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1. Motivation

1.1. Grassmannian of lines. Let V = Cn+1 and contemplate the Grassmannian
of lines in Pn:

G2(V ) = {W ≤ V : dimW = 2} = {X ∈ Pn : dimX = 1}.
This is a projective variety thanks to the Plücker embedding k : G2(V )→ P(∧2V ) :
W 7→ ∧2W with image {[ω] : ω is decomposable}. To see that the Plücker image
really is a projective variety, that is, cut out by homogeneous polynomial equations,
we readily prove that it is given by

{[ω] : ω ∧ ω = 0}
and so is the intersection of a dim∧4V -dimensional family of quadrics.

1.2. Twisted cubic. Now let n = 1 so that V = C2 and contemplate the twisted
cubic c : P(V ) → P(S3V ) = P3 : [v] 7→ [v3]. In suitable homogeneous coordinates,
this reads c : [s, t] 7→ [s3, s2t, st2, t3] and again the image is an intersection of the
three quadrics:

X0X3 = X1X2

X0X2 = X2
1

X1X3 = X2
2 .

1.3. Synthesis. One can understand both examples from a common viewpoint: in
each case, our projective variety is an orbit of G = SL(V ), the unique closed orbit,
in fact, and the quadratic equations cutting out the orbit have a representation
theoretic origin.

In the first case, G acts on ∧2V and so on the symmetric square S2(∧2V ). We
have a G-morphism P : S2(∧2V )→ ∧4V : ω1ω2 7→ ω1 ∧ ω2 with irreducible kernel
so that

S2(∧2V ) ∼= kerP ⊕∧4V

is a decomposition into irreducibleG-modules and the equations defining the Plücker
image read P (ω2) = 0.

Again, in the twisted cubic case, G acts on S3V and so on S2(S3V ). The Clebsch–
Gordan formulae tell us that the latter decomposes into irreducibles as follows

S2(S3V ) ∼= S6V ⊕ S2V

and one can show that, with P : S2(S3V ) → S2V the corresponding projection,
the equations of the twisted cubic are again P (u2) = 0, u ∈ S3V .

We are going to show that this is a very general phenomenon: for any complex,
connected semisimple Lie group G and irreducible G-module V , there is a unique
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Zariski closed G-orbit in P(V ) (the projective highest weight orbit) and this is cut
out by quadratic equations coming from the decomposition of S2V into irreducible
submodules. This will need preparation to which we now turn.

2. Ingredients

We work with a complex, connected, semisimple Lie group G with Lie algebra g.

2.1. Roots and weights. Fix a Cartan subalgebra h ≤ g with roots ∆ ⊂ h∗ and
associated root space decomposition

g = h⊕
∑
α∈∆

gα.

The Killing form of g induces an inner product on the real span h∗R of the roots
which we denote by ( , ) and a pairing h∗R × h∗R → R given by

〈λ, α〉 = 2
(λ, α)

(α, α)
.

The weight lattice Λ is now given by

Λ = {λ ∈ h∗R : 〈λ, α〉 ∈ Z for all α ∈ ∆ }.

Let V be a finite-dimensional g-module and, for µ ∈ h∗, let Vµ ≤ V be given by

Vµ = {v ∈ V : Hv = λ(H)v for all H ∈ h}.
If Vµ 6= 0 say that Vµ is a weight space of V with weight µ. We further say that µ
has multiplicity dimVµ in V .

Proposition 2.1. V is a direct sum of its weight spaces and each weight lies in Λ.

Now choose a Weyl chamber so that we have simple roots α1, . . . , αl or, equivalently,
a choice of positive roots ∆+ ⊂ ∆, or, equivalently, a Borel subalgebra h ≤ b ≤ g
given by

b = h⊕
∑
α∈∆+

gα.

We distinguish fundamental weights λ1, . . . , λl ∈ Λ by requiring 〈λi, αj〉 = δij .
Then Λ = ⊕iZλi and we define the dominant weights Λ+ by

Λ+ = {λ ∈ Λ: 〈λ, αi〉 ≥ 0 for all i}.
The final data we get from our Weyl chamber is a partial ordering on Λ: say that
µ ≺ λ if λ− µ =

∑
i niαi with the ni non-negative integers.

2.2. Irreducible g-modules. The Theorem of the Highest Weight says that Λ+

parametrises the finite-dimensional irreducible g-modules. Here is how.

Definition 2.2. Let V be a g-module. A highest weight vector of V is a non-zero
v ∈ V whose span is stable under the Borel b: b[v] = [v].

Clearly such a v lies in a weight space Vλ and we say that λ is a highest weight of
V .

We now have:

Theorem 2.3.

(1) A finite-dimensional irreducible g-module V has a unique, up to scale, high-
est weight vector vλ and the corresponding highest weight is dominant.
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(2) Given a dominant weight λ ∈ Λ+, there is a unique, up to isomorphism,
finite-dimensional irreducible g-module V λ with highest weight λ.

(3) For any other weight µ of V λ, we have µ ≺ λ.

2.3. Casimir operator. We now introduce the main tool for what follows: the
quadratic Casimir operator.

The Killing form of g is a non-degenerate g-invariant element of g∗⊗g∗ and so pro-
vides a g-invariant element of g⊗g after using it to raise indices. The multiplication
in the universal enveloping algebra U(g) now gives a g-morphism g⊗g→ U(g) and
so a g-invariant, hence central, element of U(g): this is the Casimir operator C.
Thus, from a practical point of view, C =

∑
h ehe

h where e1, . . . , en and e1, . . . , en

are Killing dual bases of g.

Here is what we need to know about C:

(1) By Schur’s Lemma, C acts as a scalar C(λ) ∈ R on the irreducible V λ.
(2) By choosing dual bases adapted to the root space decomposition and eval-

uating C on vλ, it is straightforward to compute that

C(λ) = (λ+ ρ, λ+ ρ)− (ρ, ρ),

where ρ = λ1 + · · ·+ λl = 1
2

∑
α∈∆+ α.

(3) If µ 6= λ ∈ Λ+ with µ ≺ λ, then C(µ) < C(λ): indeed,

C(λ)− C(µ) = (λ+ µ+ 2ρ, λ− µ) =
∑
i

ni(λ+ µ+ 2ρ, αi),

with each ni ≥ 0, and (λ+ µ+ 2ρ, αi) ≥ (ρ, αi) > 0.

We use the Casimir operator to gain insight into the tensor product of irreducible
representations: contemplate such a product U = V µ1 ⊗ . . . ⊗ V µk . Since g acts
as a derivation over tensor product, the weight spaces of U are (sums of) tensor
products of those of the V µj and the weights are sums of the corresponding weights.
In particular, vµ1 ⊗ . . .⊗ vµn is a highest weight vector, the corresponding highest
weight µ1 + · · ·+µn appears with multiplicity one and all other weights ν of U have
ν ≺ µ1 + · · ·+ µn. Write U as a sum of irreducibles:

U = V µ1+···+µn ⊕ V ν1 ⊕ · · · ⊕ V νk .

Applying our observations to the νj , we see that C(νj) < C(µ1 + · · ·+ µn) so that

V µ1+···+µn = {u ∈ U : C(u) = C(µ1 + · · ·+ µn)u}.

We shall use this characterisation of V µ1+···+µn repeatedly below.

3. Quadratic relations

Let V be a finite-dimensional irreducible G-module. Then V is also an irreducible
g-module (differentiate!) and the preceding theory applies. Thus V = V λ with
highest weight vector vλ, for some λ ∈ Λ+.

We are interested in the projective highest weight orbit O = G[vλ] ⊂ P(V λ). We
are going to show that O is a projective variety and, in fact, the intersection of
an explicit family of quadrics. Along the way, we will identify the homogeneous
coordinate ring of O as a G-module.

We start with some preliminary observations: vλ ⊗ vλ ∈ V 2λ ⊂ S2V λ so that, for
any [u] ∈ O, u ⊗ u = gvλ ⊗ gvλ = g(vλ ⊗ vλ) ∈ V 2λ also. Said another way, O
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satisfies quadratic equations: write

S2V λ = V 2λ ⊕W,

a decomposition of G-modules, and let P : S2V λ → W be the corresponding
projection. Then we have just seen that

(3.1) O ⊂ {[u] ∈ P(V λ) : P (u⊗ u) = 0}

which last is the intersection of a dimW -dimensional family of quadrics. We will
show equality in (3.1).

For this, let V µ = (V λ)∗ and identify SkV µ ∼= (SkV λ)∗ with the homogeneous
polynomials of degree k on V λ via f 7→ (v 7→ f(vk)). In this way, we have an
isomorphism of g-modules between the coordinate ring C[V λ] of the affine space
V λ and the symmetric algebra S•V µ.

Set Q = W ∗ so that

S2V µ = V 2µ ⊕Q
and view Q as a space of quadratic functions that vanish on O thanks to (3.1).

We can now state and prove the following theorem of Kostant:

Theorem 3.1.

(1) O is the zero set of Q so that we have equality in (3.1).
(2) The ideal of O is generated by Q.
(3) The homogeneous coordinate ring of O is

⊕
k≥0 V

kµ.

Proof. First we need to see that O is a projective variety at all (so that it is
determined by the homogeneous polynomials that vanish on it). For this, first note
that P(V λ) does contain at least one closed orbit1. Now contemplate the subgroup
B ≤ G with Lie algebra b: this is (maximal) solvable and so by the Borel Fixed
Point Theorem2 has a fixed point on such an orbit. However, a fixed point is the
span of a highest weight vector and so must be [vλ]. Our closed orbit is therefore
O. In short, O is the unique closed G-orbit in P(V λ).

Let X ⊂ V λ be the cone over O: this is an affine variety. Let R = C[V λ], A = C[X]
and I the ideal of X so that A = R/I. Let J = RQ, the ideal generated by Q
and set B = R/J . We know from (3.1) that J ≤ I so that the restriction B → A
surjects.

The heart of the matter will be to show that B =
⊕

k≥0 V
kµ, or, more precisely

that the degree k part of B is V kµ. For this, start by observing that B1 = R1 = V µ,
since J is generated in degree 2, while B2 = V 2µ by construction. Now let x, y ∈ B1:
we are going to compute C(xy) in two different ways. Firstly xy ∈ V 2µ so that
C(xy) = C(2µ)xy. On the other hand, C =

∑
h ahbh with ah, bh ∈ g so that both

ah and bh act by derivations on B. Thus

C(xy) =
∑
h

(ahbh)xy = C(x)y + C(y)x+
∑
h

(
(ahx)(bhy) + (bhx)(ahy)

)
and, using the simple identity C(2µ)− 2C(µ) = 2(µ, µ), we conclude that

(3.2)
∑
h

(
(ahx)(bhy) + (bhx)(ahy)

)
= 2(µ, µ)xy.

1Any orbit is (Zariski) open in its closure so that an orbit of minimal dimension is closed
[2, §8.3].

2A connected solvable group acting on a complete variety has a fixed point [2, Theorem 21.2].
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Now let u = x1 . . . xk ∈ Bk and compute Cu via the Leibniz Rule:

C(u) =
∑
i

∑
h

x1 . . . ahbhxi . . . xk+∑
i<j

∑
h

(x1 . . . ahxi . . . bhxj . . . xk + x1 . . . bhxi . . . ahxj . . . xk).

In view of (3.2), this simplifies to

C(u) =
(
kC(µ) + 2

(
k

2

)
(µ, µ)

)
u = C(kµ)u

and the discussion in section 2.3 assures us that u ∈ V kµ.

Thus Bk = V kµ is irreducible so that if some Bk lay in the kernel of B → A, we
would have Rk vanishing on X forcing X = {0}. We conclude that A = B =⊕

k≥0 V
kµ and I = J as required. �

Remark 3.2. Theorem 3.1 is due to Kostant but appeared, with appropriate attri-
bution, in Lancaster–Towber [3]. Item (1) of the theorem was proved independently
by Lichtenstein [4]. The present exposition follows that of Procesi [5] closely.

4. Bilinear relations

4.1. Incidence of parabolic subalgebras. Recall that a subalgebra p ≤ g is
parabolic if it contains a Borel subalgebra. Thus the infinitesimal stabiliser of any
point [v] ∈ O ⊂ P(V λ) in a projective highest weight orbit is parabolic. More-
over, any parabolic subalgebra arises this way many times: the conjugacy class of
parabolics stabilising points of G · [vλ], λ =

∑
imiλi depends only on {i : mi 6= 0}.

Parabolic subalgebras admit elaborate combinatorial structures of which perhaps
the simplest is an incidence geometry: say that parabolics p1, p2 are incident if
p1 ∩ p2 is also parabolic, that is, if the pi contain a common Borel.

We now show that this incidence, viewed as a relation on projective highest weight
vectors, is simply a bilinear version of Kostant’s quadratic equations.

4.2. Incidence as a bilinear relation. For λ, µ ∈ Λ+ and [v] ∈ Oλ, [w] ∈
Oµ points in the corresponding projective highest weight orbits with infinitesimal
stabilisers pλ and pµ, note that the infinitesimal stabiliser of [v ⊗ w] ∈ V λ ⊗ V µ is
just pλ∩pµ. Thus this intersection is parabolic if and only if v⊗w is a highest weight
vector, necessarily of weight λ+µ, and so [v⊗w] ∈ Oλ+µ ⊂ P(V λ+µ) ⊂ P(V λ⊗V µ).

We use theorem 3.1 to show that this obtains precisely when v ⊗ w ∈ V λ+µ.

Theorem 4.1. For [v] ∈ Oλ and [w] ∈ Oµ, [v ⊗ w] ∈ Oλ+µ if and only if v ⊗ w ∈
V λ+µ.

Proof. The forward implication is immediate so let us assume that u = v ⊗ w ∈
V λ+µ. By theorem 3.1, we need to show that u2 ∈ V 2(λ+µ), or, equivalently,
C(u⊗ u) = C(2λ+ 2µ)u⊗ u.

Note that we already have Cv = C(λ)v, Cw = C(µ)w and, by hypothesis, C(v ⊗
w) = C(λ+ µ)v ⊗ w from which we conclude

(4.1)
∑
h

(ahv ⊗ bhw + bhv ⊗ ahw) =
(
C(λ+ µ)− C(λ)− C(µ)

)
v ⊗ w.
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To compute C(u⊗u), we reorder the tensor product to make the derivations easier
to think about and compute

C(v ⊗ v ⊗ w ⊗ w) = C(v ⊗ v)⊗ w ⊗ w + v ⊗ v ⊗ C(w ⊗ w)

+
∑
h

(
ah(v ⊗ v)⊗ bh(w ⊗ w) + bh(v ⊗ v)⊗ ah(w ⊗ w)

)
.

Further applications of the Leibniz rule show that the last summand is a sum of
four terms with the following flavour:∑

h

(
(ahv)⊗ v ⊗ (bhw)⊗ w + (bhv)⊗ v ⊗ (ahw)⊗ w

)
,

each of which is (C(λ + µ) − C(λ) − C(µ))v ⊗ v ⊗ w ⊗ w by (4.1). On the other
hand, theorem 3.1 tells us that C(v⊗v) = C(2λ)v⊗v and C(w⊗w) = C(2µ)w⊗w
so that

C(u⊗u) =
(
C(2λ) +C(2µ) + 4(C(λ+µ)−C(λ)−C(µ))

)
u⊗u = C(2λ+ 2µ)u⊗u,

as a short calculation verifies. �

5. Fundamental relations

In an effort to squeeze the last drop of utility from this circle of ideas, we exhibit
an affine variety cut out by quadratic relations of the kind considered here whose
coordinate ring contains every finite-dimensional, irreducible g-module exactly once.

For this, let V = V λ1 ⊕ · · · ⊕ V λl be the sum of the fundamental g-modules. The
coordinate ring R = C[V ] is graded by multi-degree with Rm1...ml

= (Sm1V µ1) ⊗
. . .⊗ (SmlV µl), where the µi are the permutation of the λi for which V µi and V λi

are dual.

Define g-submodules Qi, Qij of total degree 2 by

S2V µi = V 2µi ⊕Qi
V µi ⊗ V µj = V µi+µj ⊕Qij

and let I be the ideal in R generated by the Qi, 1 ≤ i ≤ l, and the Qij , 1 ≤ i < j ≤ l.
We prove:

Theorem 5.1. R/I ∼=
∑
µ∈Λ+ V µ. In fact, (R/I)m1...ml

∼= V m1µ1+···+mlµl .

Proof. We will prove the second identity and start by observing that it holds by
construction when m = (m1, . . . ,ml) has |m| ≤ 2. In particular, with xi ∈ V µi

and yj ∈ V µj , a now familiar argument starting from xiyj ∈ V µi+µj yields

(5.1)
∑
h

(
(ahxi)(bhyj) + (bhxi)(ahyj)

)
= 2(µi, µj)xiyj ,

in agreement with (3.2) when i = j.

We prove the result by induction on total degree and contemplate C(xq) where
x ∈ V µi and q ∈ V µ has multi-degree m. Then, the induction hypothesis tells us
that

C(xq) = C(µi)xq + C(µ)xq +
∑
h

(
(ahx)(bhq) + (bhx)(ahq)

)
.

Further expansion of the last summand along with |m| applications of (5.1) yield

C(xq) =
(
C(µi) + C(µ) + 2(µi, µ)

)
= C(µi + µ)xq

so that xq ∈ V µi+µ and we are done. �
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Remarks.

(1) Such descriptions of all representations by “generators and relations” are
discussed in Fulton–Harris [1, p. 235–237] and Lancaster–Towber [3].

(2) The affine space X ⊂ V cut out by the ideal J of Theorem 5.1 is the affine
closure of the so-called “base affine space” of Bernstein–Gelfand–Gelfand.
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