8 3,9 4 10 5 6 11 4

NN TN I R AR LN AN R TN T z/y° ytt, z[y o1
117 .3 10 .6 .2 .9 .5 .12 .8 .4 7 311

{Z 1R R G ERL, 2,2, % 7272} I/Zay/zaz 04

{2t 27, 2% 023, 28 2%, 022 2% 2P, 28 1) 22/23,y/283, 2" Jx o5

{$Z4,y22’, Zgax'z?)ay_QaZ_Qa Z’ZQ,yZ2,,I'y22,y222,Z4} x?/y,y3/x22,z3/y O6
{2t 22, 23 223, 0t 22, 02?2222 1322, 0t 2 2822y /2t B et oy
{z", 22, 252,282, 2, 25 2, 27, 28, 20, 210} 8 /2, y/x?, 22 /x5 o
{ay® 22, 2y?2, 32, 42, wy? 3 ey yt oyt yY 2Py, yt 2, 2 ey o
{$y5,y6,$y6,y7,y_2, xyZ,y3,xy3,y4,xy4,y5} 1’2/y,y6/£,2/y4 010
(21, 12 313 18 g B b T g8 49 410) W yfa? 21 on

Table 5.5: G-constellations M; and cones o; for Flop 1 of ﬁ(l, 2,8)

G-constellations M; Def(M;) o;

{JUyZ,L $2,$y,$2y,22,$22,y22,§, ,I'Z,yZ} a:Z/y,aij/ZZ,ZS/xQ 015
A e T T T T A TR T i) c/ySytt 2yt oy
{327,972, 22, 22,428, 2%, 0225, y2° 2,022 yzy wfyPeyt 2 By oo
(2127, 23, 210 26 5229 55 5 08 4 2]y, M o4
{z2t, 2,23, 023,25, 2% 122, 25, 2, 02, 21} 22/ )82 e o
{232, 2, 0% 23, 24, 22 022, 2222 2, 02,222} 2022y /a2 232 oy
{.1‘32’,@, .1‘2,.1‘3,1'4,.1‘5,.1‘6,1'7,2,.Z‘Z,.I'ZZ} xs/zay/x2522/$5 08

{zyz, 2,2 wy, 2y, 0%, 2%% 2y’ 2,02, y2) 2Pyt 2 2 ey oy
{xy5a£a 1'2,$y,$2y,$y2,$2y2,$y3,y_4, ch4,y5} xQ/yayG/x,Z/y4 010

11 2 3 4 5 .6 .7 .8 .9 .10 11 2 8
{I’ YLy Ly LT, T, T, L7, L, L7, L7, X } xz ,y/:z:,z/x o011

Table 5.6: G-constellations M; and cones o; for Flop 2 of ﬁ(l, 2,8)

The fourth fan ¥':= ¥, is shown in Figure 5.12(b). For ¢’ = o013 and
o = o1p we get M':= Mg (see below) with generators 2%, zy%, y*, 0 Ien =
{2,5,8}. Procedure 5.24 produces the modules and cones listed in Table 5.8
(deformation parameters are omitted for lack of space, but you’ve got the
idea by now). These G-constellations are @-stable with respect to (an open
subset of IT containing) the parameter § = (1,1,-8,1,1,-7,8,1,—4,5,1).
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5.8 Further examples

G-constellations M; Def(M;) o;

{xyz, Z, .Z'Z, zyay_Za Iy27 y37 Iy?)a y47 xrz, y5} xZZ/yE)a y4/Z, yQZ/I O16
{I?JZ, z, Iza xy, 927 ZL’yQ, y37 ny?), y47 Tz, xQZ} Iz/ya y5/ZE22, IZQ/y?) O17

11 6 12 7 2 8 3 9 4 10 5 6 11 4
NN NN LR AR NN AN TN z/y°, 't z[y o1
3.2 2 4.2 3 2 4 3 5 4 2.2 5 2 4 3
AN TN AN TeF N TR T N T T A T Tor A T S Y K Tae 2 o) E IS L TR o
11 7 14 10 6 13 9 16 12 8 15 7 3 11
{Z 1R R HR LA LR TR, BT, % } I'/Z,y/Z,Z 04

{2tz 2% 223,25, 128 222, 1222 22

y &

dxz, w2z} 2?2y, o

2 2 2 2 2,2 2 2 2 3 2 .3
{:zzyz,g,x,a:y,y_,a:y,xz,:z:z,xyz,xz,xz} x/y,y/xz,z/y O¢

{232, 2, 2% 23, 0% 2 02?2222 0322 a2, 0?2} 2522 y/a? B3 ) oy

{$3Z7£7 Z‘Q,.1'3,I4,I5,LE6,Z‘7,I8,Z‘Z,LE227} 'Zlg/zvy/xa'22/'1‘5 oF
5 2 2 2 3 3 4 4 5 2 6 4

{oy®, 2, 2%, 2y, y%, vy?, v, oy, v 2y, 0} o[y, y° w2 [yt o
11 2 3 4 5 6 7 8 9 10 11 2 8

{I 727‘/1; 7I7:E7:E7I 7I7:E7I 7‘/1; } ‘/L‘ 7y/x7z/x 0-11

Table 5.7: G-constellations M; and cones o; for Flop 3 of 1—11(1, 2,8)

Remark 5.37 The fan ¥, contains three cones o7, 01, 019 which do not lie
in the fan ¥ of G -Hilb C* shown in Figure 5.10. As with Flop 4 for £(1,2,3) in
§5.8.1, two of these cones, namely o013, 019, are distinguished in the sense that
they arise only after performing two flops of G -Hilb C3, whereas o7 € 24
also appears in ¥3 which can be reached from G -Hilb C* by a single flop.

This observation may lead to an obstruction to successful implementation
of the mysterious first step, or it may provide further evidence that the Pro-
cedure 5.24 can always be implemented. For instance, what if two varieties
X, X5 can be reached from G-Hilb C* by the same number of flops
and yet their fans X', ¥” contain a common cone ¢’ which does not lie in the
fan ¥ of G-Hilb C*? It may be that the mysterious first step breaks down
when applied to this cone. On the other hand, there are choices involved in
the mysterious first step and it may be that different choices of the sets S, S’
introduced in §5.4 give different modules M’ and M" leading to ¥’ and X"
respectively. This point requires further investigation.
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Moduli of representations of the McKay quiver

G-constellation M; o;

{Iy57y6ax_27 y7,$2y,:13_y2, I2y27xy37y_47 Iy47y5} 018
{$y5,y6,iﬂ_2a $3a$2ya$_y25 $2y2a$y35y_4a $y4,y5} 019
A T T T T e TN A TR Ty o1
(72,8 yt22, 7 P2,y S22, P2,y 52, ) .
(222,218 10 521 L17 418,20 L1612 519 151 o4
{232, 2224, 2%, 23, 2223, 128, 2225, 2222, 120, 2220, 222} o5
{222, 2%yz, 22, %, 2Py, wy?, 2?y?, 222, wy2®, 2?y2?, 2z} o
{232, 22, 2%, 23, 2%, 2, 28, 2222 2322 2422, 222} o
{23z, 22, 22, 23, 2t 25,25 27, 28, 2% 222} or

(2, 212 22, 0% 24, 25, 25, 27, %, 2, 210} o1

{2%2, 2%yz, 22, 2%, 2%y, xy?, 2%y, xy3,y_4, ryt, 222} o7

Table 5.8: G-constellations M; and cones o; for Flop 4 of ﬁ(l, 2,8)
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Appendix A

Why ‘motivic’ integration?

In this appendix we investigate the motivic nature of the integral introduced
in Chapter 2. We also justify the notation LL for the class of the complex line
C in the Grothendieck ring of algebraic varieties.

The category Mc of Chow motives over C is defined as follows (see
[Sch94]): an object is a triple (X, p, m) where X is a smooth, complex pro-
jective variety of dimension d, p is an element of the Chow ring A¢(X x X)
which satisfies p? = p and m € Z. If (X,p,m) and (Y, ¢, n) are motives then

HomMc ((Xa D, m)a (Ya q, n)) = qu+n_m(X7 Y)p

where composition of morphisms is given by composition of correspondences.
M is additive, Q-linear and pseudo-abelian. Tensor product of motives is
defined as (X,p,m) ® (Y,q,n) = (X X Y,p® ¢, m + n). There is a functor

h: Vé—)M@

which sends X to (X,Ax,0), the Chow motive of X, where the diagonal
Ax C X x X is the identity in A*(X x X). The motive of a point 1 =
h(Spec C) is the identity with respect to tensor product. The Lefschetz
motive L is defined implicitly via the relation h(PL) =16 L.

Definition A.1 The Grothendieck group of M¢ is the free abelian group
generated by isomorphism classes of objects in M¢ modulo the subgroup
generated by elements of the form [(X, p,m)|—[(Y, ¢, n)|—[(Z, r, k)] whenever
(X,p,m) ~ (Y,q,n) & (Z,r, k). Tensor product of motives induces a ring
structure and the resulting ring, denoted Ky(Mc), is the Grothendieck ring
of Chow Motives (over C).
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Why ‘motivic’ integration?

Gillet and Soulé [GS96] exhibit a map
M: V(C — KU(M(C)

which sends a smooth, projective variety X to the class [h(X)] of the motive

of X. Furthermore the map is additive on disjoint unions of locally closed
subsets and satisfies M (X x Y) = M(X) - M(Y).

We now play the same game as we did in §2.3. Namely, M factors through
Ky(Vc) inducing
M Ko(V(c) — KO(M@).
Observe that the image of [C] under M is the class of the Lefschetz motive L;

this explains why we use the notation L to denote the class of C in Ky(V¢)
in § 2. Sending L™! € Ko(Ve)[L7!] to L' € Ko(Mc) produces a map

M: Ko(Vo)[L '] — Ko(Mc).

At present it is unknown whether or not M annihilates the kernel of the
natural completion map ¢: Ko(Vc)[L™'] = R. Denef and Loeser conjecture
that it does (see [DLI8, Remark 1.2.3]). If this is true, extend M to a ring
homomorphism

My ¢ (Ko(Vo)[L7']) [{L 1_ 1 }N] — Ko(Me) [{L 1— 1 }N]

such that the image of [D9] under My is equal to M (D5).

Definition A.2 Let X denote a complex algebraic variety with at worst
canonical, Gorenstein singularities and let ¢: Y — X be any resolution of
singularities for which the discrepancy divisor D = ) a;D; has only simple
normal crossings. The stringy motive of X is

Mg (X) = Mg (/ (Y)FDdM'Ln>

. L-1

- Z M(DJ)'<HL(LJ-+1_1>
TC{Lyeyr} jeJ

where we sum over all subsets J C {1,...,r} including J = (). As with the

definition of the stringy E-function (see Definition 2.25) we multiply by L"
for convenience.
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